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Abstract

This paper studies observational determinism, a gener-
alisation of non-interference for multi-threaded programs.
Standard notions of non-interference only consider input
and output of programs, but to ensure the security of multi-
threaded programs, one has to consider execution traces.

In earlier work, Zdancewic and Myers propose to con-
sider a multi-threaded program secure when it behaves de-
terministic w.r.t. its public (or low) variables, i.e. traces of
public variables should not depend on private (or high)
variables. This property is called observational determin-
ism. The original definition of observational determinism
still allows to reveal private data; this paper corrects this.

The main contribution of this paper is a rephrasing of the
definition of observational determinism in terms of a tem-
poral logic. This allows to use standard model checking
techniques to verify observational determinism, which has
the advantage that the verification is automatic and precise.
Moreover in case the verification fails, model checking can
produce a counterexample. We characterise observational
determinism in CTL* and in the polyadic modal µ-calculus.
For both logics, model checking algorithms exist.

1 Introduction

With the emergence of Internet and other models of
global computing, privacy guarantees are becoming more
and more important. Typical applications such as electronic
banking and health care information systems only are ac-
ceptable to users if their privacy is sufficiently guaranteed.
Non-interference [13] is a standard notion of security that
allows to preserve privacy. Basically, an application is said
to be non-interfering if changes to the private (or secret)
data are not reflected in the public data, in other words pub-
lic data only depend on public data.

∗This work was partially funded by the IST FET programme of the EC
under the IST-2005-015905 Mobius project. This paper reflects only the
author’s views and the Community is not liable for any use that may be
made of the information contained therein.

Several analyses have been developed to check for non-
interference, of which type checking [25] is the most used
approach. The type checking analysis has been shown to
be sound, and in addition it is fully automatic. However,
it is necessarily incomplete, because it cannot take context-
sensitive information into account. Therefore, reformula-
tions of the definition of non-interference have been pro-
posed that allow to use classical logic-based verification
techniques; expressing non-interference for example as a
Hoare triple, see [4, 8]. Notice that this allows to combine
type checking and logic-based verification.

However, the definition of non-interference only consid-
ers the input and output of an application. For concurrent
and reactive systems it is often considered more appropriate
to also look at the intermediate states of the application, and
to require that private data are never revealed. Zdancewic
and Myers (inspired by earlier work by Roscoe [21]) there-
fore propose a generalised notion of non-interference: ob-
servational determinism [26], which avoids attacks exploit-
ing information about the thread scheduler. They propose a
type system to check observational determinism.

This paper studies this notion of observational determin-
ism further, and fine-tunes its definition. In fact, the original
definition allows programs to reveal information about pri-
vate data. We illustrate this on some examples, and propose
an improvement.

The main contribution of this paper is the rephrasing
of the definition of observational determinism in tempo-
ral logic. We present two different characterisations, one
in CTL* [11], using a special non-standard synchronous
composition operator, and one in the polyadic modal µ-
calculus [3] (a variation of the modal µ-calculus [16]). For
both logics efficient model checking algorithms exist, thus
observational determinism is decidable (for finite state pro-
grams). Since these temporal logic characterisations are
equivalent to the original definition, this gives a sound and
complete verification method for observational determin-
ism. Moreover, if the verification fails, the model checking
procedure is able to produce a counterexample.

Related work For a general overview of techniques to
verify information-flow, and in particular non-interference,
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we refer to the survey paper of Sabelfeld and Myers [22].
There exist several characterisations of non-interference

as a program logic problem. Darvas, Hähnle and Sands [8]
use dynamic logic to express non-interference as a program
property. Both Barthe, D’Argenio and Rezk [4] and Dar-
vas et al. propose a Hoare logic formulation, using self-
composition, i.e. a construction where the copy is com-
posed with itself, and where each program copy keeps an
independent memory. Terauchi and Aiken [24] combine
these approaches with a type-directed program transforma-
tion, so that one is able to use automatic safety analysis
tools, such as BLAST. Barthe et al. also present separation
logic and CTL formulations of non-interference. However,
in all these approaches only relations between program in-
puts and program outputs are considered, in contrast to our
approach, which considers program traces.

Pottier and Simonet [20, 19] use a special program ex-
tension which allows them to establish properties over two
program configurations. They use this to establish non-
interference. Their verification is based on type checking.
The apply this to reason about ML and the π-calculus.

Joshi and Leino, Amtoft, Bandhakavi and Banerjee and
Dam present other logics for verifying information flow
properties [15, 2, 1, 7]. They define sound and complete
proof methods. Joshi and Leino define a weakest precon-
dition calculus for their logic, while Amtoft et al. use a
strongest postcondition, which is used to check the infor-
mation flow properties algorithmically. Dam also shows
that proof search for his logic is decidable. The difference
with our approach is that they define a special logic, that is
designed to verify the particular information flow property,
while we recast the information flow property in a general
logic, for which we can use existing verification techniques.

Several definitions are proposed to generalise the notion
of non-interference to multi-threaded programs. We men-
tion a few. Roscoe was the first to state the importance
of determinism [21] to ensure secure information flow of
multi-threaded programs. Volpano and Smith [23] propose
to use either a purely nondeterministic thread scheduling,
or to put (severe) restrictions on the language. Boudol and
Castellani lift these restrictions by proposing a definition
based on bisimulation [5]. Zdancewic and Myers [26] pro-
pose to eliminate timing channels by disallowing race con-
ditions. Storage leakage can then be detected by a type sys-
tem, which only has to consider each low variable trace in-
dependent of the other low variable traces, which puts less
restrictions on the kind of programs that are still considered
secure.

Overview of the paper Section 2 describes the notion of
observational determinism in more detail. Next, Section 3
introduces the formal program model and defines observa-
tional determinism formally. Section 4 describes the char-

acterisation in CTL*, while Section 5 describes the charac-
terisation in the (polyadic) modal µ-calculus. Finally, Sec-
tion 6 compares the two different approaches, and discusses
the encoding of our formalisation within a model checker.
It also gives suggestions for future work.

2 Security for Multi-threaded Programs

In general, a program is considered to be secure if it pro-
tects its confidential data. The basic idea behind informa-
tion flow policies is that the flow of confidential data should
be restricted, so that they are only visible to whoever has
the appropriate permissions.

For simplicity, we consider a simple two-point security
lattice: the data are divided into public and private data.
However, it is straightforward to generalise the results of
this paper to a general lattice with more security levels.
Throughout this paper, we use the convention that variable
names starting with l denote low variables, while variable
names starting with h denote high variables.

Information flow policies are often based on non-inter-
ference, which is defined as a relation between the input
and the output of a program: if the low input values are in-
distinguishable, running the program should result in indis-
tinguishable low output values. This implicitly ensures that
publicly visible results of a computation do not depend on
private data. However, for multi-threaded (or concurrent)
programs, this notion is not sufficient to ensure security: the
outcome of the program depends on the scheduling strategy,
thus different scheduling policies can actually reveal infor-
mation. Moreover, concurrent programs (and in particular
reactive programs) are often used in a context where inter-
mediate states can be observed.

2.1 Observational determinism

To overcome these problems, Zdancewic and Myers
propose a generalisation of non-interference, called obser-
vational determinism [26], that can be applied to multi-
threaded programs. They observe the following:

• since intermediate states might be observed, whole ex-
ecution traces of a program need to be considered, in-
stead of only input and output states; and

• different scheduling policies should not be observable
in the low variables, i.e. all traces of a program should
be equivalent w.r.t. the low variables.

Zdancewic and Myers argue further that a program such as

l := true || l := false || l := h

should not be considered secure, according to their obser-
vations. A scheduling policy that would always execute
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the last assignment (l := h) last would reveal informa-
tion about h. And even a random scheduler would reveal
information, because the program is more likely to termi-
nate with l containing h, than with l containing ¬h.

Therefore they propose the following definition. A pro-
gram is said to be observationally deterministic if: given
two initial configurations m and m′ that are indistinguish-
able w.r.t. the low variables, any two traces that start with
m and m′ are also indistinguishable w.r.t. the low variables.
Below, we will define precisely when two traces are said to
be indistinguishable w.r.t. the low variables.

2.2 Indistinguishability of traces

In security analysis one often distinguishes internal and
external leakage of information. Internal leakage of in-
formation is said to happen when the (public) behaviour
of a thread is influenced by private data manipulated by
another thread. External leakage of information happens
when an outside observer of the system can deduce infor-
mation about private data by observing the behaviour of a
single thread. For example, suppose you have the following
thread:

if (h > 0) then l1 := 4; l2 := 7
else l2 := 7; l1 := 4

(T1)

This program has an information leak, i.e. by observing
the order in which the variables l1 and l2 change, one can
deduce information about the value of h. For example, if
we run T1 in parallel with T2 we can deduce information
about h from observing the value of the variable l3.

wait (l1 == 4);
if (l2 == 7) then l3 := l3 + 1

(T2)

If l3 has not been increased, the assignment to l2 must
have happened after the assignment to l1, thus h must have
been positive (provided l1 and l2 were initially not equal
to 4 and 7, respectively).

To avoid such information leaks, Zdancewic and Myers
present a type system and they prove that if a program does
not contain races on low variables, and is accepted by their
type system, then it is observationally deterministic. They
claim that by requiring a program to be race-free (where a
race is said to happen if two accesses to the same variable
can happen at the same time, and one of these two accesses
is a write), this weakens the ability of a thread to observe the
behaviour of another thread, and therefore it is sufficient to
check that two traces are indistinguishable for each loca-
tion independently. They argue that the relative ordering of
two updates can only be observed by code that contains a
race. Thus, traces T and T ′ are indistinguishable w.r.t. a set
of low variables L if for any variable location v ∈ L, the

projections (called location traces) T (v) and T ′(v) are in-
distinguishable. This definition of observational determin-
ism accepts the single-threaded program T1. But when T1

is put in parallel with T2, there are races on l1 and l2,
because the reads to l1 and l2 in T2 could happen at the
same moment as the assignments to them in T1, thus they
would reject this program (notice that T1 alone is also re-
jected by their type system, as it contains a branching on a
high variable).

The next question is when two location traces are indis-
tinguishable. Zdancewic and Myers propose that this is the
case if they are equivalent upto stuttering and prefixing, i.e.
traces [v0, v1, v2] and [v0, v0, v1, v1, v2, v3] would be con-
sidered indistinguishable. Zdancewic and Myers argue that
prefixing is a sufficiently strong equivalence relation, as this
only causes external termination leaks, which they say re-
veals only one bit of information.

However, we claim that allowing prefixing of location
traces actually can reveal more information. To illustrate
our claim, consider the following program.

l1 := 0; l2 := 0;
while (h > 0) {
l1 := l1 + 1; h := h - 1};

l2: = 1

(T3)

Notice that T3 is sequential, and thus does not contain
any races. For any initial configuration m (where h ≥ 0),
the trace for location l1 will always be equivalent (upto
stuttering) to [l1m, 0, 1, 2, . . . ,hm], while the trace for l2
will be [l2m, 0, 0, . . . , 0, 1, 1, . . .], where the transition of
l2 to 1 signals that the loop has terminated. Thus, for any
two initial configurations m and m′, both the location traces
T (l1) and T ′(l1), and T (l2) and T ′(l2) will always be
equivalent upto prefixing and stuttering. According to the
definitions above, the program should be considered obser-
vationally deterministic (and thus secure). However, it is
clear that this program reveals more than one bit of infor-
mation: the initial value of h is revealed as the last value in
the trace of l1 (where the transition in the trace of l2 indi-
cates that this value indeed corresponds exactly to h). Thus
in particular, if we would run it in parallel with a thread:

wait (l2 == 1);
print(l1)

(T4)

the initial value of h would always be printed.
Notice that also the first example, running T1 in parallel

with T2 is an acceptable program for the definition where
trace equality uses prefixing: the variable l3 either always
keeps its initial value, or it is updated once. Thus, we always
have trace equality w.r.t. prefixing and stuttering. However,
as we have argued above, the program leaks information in-
ternally, and thus should be rejected as an insecure program.

We strengthen the definition of location trace indistin-
guishability by requiring that location traces are equivalent
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upto stuttering. This allows to define a notion of termination
insensitive (TI) observational determinism. Moreover, by
adding the condition that traces started in indistinguishable
states should either always or never reach a final configu-
ration, we can define a notion of termination sensitive (TS)
observational determinism. These notions are formally de-
fined in the next section. Notice that T1 in parallel with T2,
and T3 (possibly in parallel with T4) will be rejected by this
definition of observational determinism. (Notice that all ex-
amples are rejected by Zdancewic and Myers’s type system)

The stronger definition of observational determinism
will also reject some harmless programs, such as

l := 7 || while (true) {}

because we cannot ensure that the assignment to l will ac-
tually happen. The reason that Zdancewic and Myers pro-
posed to use equivalence upto stuttering and prefixing could
be the desire to accept programs like the one above. How-
ever, another possibility to ensure that such programs would
be accepted, would be to impose a fairness condition: all
enabled program steps will eventually be executed.

This example shows that the type system proposed by
Zdancewic & Myers is not sound for our notion of observa-
tional determinism. However, we believe that if we would
add a fairness condition to the execution model, their type
system would be sound, but we did not verify this formally.

Finally, in the examples above, in a more advanced
language the race conditions could easily be eliminated
by adding synchronisation or declaring the variables to be
volatile (cf. the Java semantics [14]), which has the implicit
effect of declaring a lock that is to be obtained before any
read or write access to such a variable. Thus even in the ab-
sence of race conditions, threads might be able to observe
the relative ordering of two updates. Therefore, one could
strengthen the definition of observational determinism fur-
ther by requiring that traces are deterministic for subsets of
the set of low variables (where the union of all these subsets
should be the complete set).

In the remainder of this paper, we do not further discuss
possible variations of the definition of observational deter-
minism. We restrict attention to the case where location
traces are considered independently, and are supposed to be
equivalent upto stuttering. However, for any of these similar
logical characterisations (both in CTL* and in the polyadic
µ-calculus) could be given.

3 Observational Determinism Formally

3.1 Programs and Traces

The programming language that we consider in this pa-
per is a simple while-language, extended with parallel com-

〈x:=E, µ〉 → 〈ε, µ(x 7→ E(µ))〉

〈S1, µ〉 → 〈S′

1, µ
′〉

〈S1;S2, µ〉 → 〈S′

1;S2, µ
′〉

〈S1, µ〉 → 〈ε, µ′〉

〈S1;S2, µ〉 → 〈S2, µ
′〉

〈if (b) then S1 else S2, µ〉 → 〈S1, µ〉 if b(µ)

〈while (b) { S }, µ〉 → 〈S;while (b) { S }, µ〉 if b(µ)

〈S1, µ〉 → 〈S′

1, µ
′〉

〈S1||S2, µ〉 → 〈S′

1||S2, µ
′〉

〈S1, µ〉 → 〈ε, µ′〉

〈S1||S2, µ〉 → 〈S2, µ
′〉

〈wait (b), µ〉 → 〈ε, µ〉 if b(µ)

Figure 1. Operational semantics

position || and a blocking statement wait1. Statements are
defined by the following grammar, where x denotes a vari-
able location in memory, E an expression (defined in the
obvious way), and b an expression of Boolean type.

S = x:=E | S;S | if (b) then S else S |
while (b) { S } | S||S | wait (b)

For simplicity, we consider the program to run with a sin-
gle program store µ, which is a mapping from variable lo-
cations v, v0, v1, . . . to values. A program configuration c is
defined as the product of a statement S and a program store
µ, i.e. c = 〈S, µ〉, where S denotes the program that remains
to be executed, and µ denotes the current program store.
We use ε to denote a finished program. Figure 1 shows
several of the a small step operational semantics rules for
this language, where parallel composition is asynchronous
(for space reasons we have left out several symmetric cases
and obvious cases). Given a configuration, we use accessor
functions prog and store, such that:

prog(〈S, µ〉) = S store(〈S, µ〉) = µ

Next, we are ready to define program traces. To ensure
that all traces are infinite, Figure 2 defines transition rules
for terminated and deadlocked programs, leaving the con-
figuration unchanged. Thus, a terminated or deadlocked
program will remain in its final state forever. A program
is said to be deadlocked when all its parallel programs are
waiting for a condition to become true. This is defined using
primitive recursion.

deadlock(〈wait (b), µ〉) = ¬b(µ)
deadlock(〈S1;S2, µ〉) = deadlock(〈S1, µ〉)
deadlock(〈S1||S2, µ〉) = deadlock(〈S1, µ〉) ∧

deadlock(〈S2, µ〉)
deadlock(〈S, µ〉) = ff

1Zdancewic and Myers present their type system for observational de-
terminism for a language λPAR

SEC [26]. The language that we use here can be
encoded in this more fundamental language.
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〈ε, µ〉 → 〈ε, µ〉 〈S, µ〉 → 〈S, µ〉 if deadlock〈S, µ〉

Figure 2. Transition rules for terminated and
deadlocked programs

A program trace is an infinite sequence of configurations.
The first configuration in the trace corresponds to the initial
configuration. The ith configuration in the trace is reached
by i steps as described by the operational semantics, to-
gether with the non-blocking transition rules.

Definition 1 (Program trace) Given configuration 〈S, µ〉,
an infinite list of configurations T = c0, c1, c2, . . . is a pro-
gram trace of 〈S, µ〉, denoted 〈S, µ〉 ⇓T , if and only if

• c0 = 〈S, µ〉; and

• for all i we have ci → ci+1.

We use T (µ) to denote the projection of a program trace
to the store, and T (v) to denote the location trace that is
constructed by projecting T (µ) to the variable location v.
We use Ti to denote the ith element in the trace.

3.2 Indistinguishability

Given a set of low variables L we define indistinguisha-
bility of stores and configurations.

Definition 2 (Indistinguishability) Stores µ and µ′ are in-
distinguishable w.r.t. L, denoted µ≈L µ′, if and only if

∀v ∈ L.µ(v) = µ′(v)

Configurations c and c′ are indistinguishable w.r.t. L, de-
noted c≈L c′, if and only if store(c)≈L store(c′).

To define indistinguishability of traces, we define stutter-
ing equivalence formally. This definition uses an auxiliary
notion of stuttering equivalence upto indices i and j: traces
T and T ′ are said to be stuttering equivalent upto i and j
if (1) Ti and T ′

j are the same, and (2) if we take the small-
est indices k and l such that the sequences Tk, . . . , Ti and
T ′

l , . . . , T
′
j do not change, then we check that T and T ′ are

stuttering equivalent upto k − 1 and l − 1. We say that T
and T ′ are stuttering equivalent if for all i we can find a j
such that T and T ′ are stuttering equivalent upto i and j,
and we can find a j ′ such that T ′ and T are stuttering equiv-
alent upto i and j ′. Other equivalent definitions of stuttering
equivalence are possible, see e.g. [9, 18].

Definition 3 (Stuttering equivalent) Traces T and T ′ are
stuttering equivalent upto i and j, denoted [T, i]∼s [T ′, j],
if and only if

• Ti = T ′
j; and

• if k = min({p | ∀n ∈ [p . . . i].Tn = Ti}) and
l = min({p | ∀n ∈ [p . . . j].T ′

n = T ′
j})

then k = l = 0 or [T, k − 1]∼s [T ′, l − 1].

T and T ′ are stuttering equivalent, denoted T ∼s T ′, if
and only if

• for all i, there exists a j such that [T, i]∼s [T ′, j]; and

• for all j, there exists an i such that [T, i]∼s [T ′, j].

Notice that stuttering equivalence defines an equivalence
relation, i.e. it is reflexive, symmetric and transitive.

Indistinguishability of traces is defined as stuttering
equivalence of the location traces for all low variables.

Definition 4 (Trace indistinguishability) Traces T and
T ′ are indistinguishable w.r.t. L, denoted T ≈L T ′, if and
only if

∀v ∈ L. T (v)∼s T ′(v)

When L is a singleton set {v} we write T ≈v T ′ instead
of T ≈{v} T ′.

Finally, we are ready to formally define observational
determinism. TI observational determinism only requires
trace indistinguishability, TS observational determinism
also requires that if one execution terminates, the other ex-
ecution also terminates.

Definition 5 (Observational determinism) Program S is
Termination Insensitive (TI) observationally deterministic
w.r.t. L if and only if for all stores µ, µ′ such that µ≈L µ′,
and for all traces T and T ′, we have

〈S, µ〉 ⇓T ∧ 〈S, µ′〉 ⇓T ′ ⇒ T ≈L T ′ (1)

We say S is Termination Sensitive (TS) observationally
deterministic w.r.t. L if and only if for all stores µ, µ′ such
that µ≈L µ′, and for all traces T and T ′, we have

〈S, µ〉 ⇓T ∧ 〈S, µ′〉 ⇓T ′ ⇒ T ≈L T ′∧
(∃i.prog(Ti) = ε ⇔ ∃j.prog(Tj) = ε)

(2)

Notice that termination of a trace is expressed as a prop-
erty of the global program trace, not of the location traces:
in the formalisation the location traces only contain the val-
ues of the variable, they do not keep track of the program
that remains to be executed.

In particular, if the set of low variables is empty, TI ob-
servational determinism vacuously holds, while TS obser-
vational determinism still puts restrictions on the termina-
tion behaviour of the program: either it always terminates,
or it never terminates.
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4 A CTL∗ Characterisation of Observational
Determinism

As discussed above, a common approach to check non-
interference properties such as observational determinism is
to use a type system. This provides an efficient, but impre-
cise verification technique, that might reject many correct
programs. Therefore, it is desirable to have more precise
verification techniques. We achieve this by characterising
observational determinism as a temporal logic property for
which model checking algorithms exist. Verifying whether
a program is secure, i.e. respects the observational deter-
minism property, thus reduces to a standard model checking
problem.

We consider two temporal logics to characterise observa-
tional determinism. This section presents a characterisation
in CTL* [11], the next section presents a characterisation
in the (polyadic) modal µ-calculus [3]. The CTL* charac-
terisation stays close to the phrasing of the observational
determinism definition. As we will see, this results in a rel-
atively complicated model, while the temporal formula is
quite intuitive to understand. In the µ-calculus formulation
our model is much simpler (and smaller), but the character-
isation is more difficult to understand.

Our approach is based on self-composition of the pro-
gram that is being verified (cf. [4]). Basically, this means
that we execute the program in parallel with itself, in such
a way that we can decompose the program store. The cor-
rectness condition is phrased as a property over single pro-
gram states, verifying whether the two parts of the program
store satisfy a particular relation. Before presenting the self-
composition of programs in more detail, we first give a brief
recapitulation of CTL* (following [11]).

4.1 CTL*

CTL* is a branching-time temporal logic. It con-
tains path quantifiers, that can be combined with arbitrary
linear-time formulae. CTL* is defined to subsume CTL
(branching-time temporal logic) and LTL (linear-time tem-
poral logic) [12].

The syntax of a CTL* formula is defined as follows (as-
suming that A is a set of atomic predicates).

Definition 6 (CTL* syntax) A formula in CTL* is either a
state formula sf or a path formula pf, defined by the follow-
ing grammar, where p ∈ A.

sf = p | sf ∧ sf | ¬sf | E pf | A pf

pf = sf | pf ∧ pf | ¬pf | X pf | pf U pf

The path quantifiers E and A are inherited from CTL.
Intuitively, a formula E pf expresses that there exists an ex-
ecution path in the program for which the path formula pf

M, s |= p ⇔ p ∈ λ(s)
M, s |= sf1 ∧ sf2 ⇔ M, s |= sf1 and M, s |= sf2

M, s |= ¬sf ⇔ not M, s |= sf

M, s |= E pf ⇔ ∃T.s⇓T ∧ M, T |= pf

M, s |= A pf ⇔ ∀T.s⇓T ⇒ M, T |= pf

M, T |= sf ⇔ M, T0 |= sf

M, T |= pf
1
∧ pf

2
⇔ M, T |= pf

1
and M, T |= pf

2

M, T |= ¬pf ⇔ not M, T |= pf

M, T |= X pf ⇔ M, T 1 |= pf

M, T |= pf
1
U pf

2
⇔ ∃i. M, T i |= pf

2
∧

(∀j < i.M, T j |= pf
1
)

Figure 3. Semantics of CTL* formulae

holds, while A pf expresses that pf holds for all program
executions. Path formulae can contain arbitrary linear-
time expressions, formed using the next (X ) and the un-
til ( U ) operators. We use F p (eventually p) to abbreviate
(true U p) and G p (globally p) to abbreviate ¬F¬p.

The semantics of a CTL* formula is defined w.r.t. a
model M = (S,→, λ, I), where S is a set of states,
→⊆ S × S is a total transition relation between states,
λ : S → P(A) defines a valuation on the states, and
I ⊆ S denotes the set of initial states. Given a trace
T = s0, s1, s2, . . ., we use T i to denote the trace starting
with si, i.e. si, si+1, si+2, . . .. As above, we use s⇓T to
denote that T is an execution of M , starting in s.

Definition 7 (CTL* semantics) Given a state s ∈ S and a
trace T of M , Figure 3 defines M, s |= sf and M, T |= pf.
A model M satisfies a state formula sf, denoted M |= sf, if
for all i ∈ I we have M, i |= sf.

A model M satisfies a path formula pf, denoted M |= pf,
if for all traces T starting in an initial state i ∈ I , we have
M, T |= pf.

4.2 Synchronised Composition with Skips

To enable logical verification, we compose the program
that we wish to verify with itself. This results in a single
program, for which we can check validity of CTL* formu-
lae. Below, we will give CTL* formulations equivalent to
TI and TS observational determinism.

Remember that we are interested in execution traces of
the (self-composed) program, and not just in initial and final
states. If we would use a standard asynchronous composi-
tion to compose the program with itself, we would have to
express that if one program copy changes a variable, the
other program copy would have to change this variable at
some “nearby” moment. This would be a too complicated
formula to express in CTL*, because there is an unbounded
window between the two points to be compared and we can
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only use atomic state predicates; therefore we choose to de-
fine a special parallel composition operator S cbS ′ instead.
Recalling the definition of observational determinism, we
want to show that executions are deterministic in the low
variables; thus if a variable changes in one copy of the pro-
gram, it should be able to change in the other copy of the
program as well. Therefore, the definition of S cbS ′ should
allow S and S′ to take synchronous steps. However, we
cannot use a standard synchronous composition operator,
because when manipulating private data, S and S ′ should
be allowed to execute in different ways (in particular one
should be allowed to wait, while the other manipulates pri-
vate data). Thus, the composition operator allows the two
programs to skip execution steps as they wish, but otherwise
to execute synchronously.

The store of S cbS′ is the product of the two individual
stores: (µ, µ′). This ensures that the variables from the two
programs are disjoint, and that updates of program copies
are done locally, i.e. not affecting variables of the other pro-
gram copy (cf. [4]). We will use conf1, conf2, prog1, prog2,
store1 and store2 as accessor functions on a configuration
of the composed program, such that:

conf1(c) = 〈prog1(c), store1(c)〉
conf2(c) = 〈prog2(c), store2(c)〉

We extend the notion of configuration to self-composed
programs in the obvious way. We extend the operational
semantics of the program language with the semantics of
the synchronised composition with skips as follows.

Definition 8 (S cbS′) The transition relation between two
composed configurations is described by the following tran-
sition rules.

〈S1, µ1〉 → 〈S′

1, µ
′

1〉 〈S2, µ2〉 → 〈S′

2, µ
′

2〉

〈S1 cbS2, (µ1, µ2)〉 → 〈S′

1 cbS
′

2, (µ
′

1, µ
′

2)〉

〈S1, µ1〉 → 〈S′

1, µ
′

1〉

〈S1 cbS2, (µ1, µ2)〉 → 〈S′

1 cbS2, (µ
′

1, µ2)〉

〈S2, µ2〉 → 〈S′

2, µ
′

2〉

〈S1 cbS2, (µ1, µ2)〉 → 〈S1 cbS
′

2, (µ1, µ
′

2)〉

The CTL* characterisation will distinguish particular ex-
ecutions of the composed programs, namely those in which
if one copy of the program changes a low variable, the other
copy changes the same low variable, unless it has termi-
nated or is deadlocked. We call these particular execu-
tions synchronous. The CTL* formula then specifies that
on these synchronous executions, the value of the low vari-
ables should always be the same for both program copies.

To be able to specify when a program copy changes a
variable, we define the difference between stores and con-
figurations w.r.t. L.

Definition 9 (Difference) The difference between stores µ
and µ′ w.r.t. L, denoted µ−L µ′, is defined as

{v | v ∈ L ∧ µ(v) 6= µ′(v)}

The difference between configurations c and c′ w.r.t. L, de-
noted c−L c′, is equal to store(c)−L store(c′).

As for indistinguishability, we write −v to denote −{v}.
Notice that we have the following.

µ≈L µ′ ⇔ µ−L µ′ = ∅

To define a synchronous trace, we take the difference
from the ith and the i + 1th configuration for both program
copies, and we require that these differences are the same,
i.e. both programs change the same variable, unless one of
the programs has already terminated or is deadlocked. This
leads us to the following definition of a synchronous trace.

Definition 10 (Synchronous trace) Let T be a trace of a
composed program, and let L be a set of low variables.
Trace T is synchronous w.r.t. L, denoted synchroL(T ), if
and only if for all i either

store1(Ti)−L store1(Ti+1) =
store2(Ti)−L store2(Ti+1)

or prog1(Ti) = ε, prog2(Ti) = ε, deadlock(conf1(Ti)) or
deadlock(conf2(Ti)) holds.

We write synchrov instead of synchro{v}. It is straight-
forward to prove that when L is a singleton set, we can al-
ways construct a synchronous execution.

4.3 A Model for Self-Composed Programs

As a last step before formulating the CTL* formula, we
define precisely the model over which we want the formula
to hold. First, we identify the necessary atomic predicates:

• end1, end2, denoting whether one of the program
copies has reached termination;

• deadlock1, deadlock2, denoting whether one of the
program copies is deadlocked;

• eq storesv, for each low variable v in L, denoting
whether the stores of the two copies are the same w.r.t.
v;

• eq store1v, eq store2v , for each low variable v in L,
denoting whether the last transition changed the store
related to one of the program copies w.r.t. v; and

• eq changesv , for each low variable v in L, denoting
whether the last transition changed v for the two dif-
ferent program copies.
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end1 ∈ λ(c) ⇔ prog1(old(c)) = ε

end2 ∈ λ(c) ⇔ prog2(old(c)) = ε

deadlock1 ∈ λ(c) ⇔ deadlock(old(c))
deadlock2 ∈ λ(c) ⇔ deadlock(old(c))
eq storesv ∈ λ(c) ⇔ store1(new(c))≈v store2(new(c))
eq store1v ∈ λ(c) ⇔ store1(new(c))≈v store1(old(c))
eq store2v ∈ λ(c) ⇔ store2(new(c))≈v store2(old(c))

eq changesv ∈ λ(c) ⇔ store1(new(c))−v store1(old(c)) =
store2(new(c))−v store2(old(c))

Figure 4. Equations defining λ

To be able to define the valuation λ, the state space also
needs to contain the previous state of the execution. There-
fore, we define a special memorising transition relation, re-
membering the previous state of each transition.

Definition 11 (Memorising transition relation) Let →⊆
S × S be a transition relation. The memorising transition
relation →m⊆ (S × S) × (S × S) is defined as

(s, s′) →m (t, t′) ⇔ s → t ∧ t′ = s

Thus, (s, s′) makes a transition to (t, t′) if s makes a
transition to t in the original system, and t′ remembers the
old state s. We use accessor functions new and old to access
the components of the memorised state, such that:

new(s, t) = s old(s, t) = t

We define the model over which we will formulate the
CTL* formulae.

Definition 12 (Program model) Given program S and ini-
tial stores µ, µ′ we define the program model MS,µ,µ′ =
(Σ, → , λ, I), where

• Σ denotes the set of products of all configurations of
self-composed programs, i.e. elements in Σ are of the
form (〈S1 cbS2, (µ1, µ2)〉, 〈S3 cbS4, (µ3, µ4)〉);

• → is the memorising transition relation of the program
semantics of self-composed programs (as described in
Figure 1 and Definition 8, plus the non-blocking rules
defined in Figure 2);

• λ is as defined in Figure 4; and

• I = {〈S cbS, (µ, µ′)〉}.

For brevity, we write MS,c, where c is a configuration, to
denote MS,store1(c),store2(c).

4.4 CTL* characterisations

As explained above, the CTL* formulation of observa-
tional determinism requires that for each low variable v we
identify synchronous traces w.r.t. v, and that these traces
have equal stores w.r.t. v (and in the termination-sensitive
case that if one copy terminates, the other copy terminates
as well). Every synchronous program trace w.r.t. v satisfies
the CTL* formula

G synchrov (3)

(where synchrov abbreviates eq changesv ∨ end1 ∨ end2 ∨
deadlock1 ∨ deadlock2).

Lemma 1 Let S be a program and T a trace of S cbS ′ (i.e.
〈S cbS′, T0〉 ⇓T ). Then

synchrov(T )
⇔

MS,T0
, T |= G synchrov

2

Unfortunately, an insecure program might have syn-
chronous traces for which the stores are always equal. This
can happen if one of the two program copies goes into an
infinite loop manipulating only private data (or doing noth-
ing at all), while the other program copy skips steps forever,
even though it is able to progress on a low variable. Con-
sider for example the following program:

if (h) then l := 7
else while (true) {}

(S)

Suppose we execute program S cbS in store (µ, µ′),
where µ(h) = true and µ(h’) = false. Then S cbS
can have a synchronous trace where only the second copy
takes steps, looping forever in the empty while loop. There-
fore the CTL* formula will only accept programs for which
the synchronous traces satisfy a mutual fairness property.
This can be expressed by the following CTL* formula:

¬F G (eq store1v ∧ E X¬eq store2v)∧
¬F G (eq store2v ∧ E X¬eq store1v)

(4)

Intuitively, this formula states the following: it cannot
be the case that from some point on the program copy 1
(2) never changes the value of v anymore, while program
copy 2 (1) always has a possible next state in which it could
change the value of v. In other words, if program copy 2 (1)
can change v, then it eventually should do so.

Thus, a program is TI observation deterministic if: for
all low variables v and for all program traces that are syn-
chronous w.r.t. v, the stores should be always equal w.r.t.
v, and the mutual fairness requirement should hold, i.e.
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all possible changes to v eventually happen. This is ex-
pressed in the following CTL* formula, characterising ob-
servational determinism.

∧

v∈L A (G synchrov ⇒
G eq storesv∧
¬F G (eq store1v ∧ E X¬eq store2v)∧
¬F G (eq store2v ∧ E X¬eq store1v)))

(5)
To characterise TS observational determinism we need to

add an extra condition on the synchronous traces: if one of
the two program copies terminates, the other program copy
has to terminate as well. Notice again that this is a global
property, independent of the set of low variables v.

∧

v∈L A (G synchrov ⇒
G eq storesv∧
¬F G (eq store1v ∧ E X¬eq store2v)∧
¬F G (eq store2v ∧ E X¬eq store1v)))

∧G ((end1 ⇒ F end2) ∧ (end2 ⇒ F end1))
(6)

4.5 A proof of equivalence

We prove that the characterisation is correct. First, we
define the auxiliary notion of initial trace of a program, i.e.
a program execution that at some arbitrary point does not
make any progress anymore, but stutters forever.

Definition 13 (Initial program trace) Given a configura-
tion 〈S, µ〉, an infinite list of configurations T =
c0, c1, c2, . . . is an initial program trace of 〈S, µ〉 if and only
if

• c0 = 〈S, µ〉; and

• for all i either ci → ci+1 or for all j ci = ci+j .

Lemma 2 Every initial program trace can be extended to a
program trace. 2

To distinguish initial and complete program traces, be-
low we will use the term full program trace to denote the
latter. We prove equivalence of the CTL* characterisation
and the definition of observational determinism.

Theorem 1 Termination Insensitive Observational deter-
minism (equation 1) is characterised exactly by the CTL*
formula in equation 5, that is for any program S and initial
states µ and µ′ such that µ≈L µ′, we have

(∀T, T ′.〈S, µ〉 ⇓T ∧ 〈S, µ′〉 ⇓T ′ ⇒ T ≈L T ′)
⇔

MS,µ,µ′ |= (5)

Proof sketch
Case: (1) ⇒ (5)
For any variable v ∈ L, suppose that T is a synchronous
trace w.r.t. v. Let T1 denote the projection of T to conf1,
while T2 denotes the projection of T to conf2. It is imme-
diate to see that T1 and T2 are stutter equivalent to initial
program traces, and at least one of them is stutter equiva-
lent to a full program trace.

Suppose w.l.o.g. that T1 is stutter equivalent to a full
program trace T ′

1. Let T ′
2 be an extension the initial trace

that is stutter equivalent to T2. By (1) we know that
T ′

1(v)∼s T ′
2(v) and thus T1(v)∼s T ′

2(v). We know that T1

changes v exactly as many times as T2, because T is syn-
chronous. Since we have that T1(v)∼s T ′

2(v), T2 changes
v exactly as many times as T1 (stutter equivalence implies
that the number of times a value is changed is the same
at any matching point). Thus T2(v)∼s T ′

2(v), from which
we conclude T1(v)∼s T2(v). By induction we conclude
G eq storesv.

The mutual fairness property follows by contradiction.
If T2 would have a v-changing step enabled in its ith state
(for some i), which it would never take, then there would
be a full program trace extension T3 that would take this
transition. But since T1(v)∼s T3(v) this would imply that
T1 also changes v once more. Thus, since the trace T is
synchronous, T2 also should make this additional change
on v, which leads to a contradiction.

Case: (5) ⇒ (1)
For any variable v ∈ L, suppose T1 and T2 are program
traces. We combine them into one synchronous trace T :

1. Case: both programs can make a v-changing step
Action: both programs make a step

2. Case: copy 1 is about to change v, while copy 2 pre-
serves v
Action: copy 1 sleeps, copy 2 makes step
(and vice versa)

3. Case: copy 1 finished or deadlocked
Action: copy 2 makes a step
(and vice versa)

The formal definition of this procedure uses an auxiliary
recursive definition, that keeps track of how many steps the
traces T1 and T2 have taken to reach the combined configu-
ration Ti.

We use T ′
1 and T ′

2 to denote the projections of T to conf1
and conf2, respectively. T ′

1 is stutter equivalent to an ini-
tial trace of T1, T ′

2 is stutter equivalent to an initial trace of
T2, and at least one of the two is stutter equivalent to a full
program trace (i.e. to T1 or T2). W.l.o.g. we assume that
T ′

1 is a full program trace. Thus T1 ∼s T ′
1. We know that

the stores in T ′
1 and T ′

2 are equal w.r.t. v, thus we conclude
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T1(v)∼s T ′
2(v). Further, we also know that the mutual fair-

ness requirement holds, thus the unfinished trace T ′
2 is not

enabled to make any v-changing steps anymore. Since T2

is a possible extension of T ′
2 this gives us T2(v)∼s T ′

2(v),
and we conclude T1(v)∼s T2(v). 2

Theorem 2 Termination Sensitive Observational determin-
ism (equation 2) is characterised exactly by the CTL* for-
mula in equation 6. 2

5 A Modal µ-calculus Characterisation of
Observational Determinism

We also studied how to express observational deter-
minism in a more expressive logic, namely the modal µ-
calculus [16]. The CTL* formula can be directly embed-
ded in the modal µ-calculus [6]; however, using a varia-
tion of the modal µ-calculus, namely the polyadic modal
µ-calculus [3], another characterisation is possible, using a
simpler model. The polyadic µ-calculus, pµK, allows to
express directly properties over tuples of (program) models
that do not interact at all. Formulae in pµK can be translated
back into classical µ-calculus formulae. However, the use
of pµK supports a way of thinking that is particularly suited
to e.g. express notions as bisimulation equivalence and sim-
ulation preorders, and that also matches precisely with the
idea of self-composition.

Below, we will propose a formula characterising obser-
vational determinism that is defined over a two-tuple con-
taining models representing the same program, but with
possibly different initial states. The formula expresses when
the behaviour of the two models will be deterministic for
all low variables v. The formula holds for two models with
low-equivalent initial states if and only if the program rep-
resented by the models is observationally deterministic. We
end the section by proposing an alternative formulation, us-
ing standard modal µ-calculus.

5.1 Polyadic modal µ-calculus

Before showing the characterisation of observational de-
terminism, we give a short introduction to pµK. Validity
of pµK formulae is undecidable, however model check-
ing is still efficiently decidable (in fact, model checking of
pµK can be reduced to model checking of the standard µ-
calculus). As above, a model is a tuple M = (S,→, λ, I),
where S are the states, → the transition relation, λ a valua-
tion and I ⊆ S denotes the set of initial states.

First we introduce syntax and semantics of pµK (where
L is a set of labels and A a set of atomic predicates).

Definition 14 (Syntax of pµK) Let V be a countably infi-
nite set of variables over sets of states, ranged over by X ,

Y , Z etc. The formulae in pµK are inductively defined by:

φ = pi | ¬φ | φ0 ∨ φ1 | 〈a〉i φ | X | µX.φ

where p ∈ A and a ∈ L.

We use standard abbreviations as

φ0 ∧ φ1 = ¬(¬φ0 ∨ ¬φ1) [a]i φ = ¬ 〈a〉i ¬φ
φ0 ⇒ φ1 = ¬φ0 ∨ φ1 ff = µX.X

νX.φ = ¬µX.¬φ[¬X/X ] tt = ¬ff

The difference with the standard modal µ-calculus is that
the atomic predicates and the modalities are labelled with an
index i. These indices refer to the ith model, i.e. the atomic
predicate has to hold for the current state of the ith model,
and the modalities refer to a transition labelled a of the ith

model2.
Next we define the semantics of a formula φ over a tuple

of models ~M 3, relative to a mapping ρ that assigns subsets
of the states to the free variables in φ.

Definition 15 (Semantics of pµK) Let φ be a formula, de-
fined over ~M with arity n and states S1, . . . , Sn, and ρ be
an environment. The semantics of φ w.r.t. ~M and ρ, denoted

‖φ‖
~M
ρ , is defined as a subset of S = S1 × . . . × Sn, by

induction over φ:

‖pi‖
~M
ρ = {(s1, . . . , si, . . . sn) | p ∈ λ(si)}

‖¬φ‖
~M
ρ = S\ ‖φ‖

~M
ρ

‖φ0 ∨ φ1‖
~M
ρ = ‖φ0‖

~M
ρ ∪ ‖φ1‖

~M
ρ

‖〈a〉i φ‖
~M

ρ
= {(s1, . . . , sn) |

∃s′i.si
a
−→i s′i∧

(s1, . . . , s
′
i, . . . sn) ∈ ‖φ‖

~M
ρ }

‖µX.φ‖
~M
ρ =

⋂

{U ⊆ S | ‖φ‖
~M
ρ(X 7→U) ⊆ U}

Definition 16 (Satisfiability of φ) A tuple of models ~M
with sets of initial states I1, . . . In satisfies φ, denoted ~M |=

φ, if and only if for all ρ, I1 × . . . × In ∈ ‖φ‖
~M
ρ .

5.2 Observational determinism in pµK

We express observational determinism in pµK. Let V be
the set of program variables. We introduce action labels
cx,v for any variable x ∈ V , and any value v in the domain

2Atomic predicates are not handled in [3]. However, since an atomic
predicate p can be encoded by a self-loop labelled p (a so-called probe),
this does not add any new complexity, while it increases the readability of
the formulae.

3We assume the tuple of models contains as least as many models as
the indexes used in the modalities in φ. Formally, to ensure this we would
have to define an extension of ~M with one-point models, to compensate
for any non-existing elements cf. [3].
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of x. These will be used to label transitions that change the
valuation of x. Notice that in order to have a finite set of ac-
tion labels, we need to have finite domains for all program
variables. Further we use τ to label all other (invisible) tran-
sitions. We use A to denote the set of action labels:

A = {cx,v | x ∈ V ∧ v ∈ dom(x)} ∪ {τ}

The operational semantics (as defined in Figure 1) for
assignments is updated as follows.

µ(x) 6= E(µ) v = E(µ)

〈x:=E, µ〉
cx,v

−−→ 〈ε, µ(x 7→ E(µ))〉

µ(x) = E(µ)

〈x:=E, µ〉
τ
−→ 〈ε, µ(x 7→ E(µ))〉

The rules for the conditional, the loop and the wait state-
ment are labelled with τ . The rules for parallel and sequen-
tial composition inherit the transition label from the action
that is executed. Thus for any label a ∈ A we have for
example the following rule:

〈S1, µ〉
a
−→ 〈S′

1, µ
′〉

〈S1;S2, µ〉
a
−→ 〈S′

1;S2, µ
′〉

Thus, a transition will be labelled with cx,v if it executed
an assignment to the variable x and it actually changed its
value, otherwise it will be labelled τ . The condition that
the assignment actually changed the value is necessary to
ensure that the logical characterisation correctly applies to
programs as:

l := 7;
while (h >= 0) {l := 7; h := h - 1};
l := 3

which can contain a sequence of invisible updates, repeat-
edly assigning 7 to l.

As atomic predicates we use end and deadlock, denot-
ing whether the configuration contains a terminated or dead-
locked program, respectively. We define the program model
over which we will formulate the pµK formula.

Definition 17 (Program model) Given program S and ini-
tial store µ we define the program model MS,µ = (Σ,→
, λ, I) where

• Σ denotes the set of all program configurations;

• → is the transition relation as defined by the updated
operational semantics above, i.e. with transitions la-
belled in A;

• end ∈ λ(c) if and only if prog(c) = ε, deadlock ∈
λ(c) if an only if deadlock(c); and

• I = {(S, µ)}

Before presenting the formula, we introduce some con-
venient abbreviations. Let A, B ⊆ A be a set of actions.

〈A〉i φ =
∨

a∈A 〈a〉i φ
〈

Ā
〉

i
φ = 〈A\A〉i φ

cx = {cx,v | v ∈ dom(x)}
〈A〉∗i φ = µX.φ ∨ 〈A〉i X
[A]∗i φ = µX.φ ∨ [A]i X

alwaysi(φ) = νX.φ ∧ [A]i X
〈A\B〉∗i φ = µX.φ ∨ ([B]i ff ∧ 〈A〉i X)

changei(x, v)φ = 〈cx,v〉i tt ∧ [cx,v]i φ∧
∧

v′ 6=v [cx,v′ ]
i
ff

Thus 〈A〉∗i φ expresses that there exists a finite path of
transitions in A after which φ holds, while [A]

∗
i φ expresses

that φ should hold after all finite paths with transitions in
A. We use alwaysiφ to express that φ holds everywhere,
while 〈A\B〉∗i φ expresses that there is a finite path con-
taining only transitions in A, on which never any transition
in B is enabled, and at the end of which φ holds. Finally,
cx,v is true if x can be changed to v, after which φ holds,
and it is not possible to change x to any value different from
v. Notice that we can derive immediately:

[cx]i φ =
∧

v∈dom(x)

[cx,v]i φ

We express TI observational determinism as follows.

∧

x∈L

νR. [cx]
∗
1 (

∧

v∈dom(x) 〈cx,v〉1 〈cx\cx〉
∗
2 change2(x, v)R

∧ (end1 ∨ deadlock1 ⇒ always2 [cx]2 ff))
∧
νR. [cx]∗2 (

∧

v∈dom(x) 〈cx,v〉2 〈cx\cx〉
∗
1 change1(x, v)R

∧ (end2 ∨ deadlock2 ⇒ always1 [cx]1 ff))
(7)

This formula says that if model 1 takes a finite number of
steps, not changing the low variable x – thus all transitions
are in cx – and then it changes x to v, model 2 should
be forced to do the same. Thus, there is a finite path with
transitions in cx on which it is not possible to change x,
and at the end of this path x can only be changed to v, after
which the formula recursively holds again. A special case is
when model 1 terminates or deadlocks: in this case model 2
is allowed to do anything, except changing x. And of course
we also have the same formula for model 2.

5.3 Observational determinism in the standard
modal µ-calculus

As mentioned above, every model and formula in pµK
can be reduced into a model and formula of the standard
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modal µ-calculus, by renaming action a with index i into
action ai, and predicate p with index i into predicate pi [3].
If we do this, we can define a state predicate eqx which
holds if the store in model 1 contains the same value for x
as the store in model 2. With such a predicate, TI observa-
tional determinism is characterised by the following modal
µ-calculus formula.

∧

x∈L

νR. [cx,1]
∗
(〈cx,1〉 〈cx,2\cx,1〉

∗
(〈cx,2〉 tt∧
[cx,2] eqx ∧ R)

∧ (end1 ∨ deadlock1 ⇒ always [cx,2] ff)
∧
νR. [cx,2]

∗
(〈cx,2〉 〈cx,1\cx,1〉

∗
(〈cx,1〉 tt∧
[cx,1] eqx ∧ R)

∧ (end2 ∨ deadlock2 ⇒ always [cx,1] ff)
(8)

where cx,i denotes an action label for the ith model chang-
ing the variable x. Notice that here we do not need action
labels cx,v; it is sufficient to label assignments with the vari-
able that is changed.

6 Conclusions and Future Work

We have presented a characterisation of observational
determinism using two different logics, namely CTL* and
the polyadic modal µ-calculus. For both logics the model
checking problem is decidable (for finite state programs),
thus this shows that observational determinism is a decid-
able security property. The CTL* characterisation is a
fairly direct translation of the definition of observational de-
terminism, but it is defined over a relatively complicated
model. In contrast, the modal µ-calculus characterisations
are more complicated, but expressed over a simpler model.
We believe that this difference is due to the fact that we can
use transition labels in the modal µ-calculus, which allow us
to describe the permitted executions. In CTL* we cannot do
this (in a straightforward way), so we need a more compli-
cated parallel composition which ensures that we can easily
characterise the relevant executions. We will use our model
checking experiments, described below, to see which of the
two approaches in the end is the most pertinent to model
check security properties.

The characterisations are based on the idea of self-
composition [4], i.e. composing a program with a copy of
itself, so that properties can be expressed as properties of the
composed program. However, we widen this idea, because
the composition operators that we use are an extension of
the programming language.

Experiments To study the feasibility of our approach, we
modelled our program semantics and composition operators
in LOTOS [17]. To ensure that we can check the properties

over arbitrary input states, we have added a special input
step. This step initialises each variable to some arbitrary
value. Every formula is expressed to hold after this special
initialisation step, if the stores are equal w.r.t. the low vari-
ables. In the future we would like to find means to abstract
away from this input step, and to be able to express and
validate properties over all low-equivalent initial states.

Our model can be used as input for the CADP tool set4.
We choose this tool set, because of the flexibility of its
model specification language LOTOS, and because of its
well-established reputation. One of the tools in CADP is
Evaluator, which allows to model check (alternation-free)
modal µ-calculus formulae.

Therefore we have rephrased the CTL* characterisation
(formula (1)) (based on the translation given by Dam [6])
into the modal µ-calculus. The model checker correctly re-
jects all examples where the synchronous traces are not hav-
ing equal stores (and generates appropriate counter exam-
ples). Unfortunately, the mutual fairness condition cannot
be expressed in alternation-free modal µ-calculus. Instead
we use a stronger property G A (G eq store1 ∧ synchrov ⇒
G A X eq store2) (at any point in time: if on any execution
path the store of the first program copy for variable v does
not change any more, then the second program copy is also
not able to change this variable). We are currently study-
ing whether this property is not so strong that it rejects all
example programs.

We are also expressing the modal µ-calculus formu-
lae (7) and (8) in the input language for Evaluator. To ex-
press the polyadic modal µ-calculus formula, we have to
make the implicit conjunctions over all input labels explicit
(e.g. replacing 〈cx〉 by 〈cx,1〉 ∨ 〈cx,2〉 ∨ . . . for all possible
values of x, which results in an enormous formula. This al-
ready shows the advantage of falling back on the standard
modal µ-calculus, and not holding on to the strict separa-
tion of the two models. The models that are generated for
this approach are significantly smaller than the models that
are generated for the CTL* formulation. Since the formu-
lae that result from the translation of the CTL* formulae
into the modal µ-calculus is not significantly simpler than
the formula we phrased for the modal µ-calculus charac-
terisation directly, this indicates that the latter is probably
the more promising approach to achieve model checking of
security properties.

Future work Since formulae in the modal µ-calculus can
be essentially specified over a collection of independent
(program) models, this formalism seems especially suited
to characterise also other definitions of non-interference
and other security notions (in particular for multi-threaded
programs), including generalisations of observational deter-
minism, e.g. by requiring that a program behaves observa-

4See http://www.inrialpes.fr/vasy/cadp/.

12



tionally deterministic in any context, which gives a compo-
sitional security notion.

Having formulations of these different definitions in the
same formalism allows for an easier comparison, classi-
fying for example the restrictiveness of the different defi-
nitions of non-interference. Since model checking of the
modal µ-calculus is decidable, any security property that
can be rephrased as such a formula can be checked.

Finally, model checking has its limitations, due to scala-
bility and its demand for a finite state space. However, there
is a large body of research on techniques to overcome these
limitations, e.g. state space reduction and special algorithms
to verify specific program constructs such as dynamic allo-
cation [10]. Eventually, we hope to exploit these techniques
to provide a tool that can efficiently model check security
properties on realistic multi-threaded programs.
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