Modeling Robot Behavior with CCL

Konrad Kutakowski and Tomasz Szmuc

Department of Applied Computer Science,
AGH University of Science and Technology
Al. Mickiewicza 30,

30-059 Cracow, Poland

{konrad.kulakowski,tomasz.szmuc}@agh.edu.pl

Abstract. This paper presents the use of a Concurrent Communicating
Lists (CCL) library in robot behavior modeling. CCL provides several
software components, which allow the model to be built, simulated and
formally verified. Due to the integration with the Robust library the CCL
models can be deployed and executed on the actual hardware platforms.
Besides the modeling robot behavior, the work also addresses the prob-
lem of modeling a robots environment.

The CCL models can be verified either formally or by simulation. Since
the use of formal methods is always associated with the state explosion
problem, the work provides practical guidelines on how to deal with this
problem using CCL.

1 Introduction

In recent years, increased interest in the design and building of robots has been
visible. Robots have become accessible to a wide audience. The ease and avail-
ability of even sophisticated robotics platforms encourages researchers to seek
new, efficient methods of modeling of control software for such constructions. One
of them can be Concurrent Communicating List (CCL) - the Clojure language
library supporting executable modeling of concurrent and distributed systems.
It allows users to write a control program in a special lisp-like CCL notation,
run it step by step in a simulation mode, perform their formal verification or
execute them like a regular computer program.

The first two sections of this paper contain a brief outline of Al robotic ar-
chitectures and, on this basis, tries to draw a map of various approaches to the
modeling of AI robot software. Section Bl summarizes the CCL library. Section
@ presents a simple control algorithm allowing the robot to move and sense.
Section [0l discusses CCL in model simulation and formal analysis. Finally, Sec-
tion [f] includes a work summary and presents the plan for future research and
development.

2 Robotics Models and Architectures

The architecture design in mobile Al robotics tries to follow the three intelligent
control architectural styles [2]:

I. Noda et al. (Eds.): SIMPAR 2012, LNAI 7628, pp. 40 2012.
© Springer-Verlag Berlin Heidelberg 2012

Modeling Robot Behavior with CCL 41

— Hierarchical Planning and Control Architecture
— Reactive/Behavior Based Control Architecture
— Hybrid Architecture

One of the most influential representatives of the first approach is “A Reference
Model Architecture of Intelligent Control” proposed by J. S. Albus and A. M.
Meystel later on implemented as 4D/RCS [I]. The Albus model provides several
levels of control nodes, where each of them is able to sense the environment,
judge the situation on a certain level of granularity and generate behavior. The
nodes higher in the hierarchy take strategic decisions and perform actions on
the higher level of abstraction, whilst the nodes lower in the hierarchy have the
shorter time perspective and perform simpler actions. All the nodes maintain
the data base (world model) storing important facts about the environment.

Another architectonic style is determined by the famous Subsumption Archi-
tecture proposed by Brooks [5]. Following the principle “The world is its own best
model” it focuses on immediate data sensing and behavior generation rather than
spending time on the possibly resource-consuming: sense, process the knowledge,
and execute the plan processing loop. Due to the relative simplicity and intuitive-
ness of model creation, the reactive approach resulted in a number of works on
the various frameworks and notations supporting behavior modeling and analysis
[T9RTIIRIRIIT].

The third, the hybrid approach tries to take benefits from both hierarchical
planning and a reactive approach. Its supporters argue that the previous two
approaches in fact do not exclude each other but rather try to perceive the same
phenomenon from two different perspectives. They observe that sometimes in-
telligent constructions need to behave in a reactive manner, and at other times
to perform careful knowledge-based hierarchical planning. Example of this ap-
proach is AuRA [14].

Among the papers that focus on modeling system behavior, there is an im-
portant group of works that use formal methods. Using formalisms allows the
system behavior to be specified more clearly and efficiently, and opens the possi-
bility of using formal techniques for validation and verification of the model. An
example of such an approach is Behavior Language [6]. This is directly derived
from the widely recognized Subsumption Architecture [5]. Its syntax is based
on the AFSM (Augmented Finite State Machines) description language, which
allows the model to be compiled and deployed on different hardware platforms
such as Motorola 68000 or Hitachi 6301. Other robot behavior specification lan-
guages using the state machine concept are COLBERT [10] and XABSL [19].
The first of them, supporting the SAPHIRA platform, is designed for model-
ing behavior of individual robots, whilst XABSL tries to address the problem
of behavior specification for multi-robot systems. In addition, process algebras
[4] or behavior trees are represented as formalisms for modeling robots behavior
[920]. Petri Net Plans (PNP) [22] proposes Petri nets layer as an actual model
specification language, and then offers possibility of formal model verification.
Although formal methods are often used for modeling behavior, the reactive sys-
tems that use them also take benefits from hierarchical approach. An example of

42 K. Kulakowski and T. Szmuc

solution, which tries to use both reactive and hierarchical methods is RS (Robot
Schemas) [15].

CCL notation is derived from process algebras and primarily focuses on be-
havior modeling. It defines operators and actions (as with the process algebras)
which are used later to create more complex expressions forming a model speci-
fication. There are two types of communication, internal, between two different
processes within the model, and external, between the model and the rest of the
system (e.g. world model). Such a distinction provides modularization, since once
module can be completely external to the other module. CCL, due to its close
relationship with process algebras, gives the possibility to perform formal veri-
fication of the model. Some operations, such as deadlock finding or bisimulation
checking, are supported directly by the C'CL library. Others, such as temporal
formula verification, are supported by exporting the model into the CADP tool
[7]. CCL is executable, which means that all the models can be freely simulated
and executed. For the purpose of simulation, the external environment can be
modeled using the CCL simulation environment CCL Sim [12].

3 CCL Library at a Glance

3.1 CCL Notation

The CCL syntax is modeled on the process algebras, such as CCS [16], and
the Clojure and Lisp language. For this reason all the CCL expressions are
in the form of lists, and they are built up from the operations, which are close in
meaning to what can be found in algebraic notations. The CCL model consists
of lists denoting processes, communication channels between them, and primi-
tives — Clojure functions, which are called by the processes during the execution
of a model. The basic notion introduced by the CCL notation is the nlist ex-
pression denoting the sequence of operations to execute. The nlist expressions
are executed within the CCL processes launched as the part of the concurrent
composition clause. Processes can be anonymous or named. A brief CCL syn-
tax summary can be found in Table 0. The cCL processes communicate via
blocking queues. The use of the synchronization queue mechanism is possible
through the set of queue access methods, such as: g-get, g-put, g-peek, g-try-put,
g-size and g-capacity. The g-get and g-put functions add and remove elements
from the queue. These functions can be blocking or non-blocking depending on
the adopted strategy and the number of elements in the queue. The next two
functions g-peek and g-try-put behave like g-get and g-put but they do not wait.
When they fail the nil value is returned. The last two functions do not change
the state of the queue. They return the number of actual elements in the queue
(method: g-size) and return the maximal possible size of the queue (method:
g-capacity). Depending on the adopted policy and the length of the queue, the
processes attempting to read from or write into the queue can be blocked for a
while or returns immediately.

! The more comprehensive syntax reference with examples can be found at
www.kulakowski.org/ccl

www.kulakowski.org/ccl

Modeling Robot Behavior with CCL 43

Table 1. CCL - Syntax summary

Construction Description
(defn Foo [] body-expr) Defines the Clojure function Foo and registers it
(reg-as-prim Foo) as a CCL primitive.
def-nlist Boo Defines the nlist Boo executing its nlist-body
(exp1 expz2 ... expn)) i.e. the list of subsequent expressions: ezps,
expa,. .. ,eIPN.
(def-nlist (Roo :y) Defines the nlist named Roo with the initial pa-

((exp1 :y) ... (expg :y)) rameter :y. The expressions in Roo’s nlist-body
can freely use the parameter :y.

((:x (Foo)) Defines the local nlist variable :x and initializes it
(Roo (+ :x 1y))) to the value returned by Foo, then starts execution
of Roo with the input value set to the sum of :x

and :y.
(? (condy) (nlist1) ... The conditional choice operator allows the defi-
(condn) (nlisty)) nition of the nlist-expression to be executed next

depending on their condition expressions, i.e. if
condy, is the first true expression on the left then
the nlisty expression is to be executed.

(7?7 X1 (nlist1) Within the random choice statement, nlists
Xz (nlist2) ... X (nlisty)) are picked for further execution randomly. The
chance of being selected for nlisty is given as:

X/ (X1, Xp)

(] Moo :moo Goo :goo) As a result of execution of this expression two
CCL processes have been launched, where the first
process labeled :moo will execute the nlist Moo,
whilst the second process :goo will execute the
nlist Goo.

Due to the blocking property and the maximal number of elements in the
queue (it is assumed that a queue can be zero-length or non zero-length) there
are eight possible types of synchronization queue. All of them have been sum-
marized in Table 2l There are five columns, where type means the type id of a
synchronization queue, cap. comes from the maximal capacity of the queue, read
and write determines whether the operations read and write are blocking and
non-blocking. Since these parameters affect the meaning of queuing methods, the
fifth table column contains a brief function semantics summary. Synchronization
queues are used for modeling communication between different processes within
the model. Communication between the external environment and the model is
implemented by primitives call (Table [I). In such a case all the technicalities
of a communication channel are hidden and it is assumed that the function call
returns a correct result as soon as possible.

44

Type

—_

K. Kulakowski and T. Szmuc

Table 2. Synchronization queues - functions meaning

g3
&} ~
0 n-b
0 b
0 n-b
0 b
k>0 n-b
k>0 b
k>0 n-b
k>0 b

n-b

n-b

b

Functions meaning

The 0-length queue is always empty. Thus, all the operations
except g-size and g-capacity, are ineffective.

Since at the given point of time the queue is empty (there is
no space to store the element for any non-zero period of time)
the operations g-peek and g-try-put are ineffective. The func-
tion g-get always blocks and waits for the counterpart g-put.
The function g-put always adds the element to the queue.
If there is no waiting g-get on the other side the inserted
element is lost.

As for type 2 operations, g-peek and g-try-put are ineffective.
The function g-put always blocks and waits for the counter-
part g-get. The function g-get removes the element from the
queue. If there is no waiting g-put on the other side the re-
turned element is nil.

As for type 2 operations, g-peek and g-try-put are ineffective.
The function g-put always blocks and waits for the counter-
part g-get, and reversely the function g-get always blocks and
waits for the counterpart g-put. When both functions meet
each other g-get returns the element inserted by g-put.

The functions g-peek and g-try-put are ineffective, since they
work as g-put and g-get. The function g-get is successful if
the queue is non-empty, g-put when the queue is not full.

The function g-try-put is ineffective. The function g-get
blocks until the queue is empty. The function g-put fails im-
mediately when the queue is full.

The function g-peek is ineffective. The function g-get fails
immediately when the queue is empty. The function g-put
blocks as long as the queue is full.

The function g-get blocks as long as the queue is empty, and
similarly the function g-put blocks as long as the queue is
full.

CCL notation provides an externalization mechanism which allows the syn-
chronization queue to be wrapped within the primitives call, so that the explicit
communication link between two processes becomes external to the model. This
leads to a decrease in model complexityﬁ as regards the number of inter-process
synchronizations, and finally may result in splitting one model into several sub-
models. Thus, the externalization mechanism introduces modularity, so that one

2 Of course, at the expense of model accuracy.

Modeling Robot Behavior with CCL 45

model can be independently modeled and analyzed from the others. This prop-
erty seems to be especially useful when different parts of the model are loosely
coupled as, for example, a sub-model of a robot and the sub-model of its environ-
ment. The CCL libraryﬁ provides a few APIs allowing the model of a system to
be created, executed or simulated, and formal analysis of a model to be carried
out. In addition, the CCL software bundle contains CCL Sim [12], an interactive
model development environment facilitating step-by-step tracking of the model
and building various mockups helping simulation of an external environment
model.

3.2 CCL Software Setup

One of the key component of the CCL software setup is the Robust platform.
This was originally conceived as a simple Mindstorm NXT Java library moving
CPU intensive processing to a PC platform and providing a robust and effi-
cient PC-NXT communication link. With time, Robust gained new components
allowing the creation of control programs running on another robotic platform
Hezxor II [13], and the cljRobust API [I1] interfacing Robust with the Clojure
programming language. In this way cljRobust API functions can be declared as
CCL primitives, then the models written in CCL notation can actually control
the mobile robots supported by the Robust library. Such a tool-chain involves a
few additional, not explicitly mentioned yet, software components. In the case
of the NXT computer LeJOS - the embedded version of Java for Mindstorms
NXT is required. Hexor II comes with its own operating system and proprietary
control libraries. The Robust library as well as CCL are run under the control of
a Java Virtual Machine. The same applies to the Clojure language library which
binds the Robust platform and CCL APIs together. When working with CCL
models, choosing one of a few professional Clojure developer environments? is
worth considering.

4 Modeling Robot Behavior - Study Case

One of the basic CCL constructions is primitive. From the system modeling per-
spective a primitive is like an indivisible action, which can take some parameters
from the model and return the computed value. Implementation details behind
the primitive call are not important except for the fact that primitives should be
interruptible, i.e. as functions executed within the JVM threads they should be
able to safely break ongoing operations when the interruption request is raised.
Since the primitive is able to transmit the values to and from the model, it
can be used for implementing communication between the robot model and the
robot model’s environment. Due to the externalization mechanism, there is no

3 The CCL library binaries, manual and examples are available at
www.kulakowski.org/ccl

4 There are, for instance: Eclipse with counterclockwise plugin and Net Beans with
enclojure plugin.

www.kulakowski.org/ccl

46 K. Kulakowski and T. Szmuc

need to fix the model boundaries at the very beginning, and the designer is
able to decide later on where the robot model stops and where the model of
the environment starts. Let us consider a simple reactive robot with one touch
sensor (bumper) sending a short stimulus when the robot hits the obstacle. Im-
plementing that with CCL and Robust requires definition of the synchronization
queue touch-event-source (Listing: [I] line: [[) and definition of the Clojure func-
tion touch-handler (Listing: [T}, line: 2]) being an event listener hooked up in Robust
API When the bumper hits the obstacle, touch-handler puts an element into the
touch-event-source queue (Listing: [II line: M.

(def-queue touch-event-source :size 1 :rb)
(defn touch-handler [value]
(if (= value 1)
(agh.ccl.nlists/q-put :touch-event-source 1)))

W =

Listing 1: Communication between the robot model and its environment -
executable version

In response to the appearance of an element in the queue the robot should
retreat a little bit the same way it came and then choose the other direction.
That simple behavior can be easily specified using standard CCL constructions.

5 (def-nlist ExplorationRobot

6 ((rb-system-startup)

7 (rb-touch-async-handler touch-handler)

8 (rb-move-forward (rnd 200 400) 200)

9 (| GoAhead :goAhead CollisionDetector :colDetector)))
10 (def-nlist GoAhead

11 ((! AvoidObstacle)

12 (rb-move-forward (rnd 200 400) 200)

13 (rb-move-wait-for-new-move)

14 GoAhead))

15 (def-nlist AvoidObstacle

16 ((rb-move-forward 200 -100) ; move backward
17 (rb-move-inplace-turn (rnd -120 120) 100)
18 (rb-move-forward (rnd 200 400) 200)

19 GoAhead))

20 (def-nlist CollisionDetector

21 ((gq-get touch-event-source)

22 (rb-move-stop-now)

23 (-> :goAhead)

24 CollisionDetector))

Listing 2: Random exploration. CCL/Robust executable behavior specification

The first nlist expression ExplorationRobot (Listing: 2] line: [calls the manda-
tory Robust initialization function rb-system-startup (line: [Bl), registers the
touch-handler, puts on the execution queue the one move forward command, and
then launches two threads :goAhead and :colDetector. They start executing

Modeling Robot Behavior with CCL 47

correspondingly the GoAhead (line:[I)) and CollisionDetector (line:[20]) expressions.
The first action of the GoAhead expression is to register (operator !) an interruption
handler AvoidObstacle (Listing: 2] line: [[T]). Thus, when the interruption request
has been raised, the :goAhead thread immediately starts processing the AvoidOb-
stacle expression. Next GoAhead follows the processing loop: queues one straight-
forward move with a randomly chosen length between 200 and 400 millimeters and
speed 200 (line: [I2]), waits until the currently executed move ends (line: [[3)), and
starts execution from the beginning (line: [I4]). In the case of the robot’s bumper
hitting into an obstacle, the CCL process :goAhead is interrupted and the fallback
procedure is executed. In such a case, the AvoidObstacle nlist expression is exe-
cuted (Listing: 2] lines: M5 - [I9), i.e. after withdrawal of the robot 100 units back
(line:[T8)), the new random direction is chosen (line:[IT), and the construction con-
tinues moving ahead (line:[I8)). CollisionDetector (Listing:[2] lines: 20H2) is the
last expression in the Random Exploration example. It is designed as a collision lis-
tener, which in the case of collision immediately stops the whole construction (line:
22)) and interrupts the :goAhead process execution (line: [23)).

5 Model Simulation and Formal Verification

Although the model as presented on Listings 1 and 2 is fully executabld] its
simulation and formal analysis require the introduction of several additional en-
hancements. For the purpose of simulation, due to the lack of the Robust library,
all the functions referring to the external environment provided by Robust need
to be replaced by mockups or modeled in C'CL as sub-models. The CCL library
supports simulation experiments by providing the additional GUI application
CCL Sim [12], together with a ccl-sim-utils API allowing for creation of prim-
itives controlled remotely from within the CCL Sim. Hence, every action made
by the model upon the external environment can be logged, and every sensor
reading request can be manually handled in CCL Sim. An example of mockup
implementation of (Listing: B]) first waits a random amount of time (no longer
than 200 milliseconds, and not shorter than 100 milliseconds), then inserts a log
entry, which shows up in the CCL Sim application’s dashboard.

25 (defn rb-move-inplace-turn [x y]
26 (do (wait 100 200)
27 (ccl-sim-model-log-writer "rb-move-inplace-turn" x y)))

Listing 3: An example cljRobust API mockup implementation

Although CCL Sim can capture all the I/O communication between the model
and its environment, it does not allow the external world to be modeled. Its func-
tionality is limited to receiving data from the model and sending the manually
chosen or automatically pre-specified values back to the model. Such a solution

5 The whole model code, together with a short movie showing the model execution
can be found at:
http://www.kulakowski.org/ccl/

http://www.kulakowski.org/ccl/

48 K. Kulakowski and T. Szmuc

works very well when the model need to be debugged, but it is less useful in
the case of the long-term simulation runs. In the second case, the external en-
vironment needs to be modeled as a separate sub-model TouchHandler. In the
considered example TouchHandler sends (Listing: M) in a loop an interrupt re-
quest (Listing: @ line: 29)) then waits a random amount of time (line: B0) and
starts its execution once again (line: BI).

28 (def-nlist TouchHandler (

29 (g-put touch-event-source 1)
30 (wait 300 700)
31 TouchHandler))

32 (def-nlist TouchWorld (| TouchHandler ExplorationRobot))

Listing 4: An example cljRobust API "dummy" implementation

Now the model (expression TouchWorld) is self-contained in the sense that
there is no explicit synchronization queue leading outside the model. Thus, it
is possible to generate a graph where nodes represent states of the model and
arcs between them possible state transitions, and then perform their formal
analysis. For formal reasons it is convenient to call such a graph as a labeled
transition system (LTS) [3]. The LTS for such a simple model has 261 states and
707 transitiondd - in this approach the state in this formalization is represented
by the set of states of synchronization queues and the set of states of all the
processes. In the adopted approach the values of variables are not taken into
account during the LTS construction, thus the state of a synchronization queue
is reduced to its length, and the every deterministic choice ¢ is reduced to its
non-deterministic counterpart #2 (Table [Il). The change of state is determined
both by the primitive call and the operator evaluation. Thus, the transitions can
take the labels of both primitives and operators (Fig. [II).

Using CCL shell its easy to check that the Touch World model is deadlock free,
compare the LTS with another LTS in terms of the weak and strong bisimulation
[4] or export it into CADP [7] and check other temporal properties like safety
[3]. Sometimes it is convenient to analyze only a part of the model. In such a case
all the synchronization queues leading outside the sub-model of interest need to
be wrapped into primitives. Thus, in the case of TouchWorld, to be able to to
separately analyze ExplorationRobot and TouchHandler, the queue touch-event-
source needs to be externalized. For this purpose the queue definition gets a new
flag :ext (Listing: [, line: B3), and both queue ends need to be accessed through
the wrappers (lines: B4 - Bo)). After replacing the queue operations g-get and
g-put by their wrapper counterparts the model is ready to be analyzed locally
(Listing: Bl).

The touch-event-source externalization reduces LTS almost ten times to 35
states and 62 transitions (Fig. [[l). Of course, the reduced LTS loses the infor-
mation related to states of the sub-model mimicking the robots environment,
thus it is impossible to automatically prove that every state of the environment

5 Obtained by calling the CCL shell command (gen-lts WorldModel).

Modeling Robot Behavior with CCL 49

33 (def-queue touch-event-source :size 1 :rb :ext)

34 (defn-queue-wrapper bumper-stat-out touch-event-source :get)
35 (defn-queue-wrapper bumper-stat-in touch-event-source :put)

36 (reg-as-prim bumper-stat-in bumper-stat-out)

37 (def-nlist TouchHandler ((bumper-stat-in :touch-event-source 1)

38 (wait 300 700) TouchHandler))
39 (def-nlist CollisionDetector (
40 (bumper-status-out)

41

Listing 5: An example cljRobust API "dummy" implementation

5
2
3
g
E

Fig. 1. LTS Graph for ExplorationRobot after touch-event-source externalization

is covered by the appropriate behavior of a robot, but still some important and
sound model properties can be proved. That is because, when wrapping the
g-get function into the bumper-stat-out primitive, the implicit assumption was
made that the bumper-stat-out function behaves like any other function i.e. when
called it returns some value in a finite amount of time. Since the robot moving
straight forward all the time should sooner or later hit the obstacle, it seems to
accurately reflect the actual behavior of the robot under control of the Explo-
rationRobot algorithm. It is also consistent with the behavior modeled by the
TouchHandler expression. Thus, marking communication between TouchHandler
and ExplorationRobot as external (thus not considering it during ExplorationRobot
sub-model analysis) does not limit verifiability of other temporal model proper-
ties, such as deadlock freedom or liveness. Moreover, the reduced LTS is small
enough to be browsed and analyzed manually. Of course, there is no one golden
rule for deciding when the communication channel can be hidden by external-
ization. In general, it is assumed that the states of models on both ends of the
synchronization queue are loosely coupled, hence the omission of one sub-model

50 K. Kulakowski and T. Szmuc

will have little effect on other sub-models. Of course, by excluding the synchro-
nization queue out of the model a designer runs the risk of losing something
important, so eventually he has to decide whether this will affect the property
he wants to examine.

6 Summary and Future Work

In this paper the new CCL (Communicating Concurrent Lists) notation and
its application to robot behavior modeling has been presented. The proposed
notation is supported by the CCL library, which offers several software com-
ponents allowing for model building, model execution, model simulation and
debugging and formal analysis and verification of the model. The CCL library
integrates well with cljRobust and the Robust library, thus all the models created
and verified in the C'CL notation can be easily executed on the actual hardware
platforms.

The article also tackles the hard problem of modeling the boundary between
the model of robot behavior and the external environment. The CCL library
addresses the problem by providing the CCL Sim simulation environment, which
can imitate the outer environment, and allowing users to write the model of the
external world directly in the CCL notation. In the latter case, sometimes it
makes sense to separately analyze the model of robot behavior and the model
of the surroundings. CCL facilitates such analysis by providing externalization
- an effective syntactic mechanism supporting sub-model separation.

Although the CCL library is ready to download and use, still a lot of problems
need to be addressed. Since, initially, the CCL was designed as a set of Clojure
macros rather than a regular modeling language, the syntax error information is
difficult to understand for end-users. Thankfully, work on the new CCL parser
is already underway. At the moment the C'CL library supports only a limited
number of predefined formal methods itself. Thus, the project will also try to
provide methods which allow for easy construction of any temporal formula.

Acknowledgment. This research is partially supported by AGH University of
Science and Technology, contract no.: 11.11.120.859.

References

1. Albus, J.S., et al.: 4D/RCS: A Reference Model Architecture For Unmanned Ve-
hicle Systems Version 2.0. Technical report, NIST Interagency (2002)

2. Arkin, R.C.: Intelligent Control of Robot Mobility, ch. 16. Wiley (2007)

3. Baier, C., Katoen, J.: Principles of model checking. The MIT Press, Cambridge
(2008)

4. Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.): Handbook of Process Algebra.
North-Holland (2001)

5. Brooks, R.A.: A robust layered control system for a mobile robot. IEEE J. Robot.
and Auto. 2(3), 14-23 (1986)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Modeling Robot Behavior with CCL 51

Brooks, R.A.: The behavior language; user’s guide. Technical report, Massachusetts
Institute of Technology, Artificial Intelligence Laboratory (1990)

Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: A Toolbox for the
Construction and Analysis of Distributed Processes. In: Abdulla, P.A., Leino,
K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 372-387. Springer, Heidelberg
(2011)

Groves, W., Collins, J., Gini, M.: Visualization and analysis methods for comparing
agent behavior in TAC SCM. In: AAMAS 2009: The 8th International Conference
on Autonomous Agents and Multiagent Systems (May 2009)

Hardey, K., Mattis, M., Goadrich, M., Corapcioglu, E., Jadud, M.: Exploring and
Evolving Process-oriented Control for Real and Virtual Fire Fighting Robots. In:
Proceedings of Genetic and Evolutionary Computation Conference (2012)
Konolige, K.: COLBERT: A Language for Reactive Control in Sapphira. In:
Brewka, G., Habel, C., Nebel, B. (eds.) KI 1997. LNCS, vol. 1303, pp. 31-52.
Springer, Heidelberg (1997)

Kutakowski, K.: cljRobust - Clojure Programming API for Lego Mindstorms NXT.
In: Jedrzejowicz, P., Nguyen, N.T., Howlet, R.J., Jain, L.C. (eds.) KES-AMSTA
2010, Part II. LNCS, vol. 6071, pp. 52-61. Springer, Heidelberg (2010)
Kutakowski, K.: CCL Sim, the simulation environment for concurrent systems. In:
Proceedings of Dependability and Complex Systems, DepCoS (2012)

Kutakowski, K., Matyasik, P.: RobustHX - The Robust Middleware Library for
Hexor Robots. In: Ando, N., Balakirsky, S., Hemker, T., Reggiani, M., von Stryk,
O. (eds.) SIMPAR 2010. LNCS, vol. 6472, pp. 241-250. Springer, Heidelberg (2010)
Long, L., Hanford, S., Janrathitikarn, O.: A review of intelligent systems software
for autonomous vehicles. In: IEEE Symposium on Computational Intelligence in
Security and Defense Applications, CISDA (2007)

Lyons, D.M., Arbib, M.A.: A formal model of computation for sensory-based
robotics. IEEE Transactions on Robotics and Automation 5(3), 280-293 (1989)
Milner, R.: Communication and Concurrency. Prentice-Hall (1989)

Nalepa, G.J., Biesiada, B.: Declarative Design of Control Logic for Mindstorms
NXT with XTT2 Method. In: Jedrzejowicz, P., Nguyen, N.T., Hoang, K. (eds.)
ICCCI 2011, Part II. LNCS, vol. 6923, pp. 150-159. Springer, Heidelberg (2011)
Rai, L., Kook, J., Hong, J.: Non-Deterministic Behavior Modeling Framework for
Embedded Real-Time Systems Operating in Uncertain Environments. Journal of
Information Science and Engineering 26(1), 83-96 (2010)

Risler, M., von Stryk, O.: Formal Behavior Specification of Multi-Robot Systems
Using Hierarchical State Machines in XABSL. In: Workshop on Formal Models
and Methods for Multi-Robot Systems, pp. 1-7 (August 2008)

Xiao, W., Liu, T., Baltes, J.: An intuitive and flexible architecture for intelligent
mobile robots. In: The Second International Conference on Autonomous Robots
and Agents (ICARA), Palmerston North, pp. 52-57 (2004)

Zhang, Q., Zhang, Y.-F., Qin, S.-Y.: Modeling and analysis for obstacle avoidance
of a behavior-based robot with objected oriented methods. Journal of Comput-
ers 4(4), 295-302 (2009)

Ziparo, V.A., Locchi, L., Nardi, D., Palamara, P.F., Costelha, H.: Petri net plans:
a formal model for representation and execution of multi-robot plans. In: AAMAS
2008: Proceedings of the 7th International Joint Conference on Autonomous Agents
and Multiagent Systems (May 2008)

	Modeling Robot Behavior with CCL
	Introduction
	Robotics Models and Architectures
	CCL Library at a Glance
	CCL Notation
	CCL Software Setup

	Modeling Robot Behavior - Study Case
	Model Simulation and Formal Verification
	Summary and Future Work
	References

