```
ULg

\section*{Chapter 5: Equivalences over processes}
```

- Observation equivalence
- i are considered invisible
- concept of a weak bisimulation
- Observation congruence
- Weaker equivalence
- Trace equivalence
- Preorders
- Simulation
- Safety-preorder and associated safety-equivalence
- Branching bisimulation (liveness properties preserving)

Observation equivalence and congruence are explained together with strong bisimulation in :

Robin Milner. Communication and Concurrency. Prentice Hall International Series in Computer Science, 1989.

Strong bisimulation

A relation $R \subseteq S \times S$ is a strong bisimulation iff:
If $<P, Q\rangle \in R$ then, for all $a \in A$,
(i) whenever $P \xrightarrow{a} P^{\prime}$ then $\exists Q^{\prime} \cdot Q \xrightarrow{a} Q^{\prime}$ and $<P^{\prime}, Q^{\prime}>\in R$;
(ii) whenever $Q \xrightarrow{\mathrm{a}} Q^{\prime}$ then $\exists P^{\prime} \cdot P \xrightarrow{a} P^{\prime}$ and $\left\langle P^{\prime}, Q^{\prime}\right\rangle \in R$
$\mathbf{P} \sim \mathbf{Q}$ if \exists a strong bisimulation R such that $<P, Q>\in R$
~ is a congruence in LOTOS
Many interesting laws and expansion theorems exist for ~
$P \sim Q$ can be checked in polynomial time over closed and finite processes

However:

~ is deficient in a vital respect: it treats the internal action i on the same basis as all other actions, and properties which we would expect to hold if i is unobservable, such as a; i; P ~ a; P, do not hold

Unobservability of \mathbf{i}

What does it mean for \boldsymbol{i} to be silent, or unobservable?

A first answer might be that two processes should be equivalent if they become strongly congruent when the i-actions are excised from their derivation trees.
Under this proposal we would equate P and Q below:

But, this leads to difficulty.
Unobservability of i means that i is uncontrollable by the environment.
So P can perform i autonomously and thus forego its ability to perform a
Q however preserves this ability

So i, though unobservable directly, can affect the observability of visible actions.

Towards an observation equivalence

We therefore seek an equivalence (denoted \approx) with the following property:
P and Q are equivalent iff
for all sequence $\sigma \in L^{*}$, each σ-descendant of P is equivalent to some σ-descendant of Q, and conversely

Note that $\mathrm{L}=\mathrm{A}-\{i\}$
If $\sigma=\mathrm{a} 1 . \mathrm{a} 2 \ldots \mathrm{an} \in \mathrm{A}^{*} \quad$ (it is defined on A^{*} even if used on L^{*} above)
$A \sigma$-descendant of P is any P^{\prime} such that $P \stackrel{\sigma}{\Rightarrow} P^{\prime}$
that is $P \xrightarrow{i})^{*} \xrightarrow{\mathrm{a} 1}(\xrightarrow[i]{\rightarrow})^{*} \ldots(\stackrel{i}{\rightarrow})^{*} \xrightarrow{\text { an }}(\stackrel{i}{\rightarrow})^{*} \mathrm{P}^{\prime}$
So we are looking for the largest relation \approx that satisfies:
$\mathrm{P} \approx \mathrm{Q}$ iff, for all $\sigma \in \mathrm{L}^{*}$,
(i) whenever $P \stackrel{\sigma}{\Rightarrow} P^{\prime}$ then $\exists Q^{\prime} \cdot Q \stackrel{\sigma}{\Rightarrow} Q^{\prime}$ and $P^{\prime} \approx Q^{\prime}$;
(ii) whenever $Q \stackrel{\sigma}{\Rightarrow} Q^{\prime}$ then $\exists P^{\prime} \cdot P \stackrel{\sigma}{\Rightarrow} P^{\prime}$ and $P^{\prime} \approx Q^{\prime}$
© Guy Leduc
Université de Liège

Weak bisimulation

It is not necessary to consider all $\sigma \in \mathrm{L}^{*}$:
Considering observable sequences of length $\leq \mathbf{1}$ is enough, i.e. $\sigma \in \mathbf{L} \cup\{\varepsilon\}=\mathbf{L} \cup\left\{\mathrm{i}^{\star}\right\}$ (ε is the empty sequence)

Definition

Let G be a function over binary relations $R \subseteq S \times S$ defined as follows:
$<P, Q>\in G(R)$ iff, for all $\mathbf{a} \in L \cup\{\varepsilon\}$,
(i) whenever $P \stackrel{a}{\Rightarrow} P^{\prime}$ then $\exists Q^{\prime} \cdot Q \stackrel{a}{\Rightarrow} Q^{\prime}$ and $<P^{\prime}, Q^{\prime}>\in R$;
(ii) whenever $Q \stackrel{a}{\Rightarrow} Q^{\prime}$ then $\exists P^{\prime} \cdot P \stackrel{a}{\Rightarrow} P^{\prime}$ and $\left\langle P^{\prime}, Q^{\prime}\right\rangle \in R$

Definition

$R \subseteq S \times S$ is a weak bisimulation iff $R \subseteq G(R)$

An example of a weak bisimulation:
R is composed of all the pairs of states of the same colour

Observation equivalence

Definition

P and Q are observation equivalent (or weakly bisimilar), written $P \approx Q$, if there exists a weak bisimulation R such that $\langle P, Q\rangle \in R$.

This may be equivalently expressed as follows: $\approx=\cup\{R \mid R$ is a weak bisimulation $\}$

Properties:

\approx is the largest weak bisimulation
\approx is the largest fixed point of G and is an equivalence
\approx is weaker than ~

So \approx can be defined as the largest relation \approx that satisfies the following property:
$P \approx Q$ iff, for all $a \in L \cup\{\varepsilon\}$,
(i) whenever $P \stackrel{\text { a }}{\Rightarrow} P^{\prime}$ then $\exists Q^{\prime} \cdot Q \stackrel{a}{\Rightarrow} Q^{\prime}$ and $P^{\prime} \approx Q^{\prime}$;
(ii) whenever $Q \stackrel{\text { a }}{\Rightarrow} Q^{\prime}$ then $\exists P^{\prime} \cdot P \stackrel{\text { a }}{\Rightarrow} P^{\prime}$ and $P^{\prime} \approx Q^{\prime}$

Simpler definition of a weak bisimulation

A relation $R \subseteq S \times S$ is a weak bisimulation iff:
If $<P, Q>\in R$ then, for all $a \in L \cup\{\varepsilon\}$
(i) whenever $P \stackrel{\text { a }}{\Rightarrow} P^{\prime}$ then $\exists Q^{\prime} \cdot Q \stackrel{a}{\Rightarrow} Q^{\prime}$ and $<P^{\prime}, Q^{\prime}>\in R$
(ii) whenever $Q \stackrel{a}{\Rightarrow} Q^{\prime}$ then $\exists P^{\prime} \cdot P \stackrel{a}{\Rightarrow} P^{\prime}$ and $<P^{\prime}, Q^{\prime}>\in R$

When the two behaviour expressions are closed and the associated LTS are finite-state, there are algorithms to prove the observation equivalence of the LTS in polynomial time (with respect to the size of the LTS, not the size of the LOTOS expression).
© Guy Leduc
Université de Liège

Equational properties of \approx

All the laws for ~ are valid laws for \approx

Additional laws:

i; P	$\approx P$
exit >> P	$\approx P$
$P \gg$ exit	$\approx P$
$P \gg$ stop	$\approx P\|\|\mid$ stop
$P[] ; P$	$\approx P$
$a ;(P[] i ; Q)[] a ; Q$	$\approx a ;(P[] i ; Q)$

They can all be proved by exhibiting an appropriate weak bisimulation

Observation congruence

We must now tackle the difficulty that \approx is not a congruence.
We look for a congruence which is as close to \approx as possible.

The idea is to strenghten \approx to get congruence in choice and right-disabling contexts:

Definition

P and Q are observation congruent, noted $P \approx Q$, iff for all $\mathbf{a} \in \mathbf{A}=\mathbf{L} \cup\{i\}$,
(i) whenever $P \stackrel{a}{\Rightarrow} P^{\prime}$ then $\exists Q^{\prime} \cdot Q \stackrel{a}{\Rightarrow} Q^{\prime}$ and $P^{\prime} \approx Q^{\prime}$
(ii) whenever $Q \stackrel{a}{\Rightarrow} Q^{\prime}$ then $\exists P^{\prime} \cdot P \stackrel{a}{\Rightarrow} P^{\prime}$ and $P^{\prime} \approx Q^{\prime}$

4 Instead of $L \cup\{\varepsilon\}=L \cup\left\{\mathbf{i}^{*}\right\}$
 Thus an initial i action in P (or Q) must be matched by at least an i -action of the other

Congruence of \approx and other properties

Let C [•] be a LOTOS context of the following forms:
$[\cdot][] B$ or $B[][\cdot]$ or choice ...[][•]
$B[>[\cdot]$
then if $P \cong Q$ then $C[P] \cong C[Q]$

Moreover, \approx is preserved in recursion contexts. That is
if $P(X) \cong Q(X)$ for all substitutions of X, then
X where $X:=P(X)$ and Y where $Y:=Q(Y)$ are observation congruent

Other properties of \approx

Other properties of \approx

If $P \approx Q$ then $a ; P \approx a ; Q$
If $P \approx Q$ and P and Q are both stable, then $P \approx Q$
P is stable iff $\neg(P \xrightarrow{i})$
$P \approx Q$ iff $(P \approx Q$ or $P \cong i ; Q$ or $Q \cong i ; P)$

Laws for \approx that are not valid for \approx
$\mathrm{i} ; \mathrm{P} \approx \mathrm{P}$ does not hold but $\mathrm{a} ; \mathrm{i} ; \mathrm{P} \approx \mathrm{a} ; \mathrm{P}$ holds
exit >> $P \cong P$ does not hold but exit >> $P \cong i ; P$ holds
$P[] i ; P \cong P$ does not hold but $P[] i ; P \cong i ; P$ holds

A very weak notion of equivalence - The trace equivalence

We have studied two main equivalences: strong and weak bisimilarity.
(Observation congruence is a third, but closely allied to weak bisimilarity)

We shall now study coarser (or more generous) equivalences, which of course abstract from internal actions as well.

Trace equivalence

This is the main equivalence studied in classical automata theory
P and Q are trace equivalent, noted $P \approx \operatorname{tr} Q$ iff, for all $\sigma \in L^{*}, P \stackrel{\sigma}{\Rightarrow}$ iff $Q \stackrel{\sigma}{\Rightarrow}$
That is $\operatorname{Tr}(P)=\operatorname{Tr}(Q)$ where $\operatorname{Tr}(P)=\{\sigma \mid P \stackrel{\sigma}{\Rightarrow}\}$
It is a congruence
It is weaker than \approx
It satisfies the laws: $a ;(P[] Q) \approx r a ; P[] a ; Q$
$(P[] Q)|[\Gamma]| R \approx \operatorname{rr}(P|[\Gamma]| R)[](Q|[\Gamma]| R)$
© Guy Leduc

Preorder relations over processes

Equivalence relations are often not adequate to compare processes at different levels of abstractions (e.g. a protocol and a service).
Preorders may be more appropriate.

An equivalence relation is a reflexive, symmetric and transitive relation
A preorder relation is a reflexive and transitive relation
If R is a preorder, then $R \cap R^{-1}$ is an equivalence

Example of a preorder:

- The trace preorder (or trace inclusion relation):
$P \leq \operatorname{tr} Q$ iff $(P \stackrel{\sigma}{\Rightarrow}$ implies $Q \stackrel{\sigma}{\Rightarrow})$ iff $\operatorname{Tr}(P) \subseteq \operatorname{Tr}(Q)$
- Trace equivalence

$$
P \approx \operatorname{tr} Q \text { iff } P \leq \operatorname{tr} Q \wedge Q \leq \operatorname{tr} P
$$

Simulation versus bisimulation

There are no preorders associated with strong and weak bisimulations.
But there exists a concept of a simulation.
However, even if it sounds (and looks) like a "semi-bisimulation", it is not.
Let us first recall the definition of a bisimulation over an alphabet Λ.

A relation $R \subseteq S \times S$ is a bisimulation iff:
If $<P, Q>\in R$ then, for all $\lambda \in \Lambda$,
(i) whenever $P \xrightarrow{\lambda} P^{\prime}$ then $\exists Q^{\prime} \cdot Q \xrightarrow{\lambda} Q^{\prime}$ and $<P^{\prime}, Q^{\prime}>\in R$
(ii) whenever $Q \xrightarrow{\lambda} Q^{\prime}$ then $\exists P^{\prime} \cdot P \xrightarrow{\lambda} P^{\prime}$ and $<P^{\prime}, Q^{\prime}>\in R$

A relation $R \subseteq S \times S$ is a simulation iff:
If $<P, Q>\in R$ then, for all $\lambda \in \Lambda$,
whenever $P \xrightarrow{\lambda} P^{\prime}$ then $\exists Q^{\prime} \cdot Q \xrightarrow{\lambda} Q^{\prime}$ and $\left\langle P^{\prime}, Q^{\prime}\right\rangle \in R$

Strong (bi)simulations

When $\Lambda=A=L \cup\{i\}$
This leads to the strong bisimulation, and to ~ as the largest strong bisimulation Similarly, we can define the largest strong simulation \leq ss

However \leq ss $\cap \geq$ ss is not equal to ~
In fact ~ is stronger than \leq ss $\cap \geq$ ss

Example:

But:

© Guy Leduc
Université de Liège

When $\Lambda=\left\{\mathbf{i}^{\star}\right\} \cup\left\{\mathbf{i}^{*} \mathbf{a i}^{*} \mid \mathbf{a} \in \mathrm{L}\right\}$
This leads to the weak bisimulation, and to \approx as the largest weak bisimulation

Similarly, we can define the largest weak simulation $\leq s$
This preorder is also called the safety-preorder.

The safety equivalence is NOT defined as a bisimulation but as follows:
P and Q are safety-equivalent, written $P \approx s$, iff $P \leq s Q$ and $Q \leq s P$
\approx is not equal to \approx
\approx s is weaker than \approx
© Guy Leduc
Université de Liège

The safety equivalence

The safety preorder is such that
if $P \leq s Q$ then P satisfies at least all the safety properties of Q (expressible in BSL: Branching time Safety Logic)

Intuitively, safety properties are properties stating 'nothing bad will happen'.
For example : mutual exclusion

Therefore the safety equivalence \approx s exactly characterizes the safety properties of systems:

Two LTS are safety-equivalent iff they verify the same safety properties (expressible in BSL)
$\approx s$ is stronger than the \approx tr but weaker than \approx

ULg

Branching bisimulation

and conversely

Note that λ is any action, including i

Branching bisimulation is of course weaker than strong bisimulation
due to the i^{*} transition which allows the removal of some in a sequence.
For example: i; a; stop $\approx b b$ a; stop

It is also stronger than weak bisimulation (see next slide)
© Guy Leduc
Université de Liège

Branching bisimulation : an equivalence that preserves liveness properties
P and Q are branching bisimilar, written $\approx b b$, iff
there exists a branching bisimulation R such that $<P, Q>\in R$

In absence of divergences, this equivalence preserves the liveness and safety properties:
If two LTS are branching bisimilar, then they verify the same properties expressible in CTL* (a branching time temporal logic without next operator)
Intuitively, liveness properties are properties stating 'something good will happen'.
$\approx \mathrm{bb}$ is stronger $\underset{\mathbf{P}}{ }$ than \approx

© Guy Leduc

$\approx \mathrm{bb}$ is more sensitive to the branching structure than \approx

Consider the liveness property "it is inevitable to reach a state where b is enabled before performing c" P satisfies it whereas Q does not

Many equivalences abstract away from internal actions:

- The weak bisimulation equivalence \approx (and associated observation congruence \cong)
- The trace equivalence \approx tr
- The safety equivalence $\approx s$
- The branching bisimulation $\approx b b$

For some of them, some preorders exist:

- The trace preorder \leq tr
- The safety preorder \leq s

