

Observation equivalence and congruence are explained together with strong bisimulation in :

Robin Milner. Communication and Concurrency. Prentice Hall International Series in Computer Science, 1989.

ULg

Towards an observation equivalence

5.4

ULg

Simpler definition of a weak bisimulation

A relation $R \subseteq S \times S$ is a weak bisimulation iff:

If <P, Q> \in R then, for all a \in L \cup { ϵ }

(i) whenever $P \stackrel{a}{\Rightarrow} P'$ then $\exists Q' \bullet Q \stackrel{a}{\Rightarrow} Q'$ and $\langle P', Q' \rangle \in R$

(ii) whenever $Q \stackrel{a}{\Rightarrow} Q'$ then $\exists P' \bullet P \stackrel{a}{\Rightarrow} P'$ and $\langle P', Q' \rangle \in R$

When the two behaviour expressions are **closed** and the associated LTS are **finite-state**, there are algorithms to prove the observation equivalence of the LTS in polynomial time (with respect to the size of the LTS, not the size of the LOTOS expression).

© Guy Leduc Université de Liège =

ILR

5.7

ULg

© Guy Leduc

Université de Liège =

Congruence of \geq and other properties

```
Let C [•] be a LOTOS context of the following forms:

[•] [] B or B [] [•] or choice ... [] [•]

B [> [•]

then if P \cong Q then C [P] \cong C [Q]

Moreover, \cong is preserved in recursion contexts. That is

if P (X) \cong Q (X) for all substitutions of X, then

X where X := P(X) and Y where Y := Q(Y) are observation congruent
```

ILR

5.11

JLg ——	A very weak notion of equivalence - The trace equivalence	⁻ 5.′
We have s (Observati	tudied two main equivalences: strong and weak bisimilarity. on congruence is a third, but closely allied to weak bisimilarity)	
We shall n from in	ow study coarser (or more generous) equivalences, which of course abstract ternal actions as well.	
Trace equ This is the	ivalence main equivalence studied in classical automata theory	
P and Q a That is It is a cong	re trace equivalent, noted P ≈tr Q iff, for all $\sigma \in L^*$, P $\stackrel{\sigma}{\Rightarrow}$ iff Q $\stackrel{\sigma}{\Rightarrow}$ Tr (P) = Tr (Q) where Tr (P) = { $\sigma \mid P \stackrel{\sigma}{\Rightarrow}$ } gruence	
It is weake It satisfies	the laws: a; (P [] Q) ≈tr a; P [] a; Q (P [] Q) [[[]] P, ≈tr (P [[[]] P) [] (Q [[[]] P)	
Guy Leduc Iniversité de Lièg	(「 [] Ϥ) [[I]] ⌒ ≈ư (「 [[I]] ⌒) [] (Ϥ [[I]] ⌒)	_ IL

ULg 5.15 Simulation versus bisimulation There are **no** preorders associated with strong and weak bisimulations. But there exists a concept of a **simulation**. However, even if it sounds (and looks) like a "semi-bisimulation", it is not. Let us first recall the definition of a bisimulation over an alphabet Λ . A relation $R \subseteq S \times S$ is a **bisimulation** iff: If $\langle P, Q \rangle \in R$ then, for all $\lambda \in \Lambda$, (i) whenever $P \xrightarrow{\lambda} P'$ then $\exists Q' \bullet Q \xrightarrow{\lambda} Q'$ and $\langle P', Q' \rangle \in R$ (ii) whenever $Q \xrightarrow{\lambda} Q'$ then $\exists P' \bullet P \xrightarrow{\lambda} P'$ and $\langle P', Q' \rangle \in R$ A relation $R \subseteq S \times S$ is a **simulation** iff: If $\langle \mathsf{P}, \mathsf{Q} \rangle \in \mathsf{R}$ then, for all $\lambda \in \Lambda$, whenever $P \xrightarrow{\lambda} P'$ then $\exists Q' \bullet Q \xrightarrow{\lambda} Q'$ and $\langle P', Q' \rangle \in R$ © Guy Leduc ILR Université de Liège =

ULg	— 5.18
The safety equivalence	
The safety preorder is such that	
if $P \leq_s Q$ then P satisfies at least all the safety properties of Q	
(expressible in BSL: Branching time Safety Logic)	
Intuitively, safety properties are properties stating 'nothing bad will happen'.	
For example : mutual exclusion	
Therefore the safety equivalence \approx s exactly characterizes the safety properties of system	ns:
Two LTS are safety-equivalent iff they verify the same safety properties (expressible in BSL)	
\approx s is stronger than the ≈tr but weaker than ≈	
Université de Liège	ILR

