
© Guy Leduc
Université de Liège ILR

ULg 6.1

Chapitre 6 : Verification of LOTOS specifications

Verification is usually not performed at the source LOTOS level, but on some underlying
model of the LOTOS specification.

The verification process is thus called model-based and is composed of two steps:

• the generation of a model

• the actual verification of the model by behavioural equivalence (or preorder)
checking

© Guy Leduc
Université de Liège ILR

ULg 6.2

Model generation

Abstract view Detailed view of most tools

LOTOS
description

a
b c

Intermediate model
 (Petri Net or FSM extended

with context variable)

ADT part Control part

Concrete
Data

Types

LTS model

State
exploration

LOTOS
description

LTSa
b c

Model
generation

© Guy Leduc
Université de Liège ILR

ULg 6.3

The CÆSAR LTS generator

Step 1: Generation of an extended Petri Net
The supported subset of LOTOS is workable

 (i.e. finite control : no process recursion on the
left and right part of |[…]|, nor on the left part of
>> and [>.

Possible explosion due to the complexity of the
control structure

Step 2: Optimization of the Petri Net

Step 3 : Generation of the LTS
 a) Generation of a C program (modelling the Petri

Net)

 b) Exhaustive simulation : execution of the C
program (+ C code from CÆSAR.ADT)
generates the LTS

Possible state explosion due to large ranges of
data values

LOTOS
description

a
b c

Extended
Petri Net

ADT part Control part

C

LTS model

State
exploration

Optimization

CÆSAR.ADT

Extended Petri Net generator

CÆSAR

© Guy Leduc
Université de Liège ILR

ULg 6.4

Model-based verification methods

Model-checkingBehavioural comparison

The behavioural comparison is based on
formal relations R between LTS:

Equivalence relations

Preorder relations

Various forms of logics may be used
(e.g. temporal logic)

The verification method is based on a
decision procedure for a
satisfaction relation

LTS model
to be verified

a
b c Formulas

in logic

Model-checking
m |= f

Diagnostic

m f

LTS model
to be verified

a
b c

a
b c

Reference
LTS model

Behaviour
Comparison
m1 R m2

Diagnostic

m1 m2

© Guy Leduc
Université de Liège ILR

ULg 6.5

Model-based verification with Aldébaran

Behavioural comparison
Checks whether m1 R m2

Minimization modulo
an equivalence R

m1 R m2

LTS model
a

b c

a
b c

Aldébaran

m1

m2

Minimized
LTS model

LTS model
to be verified

a
b c

a
b c

Reference
LTS model

Aldébaran

Diagnostic:
• either verified (m1 R m2)
• or a sequence of actions that proves
 ¬ (m1 R m2)

m1 m2

© Guy Leduc
Université de Liège ILR

ULg 6.6

Verification by behavioural comparison

Abstract
LOTOS

description

LTS
model

a
b c

Model
generation

Refined
LOTOS

description

LTS
model

a
b c

Behaviour
Comparison

Diagnostic

Model
generation

In practice , both the abstract
and the refined LOTOS
descriptions have to be
restricted to limited data value
ranges:
by adding a new process (a
restricted environment) in
parallel

→ non exhaustive verification

© Guy Leduc
Université de Liège ILR

ULg 6.7

Reference LTS as a property

A reference LTS has to be produced prior to verification.

Up to now we have more or less implicitly considered that this reference LTS is generated
automatically from a reference LOTOS specification.

There is however another way to use Aldebaran .

If the verifier is only interested in a specific property of its specification, it is usually
easier to produce a very simple LTS that models this property , and then check
whether the specification fulfills it.

However, as the problem is stated above, Aldebaran cannot be used because it is very
unlikely that the generated LTS and the LTS modelling the property, be equivalent or
related by any preorder.

This is because the LTS modelling the property is limited to a very small subset
of actions : only those that are necessary to express the property.

It is therefore necessary to use a projection technique (composed of hiding and/or
renaming of actions) on the generated LTS prior to actual verification with respect to
the property.

© Guy Leduc
Université de Liège ILR

ULg 6.8

Projection of a LTS for verification

LTS model
to be verified

a

b c

a

b c
LTS modelling
the property

Aldébaran

Diagnostic:
• either verified (m1 R m2)
• or a sequence of actions that proves
 ¬ (m1 R m2)

m1 m2

a

b c

m1'

Projected
LTS

projection

© Guy Leduc
Université de Liège ILR

ULg 6.9

Modelling properties by LTS

Event ordering : reception of messages in a given order
Suppose:
• four messages 1, 2, 3 and 4 have been sent, and
• get!i means reception of message i, and
• we only consider get!i actions

Mutual exclusion
Suppose:
• we have 3 processes, and
• In!i means process i enters the critical section, and
• Out!i means process i exits the critical section, and
• we only consider In!i and Out!i actions

Not a to b unless c
That is: action c must occur between action a and b
If we only consider actions a, b and c

get!1

get!2

get!3

get!4

In!1
Out!1

In!3 In!2

Out!2Out!3

a

a

c

c

b

© Guy Leduc
Université de Liège ILR

ULg 6.10

Case-study: a Transit-Node

erro cerri
derri ! e of Env

rq ! r of RouteNo

ra ! s of PortSet ! r of RouteNo

crep ! p of PortNo

io ! p of PortNo
 ! e of Env

DO ! p of PortNo
 ! e of Env

CO ! b of Bool ! L of EnvList

DI ? p:PortNo ? e:Env ? r:RouteNo

timeout ! e of Env

CI ! Add_Data_Port ? n:PortNo
CI ! Add_Route ? r:RouteNo ? s:PortSet
CI ! SendFaults
CI ! Other_Command

Controller
(rl: RouteSet,
 ps: PortSet)

ErrHandler
(L: EnvList,
 b: Bool)

DataInPorts

DataOutPorts

Data messages (called Envelopes) enter the node at DI and exit the node at DO if they do not become
faulty. Faulty data messages exit the node at CO.

Every data message is input at a specific port and associated with a specific route. A route consists of
a set of output ports. For every message received, the node will select nondeterministically an output
port associated with the route, and output the message at this port. Routes and their associated output
ports are stored in the controller.

Control messages enter the node at CI.

Control messages at CI are used to add a port or a route in the node. When a new port is created, the
controller sends at crep (create port) the new port number to the processes responsible for the data
transfer.

When a data message is received on a route, the DataInPorts sends a request at rq to the controller
which replies by sending at ra the set of output ports associated with this route. One output port is
selected nondeterministically if the set is not empty, and the message will follow the path io and then
DO. If the set is empty, a faulty data message is sent to the error handler via derri. Also, if a buffered
message remains in DataOutPorts more than T time units, it will become faulty and sent to the error
handler via timeout.

When the controller receives a Send_Faults command at CI, it sends a message at erro to inform the
error handler to output all the buffered faulty messages at CO.

When an erroneous command is received at CI (modelled as other_command), the controller sends a
faulty control message at cerri.

The error handler buffers the faulty data messages from derri and timeout in a list, and registers the
reception of faulty control messages from cerri by setting a boolean value to true. When the error
handler receives a message at erro, it outputs at CO the list of faulty data messages and the boolean
value. It also sets back the boolean value to false.

© Guy Leduc
Université de Liège ILR

ULg 6.11

Modelling a suitable environment to control state explosion

We must first specify an environment process that will:

• feed the Transit-Node with control and data messages

• ensure the finiteness (and acceptable size) of the LTS model while keeping as much as
possible of the interesting behaviour of the node

This requires that:
1) the data domain associated with each message field must be finite

2) the number of copies of each data message in the node must be finite , due to the
storage in the node.

Concretely, requirement 1 is fulfilled if we have:

• Finite number of ports (already bounded by N in the spec)

• Finite number of routes (implied by the finiteness of the number of ports)

• Finite number of distinct sets of ports and routes (also implied as above)

• Finite number of distinct messages

Requirement 2 is fulfilled if for example we write an environment that ensures that there is
a single copy of each message in the node. An easy way to do this is to write an
environment that keeps track of the messages that have been input and not yet output.

© Guy Leduc
Université de Liège ILR

ULg 6.12

Example of a safety property

DI

derri

timeout

DOAny received data message (DI) will have the ability to exit the
node (DO) or to become faulty (derri, timeout)

Note that only four gates are concerned by this property.

And that this property refers to some internal gates.

Verification procedure:

1. Encode the LTS modelling the property (either directly or via a LOTOS process)

2. Project the Transit-Node spec. on the limited visible alphabet DI, DO, derri, timeout.

More precisely, hide all actions except actions DI!…, DO!…, derri!…, timeout!… for a
particular message, say 0. Then rename those actions by removing the useless
attributes.

3. Minimize the obtained LTS modulo the safety equivalence (in practice, one first
minimizes with the strong bisimulation equivalence)

4. Compare the minimized LTS with the LTS modelling the property w.r.t. the safety
equivalence

Property : possible
history of a given
message

© Guy Leduc
Université de Liège ILR

ULg 6.13

Example of a more complex property

A property like:

On a Send_Faults message reception at CI, some of the faulty messages buffered so
far must exit the node, through CO.

can be split into a liveness and a safety property.

Liveness : Each Send_Faults request is always followed by an emission at CO.

Safety : Messages emitted at CO are exactly messages previously buffered as faulty.

© Guy Leduc
Université de Liège ILR

ULg 6.14

Liveness part of the property

Property : Each Send_Faults request is always followed by an emission at CO

Verification procedure:

1. Compute the minimization of the Transit-Node modulo branching bisimulation
when all actions are hidden except CI!Send_Faults and CO (without atttributes). We
get the LTS:

CO

CI!Send_Faults CI!Send_Faults

CO

CO
CO

CO

i
ii i

i

This quotient LTS is small enough to
check that, for all execution sequence,
each occurrence of a CI!Send_Faults
action is eventually followed (later in
the sequence) by an occurrence of a
CO action.

The sink state is due to the chosen
environment.

2. We must check the absence of divergence in the original LTS, because they are
not preserved by the minimization modulo branching bisimulation, but may
compromise liveness properties (unfairness of divergences)

© Guy Leduc
Université de Liège ILR

ULg 6.15
Safety part of the property

Property : Messages emitted at CO are exactly messages previously buffered as faulty.

Again this property may be split into two simpler properties: one on control messages and
one on data messages.

Verification procedure for the control messages:

1. Rephrase the property in terms of execution sequences in the LTS:

• a cerri action cannot be followed by a CO!false!L action (i.e.some faulty control
messages buffered as faulty must leave the node on request)

• two successive occurrences of a CO!true!L action must be separated by an
occurrence of a cerri action (i.e. no faulty control message can still be buffered after a
CO!true!L action)

2. Encode the LTS modelling the property:

where CO_false = any CO!false!L

and CO_true = any CO!true!L
CO_true

cerri

cerri
CO_false

3. In the LTS of the Transit_Node, hide all actions except actions cerri and CO!… and
rename all CO!false!L actions as CO_false and all CO!true!L actions as CO_true.

4. Minimize this LTS modulo the safety equivalence, and compare the result with the
LTS modelling the property w.r.t. the safety preorder

© Guy Leduc
Université de Liège ILR

ULg 6.16

Improvement of model-based verification

Problem : the LTS is too large to be generated

Solution : compositional verification

1. Find a good partition of the system into subprocesses

• Rule: keep together strongly synchronized processes, otherwise the state
space of a subprocess is larger than the state space of the combination

2. Generate the LTS of those subprocesses

3. Minimize each LTS using the strong bisimulation equivalence (~)

4. Minimize them further depending on the properties to be verified

• branching bisimulation if liveness properties

• safety equivalence if safety properties

5. Recombine the minimized LTS to generate the global LTS

• This works because all the above equivalences are congruences

• Aldebaran allows the generation of a LTS from other LTS provided that the
combination rules are specified in a special file.

