
Science of Computer Programming 118 (2016) 3–23
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Formal specification and verification of TCP extended

with the Window Scale Option

Lars Lockefeer, David M. Williams, Wan Fokkink ∗

Department of Computer Science, VU University, Faculty of Sciences, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 January 2015
Received in revised form 19 July 2015
Accepted 10 August 2015
Available online 12 August 2015

Keywords:
μCRL
Process algebra
Transmission control protocol
Window scale option
Sliding window protocol

We formally verify that TCP satisfies its requirements when extended with the Window
Scale Option. With the aid of our μCRL specification and the LTSmin toolset, we verify
that our specification of unidirectional TCP Data Transfer extended with the Window Scale
Option does not deadlock, and that its external behaviour is branching bisimilar to a FIFO
queue for a significantly large instance. Separately, we verify that a connection may only
be closed if both entities accept the CLOSE call from the Application Layer. Finally, we
recommend a rewording of the specification regarding how a zero window is probed,
ensuring deadlocks do not arise as a result of misinterpretation.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Transmission Control Protocol (TCP) plays an important role in the Internet, providing reliable transport of mes-
sages through a possibly faulty medium to many of its applications. Our primary contribution is the formal verification
of TCP extended with the Window Scale Option; an option not considered in earlier verification efforts. We take care to
extract our formal specification directly from the original specifications of TCP and the Window Scale Option, i.e., RFCs
793 [1], 1122 [2] and 1323 [3]. This work was initially triggered by a concern of Dr. Barry M. Cook, CTO at 4Links Limited,
regarding the Window Scale Option proposed in RFC 1323. Specifically, he questioned whether the window size being re-
portable only in units of 2n bytes conflicts with the requirement that the receive buffer space available should not change
downward.

We adopt the process algebra μCRL as our formal specification language. Based on ACP, μCRL is enriched with the alge-
braic specification of abstract data types. We found μCRL’s treatment of data as a first class citizen essential for specifying
TCP, and were encouraged by its previous success in verifying the Sliding Window Protocol [4,5]. We utilise the μCRL toolset
and LTSmin [6] to explicitly generate the state space and perform the automated verification.

Section 2 relates our verification effort to those that precede it. In Section 3 we present the functional specification
of TCP, followed by an introduction of μCRL in Section 4. Section 5 presents our μCRL specification of TCP; its structure
mirrors that of the functional specification presented in Section 3 and illustrated in Figs. 2 and 3. We split our verification
across Sections 6 and 7 and conclude that the Window Scale Option does not adversely impact TCP. However, in Section 6.2

* Corresponding author. Tel.: +31 20 598 7735.
E-mail addresses: info@larslockefeer.nl (L. Lockefeer), w.j.fokkink@vu.nl (W. Fokkink).
http://dx.doi.org/10.1016/j.scico.2015.08.005
0167-6423/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2015.08.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:info@larslockefeer.nl
mailto:w.j.fokkink@vu.nl
http://dx.doi.org/10.1016/j.scico.2015.08.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2015.08.005&domain=pdf

4 L. Lockefeer et al. / Science of Computer Programming 118 (2016) 3–23
Table 1
Comparison of earlier verifications of TCP.

Authors

RF
C

79
3

RF
C

11
22

RF
C

13
23

O
th

er
ex

te
ns

io
ns

Co
nn

Es
ta

bl
is

hm
en

t

Co
nn

Te
ar

do
w

n

D
at

a
Tr

an
sf

er

M
es

sa
ge

lo
ss

D
up

lic
at

io
n

Re
or

de
ri

ng

M
es

sa
ge

di
re

ct
io

n

Co
nn

in
ca

rn
at

io
ns

W
in

do
w

Sc
al

e

Murphy & Shankar [8]
√ √ √ √ √ √ ⇔ n

Smith [9,10], Smith & Ramakrishnan [11]
√ √ √ √ √ √ √ √ ⇒ n

Schieferdecker [12]
√ √ √ √ √ √ ⇔ 2

Billington & Han [15–18]
√ √ √ √ √ √ √ ⇔ 1

Bishop et al. [14], Ridge et al. [19]
√ √ √ √ √ √ √ √ √ √ ⇔ n

Our verification
√ √ √ √ √ √ √ √ ⇒ 1

√

we recommend a reformulation of RFC 793 to avoid deadlocks that can arise due to the ambiguous formulation of how to
probe zero windows.

An earlier version of this paper appeared as [7], where only the architecture of our models was presented and our
verification focused solely on Data Transfer. Here, we provide our μCRL specification in sufficient detail for the results of
our verification to be reproduced. Moreover, in Section 7, next to the Window Scale Option we also include Connection
Teardown to show that the connection can only be closed if both entities accept the CLOSE call from the Application Layer.

2. Related work

Table 1 compares our verification of TCP to previous efforts, which we will discuss in this section. Murphy & Shankar
[8] specified a protocol with a similar service specification to TCP as defined in RFC 793. By a method of step-wise refine-
ment, a protocol was specified maintaining several correctness properties. The need for a three-way handshake and strictly
increasing incarnation numbers becomes apparent with the introduction of each fault in the medium. Similarly, by means
of a refinement mapping, Smith [9,10] has shown that the protocol satisfies the specification of the user-visible behaviour.
Selective acknowledgements were added in [11]. Schieferdecker [12] showed that there is an error in TCP’s handling of the
ABORT call. After proposing a solution, a LOTOS specification of TCP was given and several μ-calculus properties were ver-
ified using CADP [13]. Bishop et al. [14] considered whether execution traces generated from real-world implementations
of TCP were accepted by a Higher Order Logic (HOL) specification of TCP including Protection Against Wrapped Sequence
Numbers (PAWS), the Window Scale Option and congestion control algorithms. Of the test traces generated, the specification
accepted 91.7%.

Billington & Han have studied TCP extensively considering both RFC 793 and RFC 1122 using Coloured Petri Nets. They
have given a concise overview of their TCP service specification in [15] which includes connection establishment, normal
data transfer, urgent data transfer, graceful connection release and abortion of connections. In [16], they gave a model of
the connection management service, which was further refined in [17]. This revised specification was used as a basis for a
verification of connection management [18] considering a model without retransmissions and a model with retransmissions.
As a result of their verification efforts, Billington & Han found several issues within connection management. For example,
in the model without retransmissions, a deadlock could occur when one entity opened the connection passively and, after
receiving and acknowledging a connection request, immediately closed the connection again. This deadlock occurred even
on a non-lossy network and could be resolved by introducing retransmissions. The authors noted that it is strange that
retransmissions of messages are required in the case of a non-lossy medium. The work by Billington & Han on Data Transfer
has not yet led to a verification.

As the Sliding Window Protocol (SWP) underlies TCP (see Section 5) we also compare our verification to those of SWP.
We, like Bezem & Groote [20] and Badban et al. [4], use μCRL for our specification. Bezem & Groote and Badban et al.
consider bidirectional communication across a medium that can lose but neither duplicate nor reorder messages. Our ver-
ification considers a medium that can lose, duplicate and reorder messages, but does so only in a unidirectional setting.
Whereas we, like Bezem & Groote, consider a finite window size (namely 22), Badban et al. performed the verification on
an arbitrarily large window. Madelaine & Vergamini [21] modelled and verified SWP using LOTOS and AUTO. They, like
us, consider the unidirectional case across a medium that can lose, duplicate and reorder messages. Finally, Chkliaev et al.
[22] specify an amended version of SWP, in which the sender and receiver need not synchronise on the sequence number
initially.

3. Functional specification of TCP

The Transmission Control Protocol (TCP) enables two parties to reliably communicate over a faulty network. Its re-
sponsibilities can roughly be divided into two categories: Connection management sets up the connections, manages the
connection states and ensures that connections are closed in a safe manner; Data transmission involves the transfer of

L. Lockefeer et al. / Science of Computer Programming 118 (2016) 3–23 5
segments from the sender to the receiver. In this section we present TCP as specified in RFCs 793 and 1122, extended to
include the Window Scale Option of RFC 1323. We focus on the Data Transfer and Connection Teardown phases, as it is
these that we formally specify in μCRL in Section 5 and verify in Sections 6 and 7.

The TCP instance of the sender receives data from some application and packages this into segments to be handed to
the Network Layer. The TCP instance of the receiver receives segments from the Network Layer and should ensure the
data is delivered to the receiver’s application in the same order as it was sent. To prevent segments from lingering around
the network forever, a Maximum Segment Lifetime is defined. Every time a segment arrives at a hop in the network, the
hop verifies whether the time that has expired since the message was sent is smaller than its maximum lifetime. If this
is not the case, the segment is removed from the network by the hop. TCP may send the octets in its buffer at its own
convenience. As this behaviour may lead to undesirable delays, two mechanisms are available for the Application Layer to
indicate that the data that it wants to send is important: the PUSH function indicating that the sender must transmit the
data immediately and the URGENT function, indicating that the data must be processed by the receiver as soon as possible
upon arrival.

The purpose of a segment is twofold: (i) a segment may contain zero or more octets of data that the sender’s application
wishes to relay to an application at the receiver; and, (ii) a segment communicates control information between the two
entities. This control information consists of several variables, flags and options.

Control variables: SEG.SRC and SEG.DST specify the port numbers that the TCP sender and receiver use. If the SYN-flag
or FIN-flag is not set, the SEG.SEQ field contains the sequence number of the first octet. SEG.ACK specifies the next
sequence number that the sender expects to receive. This field is only to be interpreted if the ACK-flag is set. The data
offset field, SEG.OFF, specifies the size of the TCP header as a multiple of 32, indicating where the data begins. SEG.WND
specifies the number of octets that the sender is willing to accept. SEG.CHK specifies a checksum calculated over the header
and data by the sender to facilitate integrity checking by the receiver. Finally SEG.UP contains the sequence number of the
last octet that is marked as urgent. This field is only interpreted if the URG-flag is set.

Control flags: SEG.URG indicates that the urgent function is triggered at the sender of the segment; SEG.ACK indicates
that the segment contains acknowledgement information; SEG.PSH indicates that the push function is triggered at the
sender of the segment; SEG.RST indicates that the reset function is triggered at the sender of the segment; SEG.SYN
indicates that both entities are synchronising on an initial sequence number; SEG.FIN, indicates that no more data will
come from the sender and that it wishes to close the connection.

Options: To facilitate enhancements to TCP without breaking the core specification, options may be appended to the end of
the header. One such option is the Window Scale Option.

TCP uses the Sliding Window Protocol (SWP) for its data transfer. Both sender and receiver maintain a window of n
sequence numbers, ranging from 0 to n − 1, from which they can send or where they can receive data items. The sender
may send as many octets as the size of its window before it has to wait for an acknowledgement from the receiver. Once
the receiver sends an acknowledgement for m octets, its window slides forward m sequence numbers. Likewise, the sender’s
window slides m sequence numbers if this acknowledgement arrives. To function correctly over mediums that may lose
data, the maximum size of the window is n

2 [23].
In the implementation of SWP underlying TCP, octets may be acknowledged before they are forwarded to the Application

Layer (AL) and therefore still occupy a position in the receive buffer. In this case, the receiving entity reduces its advertised
window through the SEG.WND field of the acknowledgement segment, ensuring the sending entity does not send new
data that will overflow its buffer. Once the octets are forwarded to the Application Layer, it may reopen the window. The
receiver may adjust the size of the sender’s window at any time, through the value of SEG.WND set in acknowledgement
segments. As the size of this field is limited to 16 bits, TCP can send at most 216 octets into the medium before having to
wait for an acknowledgement, and if the medium can hold more octets an unnecessary delay will be incurred. To resolve
this, RFC 1323 [3] proposes the Window Scale Option. This option will be discussed in detail in Section 3.3.2; the Window
Scale Option is of primary concern in our verification of TCP.

3.1. Connection management

TCP begins by establishing a connection with both entities reaching agreement on the configuration to use for the
connection that is stored in their Transmission Control Block (TCB). In TCP, each connection is bidirectional, meaning that
each TCP entity may act as both sender and receiver. Regarding outgoing data, the TCB maintains the following variables:
A pointer to the send buffer, which contains octets accepted as a result of a SEND call from the Application Layer; the
retransmission queue, which points to a queue holding sent segments until they are acknowledged; SND.UNA, the sequence
number of the first octet sent but not yet acknowledged; SND.NXT, the sequence number of the first octet next to be sent;
SND.WND, the total number of octets transmission allows; SND.UP, the sequence number of the first octet following the
data marked as urgent; SND.WL1, the sequence number of the segment used for the last window update; SND.WL2, the
acknowledgement number of the segment used for the last window update; ISS, the initial send sequence number, i.e.,
the sequence number of the first segment the entity will send. In addition, the following variables are maintained regarding
incoming data: a pointer to the receive buffer, a buffer in which octets accepted from the Network Layer are stored before

6 L. Lockefeer et al. / Science of Computer Programming 118 (2016) 3–23
Fig. 1. The Connection Teardown procedure.

being forwarded to the Application Layer; RCV.NXT, the sequence number of the next segment the receiver expects to
receive; RCV.WND, the maximum number of octets the entity is prepared to accept at once; RCV.UP, the sequence number
of the first octet following the data marked as urgent; IRS, the initial receive sequence number, i.e., the sequence number
of the first expected segment.

During its lifetime, a connection progresses through several states. Of course, both initially and after finishing the
communication the connection does not exist. In this case, the connection’s state is described as CLOSED. Connection
establishment is initiated by issuing the OPEN call from the Application Layer to TCP. Once a connection has been set up
between two entities, the state will be set to ESTABLISHED.

Unfortunately, nothing lasts forever and therefore, a Connection Teardown mechanism is also specified. During this pro-
cedure, the protocol progresses through several states of which an overview is given in Fig. 1. As soon as an application at
an entity has no more data to send, it issues the CLOSE call from the Application Layer. It is important to note that as a
result of issuing this call, the data transfer flowing from the TCP entity that issued the CLOSE call to the remote TCP entity
will be terminated, essentially transforming the bidirectional connection into a unidirectional one. Only after a CLOSE call
has been issued from the Application Layer of the remote TCP entity as well, the connection will be torn down completely.
Hence, there are two scenarios that need to be discussed:

While in the ESTABLISHED state, the local TCP entity receives a CLOSE call from the Application Layer: Upon receiving a
CLOSE call from the Application Layer, the TCP entity will delay the processing of this call until any byte it has buffered
in its send buffer is segmented and sent to the entity at the other end. Then, it will send a segment with the FIN flag
set, after which the connection will progress from the ESTABLISHED state to the FINWAIT-1 state. While in this state,
the TCP entity will no longer accept any SEND calls from the Application Layer, and wait for an acknowledgement of the
FIN segment to arrive. Once an acknowledgement of the FIN segment is received, the connection will progress to the
FINWAIT-2 state. The connection will remain in the FINWAIT-2 state until the TCP entity receives a FIN segment from
the other end, indicating that at the other end of the connection, a CLOSE call was issued from the Application Layer. At
this point, the TCP entity that received the FIN will send an acknowledgement and progress to the TIME WAIT state. This
state adds a delay of twice the Maximum Segment Lifetime (MSL) before the connection is definitely closed, to ensure that
the acknowledgement arrives at the other side. Finally, the connection progresses to the CLOSED state, meaning that all
state information for the connection is deleted from the TCP entity. There is a slight variation to this scenario where the
TCP entity receives a segment with the FIN flag set while in the FIN WAIT-1 state, indicating that at the remote entity,
a CLOSE call was issued from the Application Layer as well. In this case, the TCP entity sends an acknowledgement and
progresses its state to CLOSING. Upon receiving an acknowledgement of its own FIN segment, the entity will progress to
the TIME WAIT state.

While in the ESTABLISHED state, the local TCP entity receives a FIN from the network: Upon receiving a segment with the FIN
flag set, the TCP entity will send an acknowledgement and progress to the CLOSE-WAIT state. In this state, the TCP entity
will no longer accept RECEIVE calls from the Application Layer but may still accept SEND calls. The TCP entity remains

L. Lockefeer et al. / Science of Computer Programming 118 (2016) 3–23 7
Fig. 2. Abstract overview of our specification of TCP Data Transfer.

in this state until a CLOSE call is issued from the Application Layer. Upon receiving this call, the TCP entity will send a
segment with the FIN flag set and progress to the LAST-ACK state, waiting for an acknowledgement of the segment it just
sent. Once this acknowledgement is received, the connection progresses to the CLOSED state.

3.2. Data Transfer

Between the Connection Establishment and Connection Teardown phase, data can be transferred between TCP entities.
To simplify our discussion, we will distinguish between a sender and a receiver that engage in a unidirectional transfer of
data. In a real-world scenario, data would flow in both directions, requiring the sender to also act as a receiver and vice
versa. The structure of the remainder of this section reflects the high-level overview of TCP, as illustrated in Fig. 2. Fig. 3
illustrates the Process segment procedure in finer granularity. In both figures, Application Layer is abbreviated as AL.

3.2.1. Application Layer calls send
Data transfer starts at the Application Layer of the sender, where octets of data that are to be sent to the remote entity

can be passed to TCP by (consecutive) SEND calls, which may be issued as long as the connection is in the ESTABLISHED
or CLOSE-WAIT state. The sender maintains a buffer of these octets, the send buffer, which operates as a FIFO queue. As
long as there is capacity left in the send buffer, TCP will accept SEND calls from the Application Layer and put the octets
that are passed as arguments to these SEND calls in the buffer. TCP may send the octets in its buffer at its own convenience.
After a single SEND call, it could for example wait for more SEND calls from the Application Layer before sending out any
data.

Some ambiguity surrounds the specification of the sequence number, as both octets and segments are assigned one.
In principle, TCP numbers each octet with a unique sequence number, modulo the size of the sequence number space.
A segment inherits its sequence number from the first octet it contains. However, a segment containing no octets still
requires a sequence number. Here, it is still numbered with the sequence number maintained in SND.NXT, but SND.NXT
is not updated.

SYN and FIN segments, which are used during connection setup and teardown, form an exception to this rule, as is
stated on page 26 of [1]: “The SYN segment is considered to occur before the first actual data octet of the segment in which it
occurs [if any], while the FIN is considered to occur after the last actual data octet in a segment in which it occurs.” Hence, if a SYN
segment is sent with sequence number n, this same sequence number must not be used to send a data segment after this
SYN segment until the sequence number space wraps. Likewise, if the last byte that is sent on a connection has sequence
number n, the FIN segment that is subsequently used to close the connection gets sequence number n + 1. In both cases,
SND.NXT is updated accordingly after sending the control segment.

8 L. Lockefeer et al. / Science of Computer Programming 118 (2016) 3–23
Fig. 3. Abstract overview of our specification of TCP Segment Processing.

3.2.2. Octets in send buffer?
Once there are octets in the send buffer, TCP may package them up into a segment. The actual number of octets that

TCP can send at a certain point in time is calculated by taking the difference m between SND.UNA and SND.NXT. If m <

SND.WND, TCP may package any number of octets n ≤ m that it thinks reasonable into a segment and send it into the
medium. Subsequently, TCP does several things:

1. The octets that were included in the segment are removed from the send buffer.
2. The segment that was sent is put on the retransmission queue.
3. A retransmission timer is started for the segment.
4. SND.NXT is advanced by n, now indicating the sequence number of the octet that will be sent next.

3.2.3. Segment arrives
If all goes well, after the transfer through the medium a segment will eventually arrive at the receiver. Recall that in

its TCB, the receiver maintains a pointer to the receive buffer and several variables. Of importance here are the variables
RCV.NXT and RCV.WND. Initially, RCV.NXT is set to the initial sequence number that the sender has communicated to the
receiver during connection setup and RCV.WND is set to the capacity of the receive buffer. As a first check on the segment
that arrived, the receiver will verify that the segment is acceptable. A segment is deemed acceptable in the following two
situations [1]:

1. If the segment does not contain data octets:
(a) If RCV.WND = 0, it is required that SEG.SEQ = RCV.NXT
(b) If RCV.WND > 0, it is required that RCV.NXT ≤ SEG.SEQ < RCV.NXT + RCV.WND

2. If the segment does contain data octets

L. Lockefeer et al. / Science of Computer Programming 118 (2016) 3–23 9
(a) If RCV.WND = 0, the segment is not acceptable.
(b) If RCV.WND > 0, it is required that

• either RCV.NXT ≤ SEG.SEQ < RCV.NXT + RCV.WND
• or: RCV.NXT ≤ SEG.SEQ + SEG.LEN −1 < RCV.NXT + RCV.WND

When processing the segment, four things are of importance: the arrival of an unacceptable segment, whether the
segment has the FIN flag set, whether it contains acknowledgement information and whether it is carrying data.

The segment is not acceptable If the segment is not acceptable, the segment is dropped and an acknowledgement is sent
to the sender containing the current value of RCV.NXT. After the initial acceptability check, segments are processed in
order of their sequence numbers. Segments that arrive out of order may be dropped by the receiver. However, to improve
performance, the specification suggests that these segments are held in a special buffer to be processed as soon as their
turn arrives.

If the segment is acceptable, the receiving instance will check whether any of the following control flags is set: RST,
SYN, ACK and URG. Of these flags, the RST and SYN flags can only be set during connection setup or as a consequence of
errors during connection setup. Therefore, we will not discuss the behaviour of the protocol in response to such a flag being
set here.

The segment contains acknowledgement information If an acknowledgement arrives at the sender, the sender verifies
whether SND.UNA < SEG.ACK ≤ SND.NXT. If this is the case, SND.UNA is set to SEG.ACK and all segments on the re-
transmission queue that contain octets with sequence numbers n . . .m < SEG.ACK are removed. Furthermore, if SND.UNA
≤ SEG.ACK ≤ SND.NXT ∧ (SND.WL1 < SEG.SEQ ∨ (SND.WL1 = SEG.SEQ ∧ SND.WL2 ≤ SEG.ACK)), the send win-
dow must be updated by setting SND.WND to SEG.WND, SND.WL1 to SEG.SEQ and SND.WL2 to SEG.ACK. If it is not
the case that SND.UNA < SEG.ACK ≤ SND.NXT, there are two possibilities. When SEG.ACK ≤ SND.UNA, the acknowl-
edgement can be ignored since it is a duplicate. When SEG.ACK > SND.NXT, the sender will send an acknowledgement,
drop the segment and return. This last situation can only occur when data transfer is bidirectional.

The segment is carrying data If the segment is carrying data, the octets are then taken from the segment and written into
a buffer at the receiver and RCV.NXT is advanced by the number of octets that have been accepted. The receiver must
acknowledge the fact that it took responsibility for the data in the segment to the sender, and to this end, an acknowledge-
ment containing the new value of RCV.NXT – reflecting the next sequence number that the receiver expects to receive –
is constructed and sent back to the receiver. This sets the TCP implementation of SWP apart from other implementations,
as an acknowledgement is sent while the octets may not yet be forwarded to the Application Layer and therefore occupy a
position in the receive buffer. Therefore, the size of the window that is reported back to the sender represents the available
capacity in the receive buffer, if this capacity is less than the difference between RCV.NXT and the size of the receive
window that was originally agreed upon permits. In naive implementations, each acknowledgement will carry the updated
size of the receiver’s window. Several strategies have been proposed to minimise the performance degradation this causes,
which is outside the scope of our work. Our verification shall concern the correctness of TCP and not its performance.

The segment has the FIN flag set Finally, the receiver will verify whether the FIN flag was set in the incoming segment. If
this was the case the receiving instance will progress from the ESTABLISHED to the CLOSE-WAIT state once processing
the segment has completed.

3.2.4. Retransmission timeout
If the retransmission timer expires before the sender receives an acknowledgement of the segment, the segment will

be retransmitted and the timer restarted. By doing this, any segment that is not accepted at the remote end, for whatever
reason, is retransmitted until it is eventually accepted exactly once. This process may repeat itself as long as m < SND.WND.
By default, TCP uses a go-back-n retransmission scheme. However, the protocol may keep segments that arrive out of order
to employ a selective repeat retransmission scheme. This scheme can be optimised even further by implementing the
selective acknowledgement extension [24].

3.2.5. Probe zero window
In each acknowledgement, a receiving TCP instance may adjust the size of the send window of the remote entity. If the

sender has a send window of size 0, this may lead to a deadlock, since the sender is not allowed to send anything and
therefore will not receive any additional acknowledgements that may contain an updated window size. Therefore, a TCP
instance must regularly transmit something to the remote entity to ensure that it will receive an acknowledgement with a
possibly reopened window. This behaviour is called probing the zero window.

3.2.6. Application Layer calls RECEIVE
To complete the Data Transfer phase, the application at the receiving end must read the octets from the receive buffer

of TCP. This is done by issuing the RECEIVE call, which may be issued as long as the connection is in the ESTABLISHED,
FIN-WAIT-1, FIN-WAIT-2 or CLOSE-WAIT state. Once an octet is forwarded to the Application Layer, its transfer is
complete.

10 L. Lockefeer et al. / Science of Computer Programming 118 (2016) 3–23
3.3. Known problems

Several issues with TCP’s implementation have surfaced as the networks that the protocol operates over have become
more sophisticated. In this section, we will discuss the problems that are relevant to our project.

3.3.1. Sequence number reuse
Since the sequence number field in the TCP header only allows for a finite 32-bit sequence number, the protocol can only

use sequence numbers up until 232 − 1 to number the octets that it sends. As a result of this, after 232 octets have been
sent the next octet will again have a sequence number equal to the initial sequence number. In RFC 793, it is stated that
“the duplicate detection and sequencing algorithm in the TCP protocol relies on the unique binding of segment data to sequence space
to the extent that sequence numbers will not cycle through all 232 values before the segment data bound to those sequence numbers
has been delivered and acknowledged by the receiver and all duplicate copies of the segment have ‘drained’ from the internet” [1].
Such ‘draining’ is achieved by enforcing the Maximum Segment Lifetime (MSL) at each hop in the network. Since TCP has a
sequence number space of size 232, this assumption is automatically met for a reasonable MSL of two minutes and networks
up to a speed of 17.9 megabytes per second. However, as network speeds increased, scenarios arose where a sender could
send its entire sequence number space into the network in an amount of time shorter than the MSL. Protection Against
Wrapped Sequence Numbers (PAWS) is proposed in RFC 1323 [3] to resolve this problem.

If PAWS is implemented, to every segment a timestamp SEG.TSval is added that is monotone non-decreasing in time.
Furthermore, the receiver maintains the additional variables TSrecent and Last.ACK.sent in its TCB. Whenever an
acknowledgement segment is sent, Last.ACK.sent is set to the value of SEG.ACK. If a segment arrives at the receiver
for which SEG.TSval < TSrecent, the segment is dropped and an acknowledgement is sent to the sender containing
the current value of RCV.NXT. If SEG.TSval ≥ TSrecent and SEG.SEQ ≤ Last.ACK.sent, SEG.TSval is stored in
TSrecent. Regardless of the outcome of this test, processing continues as specified in RFC 793 [1].

By implementing PAWS the sequence number of a segment is transformed from a single value into a two-tuple. It is
important to note here that these timestamps are themselves 32-bit unsigned integers in a modular 32-bit space (again
due to the restrictions of the TCP header). Hence, the problem is only moved forward. There is no other protection against
wrapped sequence numbers than the assumption that whenever a connection enters a fragment of the sequence number
space for the (n + 1)th time, all segments that were sent into the network while the connection was in the same fragment
of the sequence number space for the nth time have drained from the network due to the expiry of their MSL. By choosing
the values for the timestamp clock wisely, the implementation can be stretched to cover any value for the MSL that is still
reasonable.

3.3.2. Performance loss due to small window size
There is a direct relation between TCP’s performance and the size of the send window: the larger this window is, the

more data a sender can send without having to wait for an acknowledgement. In an optimal scenario, the size of the window
allows the sender to send as much data into the medium as it can hold at most. However, the receiver may adjust the size
of the sender’s window at any time, through the value of SEG.WND set in acknowledgement segments that are transferred
from receiver to sender. By the fact that the size of this field is limited to 16 bits, the maximum size of the send window
is 216. This means that TCP can send at most 216 octets into the medium before having to wait for an acknowledgement.
Hence, if the medium can hold more than 216 octets, unnecessary delay will be introduced into the communication due to
the restriction on the window size.

To resolve this issue, RFC 1323 proposes the Window Scale Option. If implemented, the send and receive windows
are maintained as 32-bit numbers in the TCB of the sender and receiver, which is also extended to include variables
SND.WND.SCALE and RCV.WND.SCALE. Whenever an entity receives an acknowledgement, it left-shifts the value of
SEG.WND by the value of SND.WND.SCALE before it updates its send window. Likewise, whenever an entity sends an
acknowledgement it sets the window field of the outgoing segment to the size of its receive window, right-shifted by the
scale factor RCV.WND.SCALE.

Implementing the Window Scale Option theoretically enables a window size that is equal to the size of the sequence
number space. Therefore, it introduces an additional problem with sequence number reuse that did not occur previously.
According to [23], the sliding window protocol functions correctly for window sizes up until 2n−1 given a sequence number
space of size 2n , assuming that the medium does not support reordering. However, in the environment in which TCP is used,
this assumption does not hold. In [22], a scenario is given where a segment s0 ranging over the first half of the sequence
number space is erroneously accepted twice as a result of duplicating s0 and a subsequent reordering with a segment s1
ranging over the second half of the sequence number space.

Another example of the problem that may occur as a result of the fact that the assumption as given in [23] does not
hold in TCP’s context is shown by the following scenario, in which we have a sequence number space of size 23 and a
window of size 22. The sender starts by sending a segment x containing octets 0 . . . 3. After receiving an acknowledgement
of this segment, the sender responds by sending a segment x′ containing octets 4 . . . 7. Again, this segment is acknowledged,
after which the sender will send a segment y containing octets 0 . . . 3. At this point, the receiver’s window ranges over
octets 0 . . . 3. If segment y arrives, the receiver will accept it, update the window to range over octets 4 . . . 7 and send an
acknowledgement. Before this acknowledgement arrives at the sender, segment y is retransmitted. Immediately thereafter,

L. Lockefeer et al. / Science of Computer Programming 118 (2016) 3–23 11
the sender receives the acknowledgement, updates its window and sends a segment z containing octets 4 . . . 7. Now, let
segment z overtake the retransmitted segment y in the medium and arrive at the receiver. The receiver will accept the
segment, update its window range to 0 . . . 3 and send an acknowledgement. Shortly thereafter, the retransmitted segment y
arrives. This segment is now accepted as a regular, in-sequence segment resulting in a corrupted byte stream.

Enforcing the assumption on the MSL does not help us here since segment z is sent shortly after segment y was
retransmitted. Therefore, this scenario is completely reasonable. To fix this issue, RFC 1323 enforces that the window size is
at most 2n−2 with n the number of bits available for the sequence number. Now, when the sender retransmits a segment
y carrying octets 6 . . .7 and shortly thereafter receives an acknowledgement for this segment, it will respond by sending
a segment z carrying octets 0 . . . 1. If z overtakes y and arrives at the receiver, its window will be updated to range over
octets 2 . . . 3. As a result of this, segment y will not be accepted if it were to arrive. Combined with the assumption that
segment y will have drained from the network by the time that the receiver’s window ranges over 0 . . . 1 again, correctness
is preserved.

4. μCRL

Process algebras are used to formally specify the behaviour of (concurrent) systems. In general, first the separate compo-
nents that make up the system are specified. Then, the components are put in parallel, together with a specification of ways
for the components to interact with each other. Finally, the initial state of the parallel specification is denoted. The formal
specification of the system’s behaviour can then be used to verify the correctness of the system. We use both process equiv-
alence, where (a part of) the behaviour is compared with the behaviour of another system, and property checking, where
properties of the system are checked on its state space. μCRL distinguishes itself from other process algebras through its
ability to cope with general abstract data types. For an overview of the most prominent formal verification techniques for
communication protocols using μCRL, the reader is referred to [25]. For a concise overview of formal methods and their
applications in software verification, we refer to [26].

4.1. Process terms

The most atomic form of a process term is an action. An action may carry zero or more data parameters, indicating the
data that is relevant for the execution of the action. Process terms may be composed to form more intricate behaviour.
A sequential composition of two process terms t1 and t2, denoted t1 · t2, represents the process that first executes the process
as described by term t1 and, after successful termination, executes the process as described by term t2. An alternative
composition of two process terms t1 and t2, denoted t1 + t2, represents the process that executes either the process as
described by term t1 or the process as described by the term t2. A process term can also reflect a deterministic choice
based on a condition through composition with the conditional operator. A process term of the form p � b � q with p and
q process terms and b a boolean condition behaves a p if b evaluates to true and as q otherwise. We adopt the convention
that the · operator binds stronger than the + operator. The conditional operator binds stronger than + and weaker than ·.

When a system is made up of multiple components, these components will in general work alongside each other and
communicate from time to time to influence the behaviour of the other components. To this end, process algebras also allow
process terms to be put in parallel. The first parallel operator is merge, denoted ‖, that represents two process terms working
alongside each other. If two process terms p = a and q = b, consisting of the execution of action a or b respectively, are
merged and no communication is possible between the two terms, the resulting process term will behave as the arbitrary
interleaving of their actions. Hence, p ‖ q behaves as a · b + b · a.

Certain actions in processes p and q may be synchronised using the communication operator |. If p = a and q = b are
merged as before, we may additionally specify that the actions a and b synchronise: a|b = c. The parallel composition of the
process terms p ‖ q behave as a · b + b · a + c (where · binds stronger than +). To enforce that the actions may only occur
synchronously, actions may be encapsulated. By encapsulating a and b in p ‖ q only the action c can occur. Encapsulation
requires an additional action δ called deadlock. δ does not display any behaviour and is specified such that p + δ = p and
δ · p = δ. Encapsulation now works by substituting the atomic actions that make up a communication action with δ such
that only the synchronous behaviour is exposed.

4.2. Process declarations

Process declarations are always of the form P (x1 : D1, . . . , xn : Dn) = p with n ≥ 0. This declares the process P that
takes data variables x1 . . . xn as parameters and behaves as the process term p. p may contain occurrences Q (y1, . . . , yn)

that further specify the process to be executed. It may also contain a recursive call to P , as long as the recursive call is
guarded, meaning that it is preceded by an action. By using the sum operator

∑
d1:D1,...,dn:Dn

P (d1, . . . , dn), a process term
P (d1, . . . , dn) can be specified for any permutation of datum parameters d1 : D1, . . . , dn : Dn . In the resulting state space,
this operator is reflected by a parallel composition over all possible parameterisations.

Actions may be hidden through the use of the hiding operator τA . If this operator is applied to a process term p, all actions
a ∈ A will be substituted with the special action τ . This special action name is used for actions that are not observable or
not of interest for the specification. Sometimes, however, the presence of τ actions can be observed as a result of the

12 L. Lockefeer et al. / Science of Computer Programming 118 (2016) 3–23
composition of process terms. In the process term a + τ · b, for example, the τ action is of interest; once it is executed, the
set of possible behaviours of the system is reduced from {a + b, b} to {b}. Such a τ -action is called non-inert. Conversely, an
inert τ -action is an action that does not lose any possible behaviours.

4.3. Process equivalence

Correctness of a system can be verified by checking whether a Labelled Transition System (LTS) generated from a process
declaration is equivalent to a process capturing its requirements. Many notions of process equivalence have been proposed,
a hierarchy of these is presented in [27,28]. Bisimulation, originally defined in [29], is located at the finest end of the
spectrum. In [27] it is defined as: a binary relation R on processes, such that, for a ∈ Act

1. if pRq and p a→ p′ , then ∃q′ : q a→ q′ and p′ Rq′

2. if pRq and q a→ q′ , then ∃p′ : p a→ p′ and p′Rq′

Here, p, p′ , q, q′ denote processes and Act the set of possible actions. Two processes p and q are said to be bisimilar, p � q,
if there exists a bisimulation relation R such that pRq.

A refinement of bisimulation is branching bisimulation [30], which takes τ -transitions into account in the equivalence
relation. Intuitively, inert τ transitions do not have to be performed by process p as well as q for p and q to be branching
bisimilar p � B q. A branching bisimulation relation is: a binary relation R on processes, such that:

1. if pRq and p a→ p′ , then
(a) either a = τ and p′Rq

(b) or ∃q′′ : q τ→ . . .
τ→ q′′ for zero or more τ transitions, such that pRq′ and q′′ a→ q′ with p′Rq′

2. if pRq and q a→ q′ , then
(a) either a = τ and pRq′

(b) or ∃p′′ : p τ→ . . .
τ→ p′′ for zero or more τ transitions, such that p′′ Rq and p′′ a→ p′ with p′Rq′

Here p, p′ , p′′ , q, q′ , q′′ denote processes and Act the set of possible actions. Two processes p and q are said to be branching
bisimilar, p � B q, if there exists a branching bisimulation relation R such that pRq. Branching bisimulation equivalence
implicitly enforces a notion of fairness on processes when comparing them. Intuitively, this notion ensures that if an exit
transition exists from a τ -loop, then this transition will eventually be taken. Several fairness notions exist, for an overview
we refer to [31].

As the complexity of processes increases, the size of the state space tends to grow exponentially. Minimisation techniques
have been proposed to resolve this issue. One of these techniques is minimisation modulo branching bisimilarity, that prunes
inert τ -transitions from a state space, for which an efficient algorithm was proposed in [32]. As τ -transitions are pruned
from the state space, a fairness assumption is again enforced on the state space. If P � B Q and both P and Q are minimised
modulo branching bisimilarity yielding processes P ′ and Q ′ , it holds that P ′

� Q ′ .

4.4. Property checking

Another approach for verifying the correctness of a process is to formulate properties and subsequently check that these
properties hold on the state space generated of the process. A distinction is made between liveness and safety properties.
A liveness property states that something ‘good’ will eventually happen, whereas a safety property states that something ‘bad’
will never happen. Properties may be formulated in μ-calculus [33], which is defined by the following BNF grammar:

φ ::= T | F | φ ∧ φ′ | φ ∨ φ′ | 〈a〉φ | [a]φ | X | μX .φ | ν X .φ

〈a〉φ holds for a state s if there exists a state s′ in which φ holds and s a→ s′ . [a]φ holds for a state s if for all transitions
s a→ s′ , φ holds in s′ . T holds in all states while F does not hold in any state. The set X ranges over recursion variables.
Minimal and maximal fixpoints μX .φ and ν X .φ exist because μ-calculus formulas are monotonic. Here, φ represents a
mapping that yields a set of states for which the property φ holds, ranging over the domain S of states in which the
recursion variable X holds.

As an extension to the μ-calculus, the regular μ-calculus was proposed [34] in which instead of formulas 〈a〉φ and [a]φ,
one may use formulas 〈β〉φ and [β]φ with β a regular expression defined by the following BNF grammar:

α ::= T | a | ¬a | a ∧ a′

β ::= a | β · β ′ | β|β ′ | β∗

Here, α represents a set of actions, more specifically the set T of all actions, a the set containing a specific action
a ∈ Act ∪ {τ }, ¬a its complement and a ∧ a′ the set of actions that occur both in a and a′ . β represents a set of traces

L. Lockefeer et al. / Science of Computer Programming 118 (2016) 3–23 13
consisting of a set of actions α, the concatenation · of a trace from β and β ′ , the union | of the traces in β and β ′ and
finally β∗ the transitive reflexive closure of β , consisting of those traces that a concatenation of finitely many traces from β
yields. 〈β〉φ is defined to hold if there is a trace β leading to a state s in which φ holds. [β]φ is defined to hold if all traces
β end up in a state s where φ holds.

5. Specification

In this section we present the overall structure of our μCRL specification of TCP, which includes the Data Transfer and
Connection Teardown phases as specified in RFCs 793 and 1122, extended to include the Window Scale Option, as specified
in RFC 1323. It is the aim of this section to relate the RFCs to the μCRL specification, assisting the reader in bridging the
gap between the two.

We do not validate Connection Establishment. As discussed in Section 2, this part of the specification has been well
studied in the literature already. While none of these efforts included RFC 1323, the only addition to this phase as proposed
by this extension is the communication of variables SND.WND.SCALE and RCV.WND.SCALE to the other end of the
connection. This process is so straightforward that we do not expect it to refute earlier verification efforts of the connection
establishment phase.

We instead specify Data Transfer and Connection Teardown, taking the ESTABLISHED state as the initial state of our
model. We take care to include the core TCP functionality as well as any peripheral functionality that is potentially influ-
enced by the Window Scale Option.

For brevity, we focus most of our attention on the process modelling the TCP instance; this was the primary exercise in
modelling TCP. For the complete μCRL specification, including processes modelling the Application and Network Layers, we
refer to [35].

Although we specify a generic TCP process that executes the responsibilities of the sending and receiving instances,
when composing our model of unidirectional TCP, including processes modelling the Application and Network Layers, some
actions must be encapsulated in TCP1 and TCP2 to instantiate them as the sending and receiving entities, respectively.

To avoid discussing abstract notions such as connections (at the TCP level) and sessions (at the application level) that
are rather detached from their contexts of sending and receiving entities in a network, we will consider a TCP instance that
has only one connection with one remote entity. This TCP instance maintains the state of the connection and the TCB. To
manage its window, the sender maintains the variables SND.UNA, SND.NXT and SND.WND in the TCB.

5.1. Preliminaries

We adopt the convention of denoting SND.NXT as SND_NXT in μCRL, and likewise for other variables/states of the
RFCs. Furthermore, we use T to denote true and F for false. Nat reflects the set of natural numbers, on which we define
the standard operations =, +, ∗, <, ≤, >, ≥ and mod, the monus operation denoted with .−, ·

· denoting integer division and
finally a difference operation on sequence numbers modulo n denoted with seq_diff.

Of all the data maintained in a segment, only the sequence and acknowledgement number, the window size, the ACK
and FIN flag and the number of octets included in the segment are important to our specification. Hence, a data type Sgmt
representing segments is defined. On this data type, we define the equality operation = and projections get_seq_nr, get_
acknr, get_window, get_num_octs, is_ack and fin_flag_set.

Data is kept in buffers of data type Buffer representing a list of natural numbers. Similarly, we define a type SgmtQueue
for a list of segments. On both data types, we define an operation first to get the head; add to add an element to the buffer;
add_ordered to add an element while maintaining the order; length to get the number of items on the buffer and merge
to merge two buffers. In addition, on Buffer we define an operation take_n which takes one occurrence of an element x
from a buffer; take_set which takes two buffers b1 and b2 and returns a buffer b3 that consists of the buffer b1 to which
take_n is applied for every element in b2 and infl which takes two sequence numbers x and y as arguments, and yields an
ordered buffer that contains y sequence numbers starting at x (taking the fact that sequence numbers are taken modulo n
into account).

The Transmission Control Block is specified as data type TransmissionControlBlock. The variables that it maintains are
named according to the RFC and for each of them a getter function is defined. Throughout the specification included in
this section, all updates to these variables are denoted as a �→ b, meaning that the value of variable a is replaced with
value b. If a is also used at the right side of the substitution, this means that the old value is first retrieved from the TCB
for manipulation.

Finally we define a data type ConnectionState, representing all states that a TCP instance may progress through: ESTAB-
LISHED, CLOSE_WAIT, FIN_WAIT_1, FIN_WAIT_2, CLOSING, LAST_ACK, TIME_ WAIT and CLOSED.

5.2. Data Transfer

We will now present our specification of TCP Data Transfer. The structure of this section is intended to cohere with that
of our presentation of the functional specification in Section 3 and Figs. 2 and 3.

14 L. Lockefeer et al. / Science of Computer Programming 118 (2016) 3–23
5.2.1. Application Layer calls SEND
The first call that is discussed in [1] is the SEND call on pages 56 to 57. By issuing a tcp_rcv_SND call the TCP

instance accepts an arbitrary octet and adds it to its send buffer. The call may only be issued if the connection is in state
ESTABLISHED or CLOSE_WAIT and if there is send buffer space available for the octet:

TCP(s: ConnectionState, t: TransmissionControlBlock)

=
∑
x:Nat

(
rcv_SND(x) · TCP

(
s, t

[
send_buff �→ add_ordered(x, send_buff)

])

� s ∈ {ESTABLISHED,CLOSE_WAIT} ∧ x < n ∧ length(get_send_buff (t)) < buff_capacity � δ
)

5.2.2. Octets in send buffer?
In addition, [1] specifies that TCP may segment octets in the send buffer and subsequently send them to the remote

entity “at its own will”. To this end, we include the following summand in our specification:

+ call_SND(sgmt(get_SND_NXT(t),get_RCV_NXT(t), calc_wnd(t), can_send(t),F,F))·
TCP

(
s, t

[
rtq �→ add(sgmt(SND_NXT,RCV_NXT, calc_wnd(t), can_send(t),F,F), rtq),

send_buff �→ take_set(send_buff , infl(SND_NXT, can_send(t))),

SND_NXT �→ (SND_NXT + can_send(t)) mod n
])

� s ∈ {ESTABLISHED,CLOSE_WAIT} ∧ can_send(t) > 0 � δ

If the connection is in the ESTABLISHED or CLOSE_WAIT state and TCP is allowed to send one or more octets,
a segment containing the eligible to be sent octets is passed to the Network Layer by issuing call_SND. This segment
is labelled with the sequence number maintained in SND_NXT. After the sequence number, the acknowledgement number
and advertised window are included, followed by the number of octets included in the segment and the values of the
ACK and FIN flag. The number of octets that TCP can send is the difference m between SND.UNA and SND.NXT. If
m < SND.WND, TCP may package n ≤ m octets into a segment and send it into the medium. The receive window size
relayed in the segment is calculated by applying the scale factor RCV.WND.SCALE to the actual receive window size in the
function calc_wnd. Subsequently, the octets in the segment are removed from the send buffer, the segment is added to the
retransmission queue (rtq) and SND_NXT is updated to reflect the next sequence number to be used.

In our model, the ACK flag will always be set to false in segments carrying data octets, and therefore the value of the
acknowledgement field in the segment will not be processed by the receiver. The specification dictates that the ACK flag is
always set to true and that the latest acknowledgement information is included in each data segment. However, this would
complicate the processing of segments in our model and is only pertinent to a bidirectional connection that we do not
consider to limit the size of our state space. In a unidirectional setting, the sender’s value of RCV_NXT will be constant
since it never receives data. Likewise, the receiver’s values of SND_NXT and SND_UNA remain constant since it never sends
data. Hence, throughout the protocol, if a sender A and a receiver B have agreed on initial sequence number x, then
ARCV_NXT = BSND_NXT ∧ BSND_NXT = BSND_UNA = x. Acknowledgements will not be processed since ¬(BSND_UNA < ARCV_NXT).
If SND_UNA ≤ SND_NXT < (SND_UNA + SND_WND), then the sender is allowed to send x = (SND_UNA + SND_WND) −
SND_NXT octets. To this end, we specified a function can_send that returns x if the length of the buffer is greater than x, or
the length of the buffer otherwise. No octets may be sent if ¬(SND_UNA ≤ SND_NXT < (SND_UNA + SND_WND)). From a
modelling perspective, this solves an ambiguity in [1], namely that TCP may send octets at its own will.

5.2.3. Segment arrives
All acceptable segments must be processed in the order of the sequence numbers; rcvr_may_accept determines a segment

acceptable. We distinguish the following cases: the arrival of an unacceptable segment, whether the segment has the FIN
flag set, whether it contains acknowledgement information and whether it is carrying data.

The segment is not acceptable RFC 793 explicitly states: “Segments are processed in sequence. [...] If an incoming segment is not
acceptable, an acknowledgment should be sent in reply. [...] After sending the acknowledgment, drop the unacceptable segment and
return.” Later, it is suggested that “Segments with higher beginning sequence numbers may be held for later processing.” However,
these segments are held outside of the regular operation of TCP. Hence, implementing this functionality does not add any
external behaviour, while having an adverse effect on the size of the state space. Therefore, in our model an unaccept-
able segment is dropped and an acknowledgement is sent to the sender containing the current value of RCV.NXT. Note
that whenever an unacceptable segment is received, an acknowledgement is constructed using the construct_ack function.
This acknowledgement includes the sequence number of the octet that the TCP instance expects to receive next, the ac-
knowledgement number and the advertised window. The ACK-flag of the acknowledgement segment is set to T while the
FIN-flag is set to F.

L. Lockefeer et al. / Science of Computer Programming 118 (2016) 3–23 15
+ ∑
m:Sgmt

(
call_RCV(m) · call_SND(construct_ack(t)) · TCP(s, t)

� s ∈ {ESTABLISHED,CLOSE_WAIT, FIN_WAIT_1, FIN_WAIT_2,CLOSING, LAST_ACK,TIME_WAIT}
∧ (¬rcvr_may_accept(m, t) ∨ get_seq_nr(m) �= get_RCV_NXT(t)) � δ

)
We distinguish between segments carrying data, acknowledgement information and FIN information; we determine the

type of a segment using functions is_ack and fin_flag_set. If neither of these two is true, the segment is understood to be a
segment carrying data. Processing is done for each of these situations separately.

The segment contains acknowledgement information If the segment m is an acknowledgement, the TCP instance first checks
it is acceptable; may_accept_ack verifies whether the acknowledgement number of the segment is strictly between SND_UNA
and SND_NXT, or equal to SND_NXT. must_updt_window decides whether the window information must be updated, ver-
ifying SND_WL1 < get_seq_nr(m) ∨ (SND_WL1 = get_seq_nr(m) ∧ SND_WL2 ≤ get_acknr(m)). If so, SND_WND is updated
to the size of the window in the segment multiplied by the scale factor SND_WND_SCALE. SND_UNA is updated and seg-
ments containing octets with a sequence number of at most i are removed from the retransmission queue, where i is
strictly between SND_UNA and the acknowledgement number in the segment, or equal to SND_UNA. In [3] the scale factor
is defined as n, resulting in integer division/multiplication by 2n via bit shifting, whereas we maintain the scale factor as 2n

and apply scaling using division and multiplication. In the first two summands, our call to TCP is parameterised with s′ not
s: if the TCP instance is in state FIN_WAIT_1, CLOSING or LAST_ACK, the acknowledgement may acknowledge the FIN
segment that the TCP instance has sent and the state is updated to FIN_WAIT_2, TIME_WAIT or CLOSED. If the function
must_updt_window returns false, the TCP instance remains in the same state. Finally, if the acknowledgement is not accept-
able it is dropped and the TCP instance remains in the same state. An acknowledgement must be returned if SEG.ACK >
SND.NXT. In a unidirectional setting, such a situation will never occur so we exclude such behaviour from our model.

+ ∑
m:Sgmt

(
call_RCV(m) · TCP

(
s′, t

[
rtq �→ updt_rtq(rtq,get_acknr(m), SND_UNA),

SND_WL2 �→ get_acknr(m), SND_WL1 �→ get_seq_nr(m),

SND_WND �→ get_window(m) ∗ SND_WND_SCALE, SND_UNA �→ get_acknr(m)
])

� s ∈ {ESTABLISHED,CLOSE_WAIT, FIN_WAIT_1, FIN_WAIT_2,CLOSING, LAST_ACK}
∧ rcvr_may_accept(m, t) ∧ get_seq_nr(m) = get_RCV_NXT(t) ∧ is_ack(m)

∧ may_accept_ack(m, t) ∧ must_updt_window(m, t) � δ
)

+ ∑
m:Sgmt

(
call_RCV(m) · TCP

(
s′, t

[
rtq �→ updt_rtq(rtq,get_acknr(m), SND_UNA), SND_UNA �→ get_acknr(m)

])

� s ∈ {ESTABLISHED,CLOSE_WAIT, FIN_WAIT_1, FIN_WAIT_2,CLOSING, LAST_ACK}
∧ rcvr_may_accept(m, t) ∧ get_seq_nr(m) = get_RCV_NXT(t)

∧ is_ack(m) ∧ may_ accept_ack(m, t) ∧ ¬must_updt_window(m, t) � δ
)

+ ∑
m:Sgmt

(
call_RCV(m) · TCP(s, t)

� s ∈ {ESTABLISHED,CLOSE_WAIT, FIN_WAIT_1, FIN_WAIT_2,CLOSING, LAST_ACK}
∧ rcvr_may_accept(m, t) ∧ get_seq_nr(m) = get_RCV_NXT(t) ∧ is_ack(m) ∧ ¬may_accept_ack(m, t) � δ

)
The segment is carrying data If the incoming segment is acceptable, and both is_ack and fin_flag_set return false, it is
processed as a data segment. Its octets are added to the receive buffer and RCV_NXT is updated The RCV_ACK_QUEUED
flag in the TCB is set to true, indicating an acknowledgement should be sent.

+ ∑
m:Sgmt

(
call_RCV(m) · TCP

(
s, t

[
RCV_NXT �→ (RCV_NXT + get_num_octs(m)) mod n,

rcv_buf �→ merge(rcv_buf , infl(get_seq_nr(m),get_num_octs(m))),RCV_ACK_QUEUED �→ T
])

� s ∈ {ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2} ∧ rcvr_may_accept(m, tcb)

∧ get_seq_nr(m) = get_RCV_NXT(t) ∧ ¬is_ack(m) ∧ ¬fin_flag_set(m) � δ
)

In [1], it is stated that “when the TCP takes responsibility for delivering the data to the user it must also acknowledge the receipt
of the data. [...] This acknowledgement should be piggybacked on a segment being transmitted if possible without incurring undue

16 L. Lockefeer et al. / Science of Computer Programming 118 (2016) 3–23
delay”. [2] clarifies this point further, stating: “a host [...] can increase efficiency in both the Internet and the hosts by sending fewer
than one ACK (acknowledgement) segment per data segment received”. While the delay that is referred to here is a performance
enhancement, its impact is significant enough to justify an increase in the complexity of our model. Therefore, we include
this behaviour in our model and do not let the TCP instance send an acknowledgement in the previous summand, but
rather let it set a flag that an acknowledgement should be sent. We then include a separate summand that may send an
acknowledgement whenever the RCV_ACK_QUEUED flag in the transmission control block is set to true. To prevent an
acknowledgement from being sent multiple times, this flag is then set to false again. Note that acknowledgement segments
are separated from data segments, as we have not specified piggy-backing.

+ call_SND(construct_ack(t)) · TCP

(
s, t

[
RCV_ACK_QUEUED �→ F

])
� get_RCV_ACK_QUEUED(t) = T � δ

This has an additional modelling benefit, solving an ambiguity in [1] and [2] about which window information must be
included in the acknowledgement segment. Using separate summands, the size of the receive buffer with the just received
segments may be reflected (if the acknowledgement is sent immediately and no RECEIVE calls are processed meanwhile)
or the size of the receive buffer without the just received segments (if the acknowledgement is only sent after all octets
have passed to the Application Layer) and any situation in between.

The segment has the FIN flag set If the incoming segment m is a FIN segment, it is processed as described on pages 75–76
of [1]. An acknowledgement is constructed and sent back to the remote end, after which the transmission control block
is updated. Note that the state may progress from s to s′: if the TCP instance was in state ESTABLISHED, FIN_WAIT_1
or FIN_WAIT_2 it progresses to state CLOSE_WAIT, CLOSING or TIME_WAIT respectively. In all other cases, the TCP
instance stays in the same state. RCV_ACK_QUEUED is set to false since we immediately send an acknowledgement a for a
FIN segment and any outstanding acknowledgements are included in a.

+ ∑
m:Sgmt

(
call_RCV(m) · call_SND(construct_ack(t

[
RCV_NXT �→ (RCV_NXT + 1) mod n

]
))·

TCP

(
s′, t

[
RCV_NXT �→ (RCV_NXT + 1) mod n,RCV_ACK_QUEUED �→ F

])

� s ∈ {ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2,CLOSE_WAIT,CLOSING, LAST_ACK,TIME_WAIT}
∧ rcvr_may_accept(m, t) ∧ get_seq_nr(m) = get_RCV_NXT(t) ∧ fin_ flag_set(m) � δ

)

5.2.4. Retransmission timeout
For each segment the TCP instance puts on the retransmission queue, it starts a timer. When it expires, its segment

must be retransmitted. To avoid modelling timing issues in our specification, we abstract away from this timer and allow
a TCP instance to retransmit the first element on the retransmission queue at its own convenience at any time. While this
behaviour could have a negative impact on the performance of the protocol, for our purposes it does not significantly alter
the behaviour compared to a situation in which timers are employed.

+ call_ SND(first(get_rtq(t))) · TCP(s, t) � length(get_rtq(t)) > 0 � δ

5.2.5. Probe zero window
With each acknowledgement, the size of the send window may be adjusted. Adjusting the send window to a size of 0

may lead to a deadlock since as a result of not sending data, the sender will not receive any acknowledgements with an
updated window size. Therefore, it must regularly transmit something to the remote entity if SND_WND = 0.

+ call_SND(sgmt(get_SND_NXT(t),get_RCV_NXT(t), calc_wnd(t),1,F,F))·
TCP

(
s, t

[
rtq �→ add(sgmt(SND_NXT,RCV_NXT, calc_wnd(t),1,F,F), rtq),

send_buff �→ take_set(send_buff , infl(SND_NXT,1)), SND_NXT �→ (SND_NXT + 1) mod n
])

� can_send(t) = 0 ∧ get_SND_ WND(t) = 0 ∧ length(get_rtq(t)) = 0 ∧ length(get_send_buff (t)) > 0 � δ

If the send window is 0 and the retransmission queue is empty, but octets are available in the send buffer, the sender
will construct a segment containing one octet and send it. Again, the octet included in the segment is taken from the send
buffer, the segment is put on the retransmission queue and the variable SND_NXT is updated. Note that this is the only
major difference between our model and the behaviour specified in RFC 793; we delay further explanation and justification
of this important revision until Section 6.2.

L. Lockefeer et al. / Science of Computer Programming 118 (2016) 3–23 17
5.2.6. Application Layer calls RECEIVE
An octet is offered to the Application Layer by issuing a tcp_rcv_RECEIVE call, parameterised with the octet pointed

at by RCV_RD_NXT maintained in the TCB. It is removed from the receive buffer and RCV_RD_NXT is incremented. The call
may only be issued if the connection is in states ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2 or CLOSE_WAIT, (RCV_NXT
− RCV_RD_NXT) mod n > 0 and the octet with sequence number RCV_RD_NXT is available in the receive buffer. In [1],
the size of the receive window, stored as RCV_WND in the TCB, is updated every time the receive buffer is manipulated.
However, page 74 strictly requires the total of RCV_WND and RCV_NXT not to be reduced. It is unclear whether the total
may not be reduced when an incoming segment is processed, or not at all. Either way, we believe that it relates to the
requirement that the right edge of the window should never be moved to the left. To simplify the implementation while
ensuring this requirement we maintain RCV_WND at its initial value, and introduce the variable RCV_RD_NXT that is always
the sequence number of the next octet to be forwarded to the Application Layer. At all times RCV_NXT ≤ RCV_RD_NXT ≤
(RCV_NXT + RCV_WND).

+ rcv_RECEIVE(get_RCV_RD_NXT(t))·
TCP

(
s, t

[
rcv_buf �→ take_n(rcv_buf, RCV_RD_NXT)RCV_RD_NXT �→ (RCV_RD_NXT + 1) mod n

])

� s ∈ {ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2,CLOSE_WAIT}
∧ seq_diff (get_RCV_RD_ NXT(t),get_RCV_NXT(t)) > 0 ∧ length(get_rcv_buf (t)) > 0
∧ get_RCV_RD_NXT(t) ∈ get_rcv_buf (t) � δ

5.3. Connection Teardown

Finally, the TCP instance may receive a CLOSE call from the Application Layer, as discussed on pages 60–61 of [1]. The
specification states that if such a call is issued by the Application Layer while there are still octets in the send buffer, TCP will
queue this call until all of these octets are segmented. Hence, the TCP instance may only perform the tcp_rcv_CLOSE
action whenever its buffer is empty. The call is processed by sending a segment with the FIN flag set, after which the
TCP instance will either progress to the FIN_WAIT_1 or LAST_ACK state. The first case models the situation where the
connection is still fully opened, while the second case conforms to the situation where the TCP instance has received a FIN
segment, signalling that the other end has closed the connection.

+ rcv_CLOSE · call_SND(sgmt(get_SND_NXT(t),get_RCV_NXT(t), calc_wnd(t),0,F,T))·
TCP

(
FIN_WAIT_1, t

[
rtq �→ add(sgmt(SND_NXT,RCV_NXT, calc_wnd(t),0,F,T), rtq),

SND_NXT �→ (SND_NXT + 1) mod n
])

� s = ESTABLISHED ∧ length(get_send_buff (t)) = 0 � δ

+ rcv_CLOSE · call_SND(sgmt(get_SND_NXT(t),get_RCV_NXT(t), calc_wnd(t),0,F,T))·
TCP

(
LAST_ACK, t

[
rtq �→ add(sgmt(SND_NXT,RCV_NXT, calc_wnd(t),0,F,T), rtq),

SND_NXT �→ (SND_NXT + 1) mod n
])

� s = CLOSE_WAIT ∧ length(get_send_buff (t)) = 0 � δ

The final event that may occur is the time-wait timeout. A TCP connection may not transfer to the CLOSED state
– a fictional state that in reality means that the connection no longer exists – before it is absolutely certain that the
acknowledgement that it sent in response to a FIN segment has been received at the other end. To this end, the connection
must be kept alive for at least two times the Maximum Segment Lifetime. Now, if the acknowledgement of the FIN segment
gets lost, the remote end will eventually retransmit its FIN segment. If this segment arrives, the TCP entity will again
respond with an acknowledgement and restart the time-wait timer. If eventually this timer goes off, the connection can be
closed. As we did with the other timers in the specification, we abstract from this timer as well and include the following
summand:

+ TW_TIMEOUT · TCP(CLOSED, t) � s = TIME_WAIT � δ

stating that if the TCP entity is in the TIME_WAIT state, it may progress to the CLOSED state. The TW_ TIMEOUT action
is included since otherwise the recursion would be unguarded, which is not allowed in μCRL. Finally, we must add the
following summand since μCRL cannot cope with successfully terminating processes:

18 L. Lockefeer et al. / Science of Computer Programming 118 (2016) 3–23
+ idle · TCP(s, t) � s = CLOSED � δ

stating that if the TCP entity is in the CLOSED state, it may perform the action tcp_idle and recurse. Later, we will
ensure that the tcp_idle actions of both entities synchronise. Hence, even once both parties have successfully closed the
connection there will be an action to be performed, and as a result of this, the specification does not terminate.

5.4. The complete system

We obtain the complete system by putting two TCP instances in parallel with additional processes modelling the Ap-
plication and Network Layers. The Application Layer continuously offers octets to the TCP instance by issuing the call
al_call_SEND. Receiving data is modelled by having the Application Layer call al_call_RECEIVE for an arbitrary
octet. Finally, we specify a Network Layer that may duplicate, reorder and lose data. General action names are renamed into
action names specific for each component. We assume the variables to be set as a result of the connection establishment
procedure, including the scale factor that each of the TCP instances will apply to their outgoing segments. When instan-
tiating processes for unidirectional TCP, we encapsulated (i.e., blocked) both AL2_call_SEND and TCP2_rcv_SEND to
prevent AL2 from issuing the SEND call. Similarly, AL1_call_RECEIVE and TCP1_rcv_RECEIVE were encapsulated to
prevent AL1 from issuing the RECEIVE call, which would yield a non-terminating model of the Data Transfer phase of TCP
including the Connection Teardown procedure.

For reasons discussed in Section 3.3.1, we need not incorporate sequence number reuse since TCP cycles through all of its
sequence numbers, and waits until all segments have been acknowledged and all duplicates have drained from the network,
before starting a new run with a previously used sequence number. Furthermore, to avoid the need for timing restrictions
in our specification, we limit our verification to one run of sequence numbers. We may still start anywhere in the sequence
number space, since all calculations are defined modulo the size of this space. However, the following problem remains.
Assume a sequence number space with range m . . .n. The receiving TCP instance will still accept an octet with sequence
number m after receiving the octet with sequence number n. Hence, if such an octet is still in the medium as a result of
duplication or retransmission, it will be accepted by the receiving TCP instance upon receipt and subsequently delivered to
the Application Layer. Given that the assumption on the Maximum Segment Lifetime holds, such behaviour cannot occur in
a real-world situation. To model this we ensure that the global variable maintaining the total number of sequence numbers
is greater than the number of octets, which guarantees that the problem will not occur.

Our verification concerns the correctness of TCP and not its performance. Therefore, our μCRL specification does not
include the following performance enhancing features from RFC 1122: algorithms to avoid the Silly Window Syndrome as
discussed on pages 89 and 97–100; improvements to the calculation of the retransmission timer (page 90); support for
repackaging the segments on the retransmission queue (page 91); the half-duplex close sequence; nor the reopening of
a connection during the close sequence (page 88). We did include the corrections to the TCP connection state diagram
related to the Connection Teardown procedure (page 86), the probing of zero windows (page 92), the acceptance criteria for
incoming acknowledgements (page 94) and the remarks on when to send an acknowledgement segment (page 96). Of the
features in RFC 793 involving Data Transfer, the urgent data function is omitted because its goal is unclear. Either it is used
to relay out-of-band data, or to stimulate the Application Layer at the receiving end to issue the RECEIVE call. Either way,
it does not alter the behaviour of (regular) data processing at the receiving end. Furthermore, the push function is excluded
because the de facto standard programming interface to TCP, the sockets API, does not include support for this function [36].

Next we discuss our verification of the Data Transfer and Connection Teardown phases. We found the state space of our
specification of the two phases combined to be too large to generate to perform a single verification.

6. Verification of the Data Transfer phase

Our verification of the Data Transfer phase focused on two aspects of our model: (i) we verified that its state space
is deadlock-free, and (ii) we compared the external behaviour of our model, defined in terms of the SEND and RECEIVE
calls issued by the Application Layer, to the external behaviour of a FIFO queue. One can consider the SEND call of TCP as
putting something into a queue and RECEIVE as taking something from it: the sender puts data elements into the transport
medium and the receiver takes them all out of this medium in precisely the same order. We first obtained a model TCP→
from the system specified in Section 5.4 and excluded connection termination by encapsulating actions AL1_call_CLOSE,
AL2_call_CLOSE, TCP1_rcv_CLOSE and TCP2_rcv_CLOSE, to ensure that they will not be called in our model. We
then specified a behavioural specification B , and generated an LTS from both B and TCP→ . All actions in TCP→ , other than
SEND and RECEIVE, were defined as internal behaviour. We minimised the LTS of TCP→ and verified that it is branching
bisimilar to the LTS of B: TCP→ � B B . Note that a fairness assumption is enforced by the minimisation algorithm; τ -loops
from which an ‘exit’ is possible are eliminated from our minimised state space. Such τ -loops arise from segments that
are continuously dropped by the Network Layer or a sequence of repeated retransmissions, behaviour that we can safely
abstract from.

For both TCP→ and B , we generated a state space using the distributed state space generation tool lps2lts-dist
of the LTSmin toolset [6]. By using the --deadlock option, absence of deadlocks could be checked during state space
generation. In addition, we used the --cache option to speed up state space generation. State space generation was run

L. Lockefeer et al. / Science of Computer Programming 118 (2016) 3–23 19
Table 2
Statistics of the state space generation for our model.

Octets
sent

Window
size

Window
scale

Medium
capacity

Levels States Transitions Exploration
time

4 2 1
2 36 881.043 3.910.863 21 sec
3 40 11.490.716 53.137.488 104 sec
4 44 91.821.900 434.372.541 7.5 min

8
2 1

2 54 16.126.380 76.356.475 3 min
3 58 823.501.590 4.031.264.559 49 min

4 2
2 49 98.697.902 473.332.511 15 min
3 56 3.505.654.685 Counter Overflow 3 hrs, 40 min

16 4 2 2 77 3.255.174.492 Counter Overflow 4 hrs, 40 min

on the DAS-4 cluster, more specifically on eight nodes equipped with an Intel Sandy Bridge E5-2620 processor clocked at
2.0 GHz, 64 gigabytes of memory and a K20m Kepler GPU with 6 gigabytes of on-board memory. At each node, we utilised
only one core to prevent the process from running out of memory. Table 2 shows some benchmarks of the state space
generation for TCP→ for several different parameterisations. Subsequently, the state space of TCP→ was minimised with the
lts-reduce-dist tool of the LTSmin toolset, which uses the distributed minimisation algorithm as described in [37].
Finally, the ltsmin-compare tool was used to verify that TCP→ � B B .

We performed our verification assuming a sequence number space of size 23 + 1, a window size of 22, a scale factor of
21 and a medium capacity of 21 segments, in which the sending TCP sends 23 octets. With these parameters, we obtained a
model that was small enough to verify within reasonable time, with characteristics that are representative for a real-world
implementation of TCP. If the size of the model increases, all relevant buffers and calculations will simply scale with this
increase; it is unlikely that errors are introduced as a result. The capacity of the medium significantly impacts state space
size. Since one segment may contain at most as many segments as the size of the window, a medium capacity of 2 means
that a TCP instance can send at most two windows of data segments into the medium before it must ‘wait’ for the medium
to deliver or lose a segment. For window scaling to be non-trivial, the window size should be at least 22 with a scale factor
of 21, allowing three possible sizes, zero, two and four that allow for interesting scenarios where the reported size of the
window is shrunk to half its original size.

6.1. Correctness of the Window Scale Option

Our initial hypothesis was that as windows sizes are reported in units of 2n when implementing the Window Scale
Option, problems could arise when a single octet is sent and the window reported by the receiving TCP entity must be
adapted. Conceivably, a sending entity could have a view of the size of the window at the receiving end that exceeds the
maximum buffer space available. With the aid of our formal specification, we find that this is not the case. Both entities
maintain the send and receive window as 32-bit numbers and maintain a scale factor by which they right/left-shift the
value reported in/taken from an acknowledgement segment. This shift by a factor k has the same effect as a floored division
or multiplication by a factor 2k . Assume a receive buffer capacity 2n+1 and, therefore, a window size of at most 2n and
a scale factor k, where 0 < k ≤ (n − 1), resulting in a division or multiplication by 2k . If the receiver receives a segment
carrying 0 < m ≤ 2n bytes, two scenarios may occur: (i) the reduced buffer space (receive window) is reported in the
acknowledgement; or, (ii) the old buffer space is reported. If (i), then the reported window size is �(2n −m)/2k� < 2n−k < 2n

else if (ii), then nothing changes, the reported window size is �2n/2k� ≤ 2n−k < 2n . The reported buffer size is always ≤ 2n−k

and can never become greater than 2(n−k)+k = 2n when it is left-shifted at the remote end. A sending entity never views
the receive buffer space available at a receiving entity to exceed the maximum buffer space available.

A second conceivable problem relates to [1] stating that a TCP instance should not ‘shrink’ its receive window reducing
the buffer capacity, i.e., the right edge of the window is moved to the left. Assume a sender and receiver have agreed
upon a window size of 4. The sender sends two octets and then immediately sends another two octets. By the arrival of
the first segment at the receiver, the octets are put in its receive buffer and, unfortunately, at the same time the capacity
of the buffer is also reduced by one octet, causing the receiving entity to report a window of size 1 to the sender rather
than 2. As the second segment, carrying two octets, is already in transit, it will be discarded upon arrival at the receiver,
because it contains more octets than the receiver may accept. The sender will keep retransmitting this segment and it will
be discarded as long as no octets are taken from the receive buffer. If window sizes get bigger, the delay incurred may
significantly impact the performance of the protocol. Eventually, however, the octet will be accepted when buffer space
becomes available as octets that arrived earlier are taken from the receive buffer.

When window scaling is in effect, one might expect such a scenario to occur every time an odd number of bytes is
sent, due to the size of the window being reported only in multiples of 2n . However, in this case the actual capacity of the
receive buffer is not reduced and the receiver maintains the window size as a 32-bit and not a 16-bit number. Therefore,
the second segment, which may have been in transit already, will still be accepted and an acknowledgement containing the
latest size of the window will be sent back within reasonable time. Where the segment was not yet sent, the difference in
the number of octets that may be sent is only 1, causing a performance not a correctness issue.

20 L. Lockefeer et al. / Science of Computer Programming 118 (2016) 3–23
6.2. Recommended revision of RFC 793

During our verification, we ran into a deadlock resulting from a misinterpretation of the RFC 793 specification, as we will
show below. Therefore, we recommend revising the specification in its dealing with zero windows; requiring that whenever
the sender (i) has data on its send buffer, (ii) has a zero window and (iii) has an empty retransmission queue, a segment is sent to probe
the zero window containing at least one octet of data from the send buffer. This behaviour was included in our model as stated in
Section 5, but we withheld explanation and justification until now.

Instead, the current specification [1] states on page 42 that: “The sending TCP must be prepared to accept from the user and
send at least one octet of new data even if the send window is zero. The sending TCP must regularly retransmit to the receiving TCP
even when the window is zero. [...] This retransmission is essential to guarantee that when either TCP has a zero window the re-opening
of the window will be reliably reported to the other.” The latter part of this statement is confusing. It is not the retransmission
that is essential, but rather the transmission of a segment (whether taken from the send buffer or the retransmission queue)
when the send window is zero.

To see why, suppose that the sender has two octets on its send buffer and sends only the first of these. The receiver
then acknowledges this octet, but does not yet take it from its buffer. As a result of this, both the send and receive window
are now 0. In this scenario, there is still data to be sent, but the retransmission queue is empty. If the requirements above
are strictly followed, the zero window will never be probed as long as the user does not provide new data from which
the sender can accept and send at least one octet, and therefore leads to deadlock. Implicitly, the reader may expect data
on the send buffer to be sent in this case, regardless. However, this is certainly contradicted by the suggestion to “avoid
sending small segments by waiting until the window is large enough before sending data”. Note that care should be taken when
implementing this feature, since as a result of waiting to send something, no new acknowledgements will arrive to update
the window information, again leading to deadlock.

Requiring the sender to be prepared to send at least one octet of new data even when the retransmission queue is
non-empty also ensures that the window will be reopened, but not in the way one would expect. The new data is sent
to the receiver, which rejects the out of sequence segment. However, as a result, the receiver sends an acknowledgement
containing up-to-date window information, potentially reopening the window. Our proposed revision intentionally does
not attend to the case of the retransmission queue being non-empty; it is already covered by the requirement that “if the
retransmission timeout expires on a segment in the retransmission queue, send the segment at the front of the retransmission queue
again, reinitialize the retransmission time and return” on page 77 of [1]. As an advantage, whenever the retransmission queue
is non-empty, an in-sequence segment will be sent and therefore accepted while its acknowledgement may also reopen the
window. Only if the retransmission queue is empty, a segment containing new data probes the zero window. This segment
is guaranteed to be accepted if the receiver has reopened its window.

It may be that our revision matches the interpretation intended of the original specification, but we have experienced
that its wording can lead to implementations that deadlock. A formal specification, given here in μCRL, clearly leaves less
scope for erroneous implementations due to misinterpretation.

7. Verification of Connection Teardown

In the previous section, we verified Data Transfer in isolation of Connection Teardown to avoid untenable state space
explosion. To keep some notion of data transfer in our verification of Connection Teardown, we opted for a verification
where one of the two TCP entities is required to send one octet of data before it could close its connection. Combined with
our earlier verification, which showed that all octets that are buffered at the sender are eventually received, this scenario
indicates that a connection will not be closed before all data is delivered.

Again, we had to prevent deadlock scenarios and undesired behaviour as a result of the reuse of sequence numbers
from occurring in the state space as generated from our model. To understand that this problem arises again, recall from
our discussion in Section 3 that the FIN segments also consume sequence numbers. The solution is now also easy to
understand: rather than using n + 1 sequence numbers to send n octets, we uses n + 3 sequence numbers to account for
the sequence numbers used for the FIN segments.

We obtained a model from our SystemSpecification in a similar fashion as in the previous section, although we now also
encapsulate the actions AL1_call_CLOSE, TCP1_rcv_CLOSE, AL2_call_CLOSE and TCP2_rcv_CLOSE to ensure
that they only occur in synchrony. However, our original specification in Section 5.3 contains a flaw. When both TCP1 and
TCP2 are in the CLOSING state, they have sent and received a FIN segment and sent the acknowledgements thereof.
When the acknowledgement sent by TCP1 arrives at TCP2, it progresses to TIME_WAIT and immediately to the CLOSED
state as we have not explicitly modelled timeouts. If the acknowledgement sent by TCP2 gets lost, TCP1 is forever stuck in
the CLOSING state, retransmitting its FIN segment. On page 22 of [1] it is stated that the TIME_WAIT state “represents
waiting for enough time to pass to be sure the remote TCP received the acknowledgement of its connection termination request”. The
connection must be kept ‘half-open’ as long as the remote entity may try to retransmit its FIN segment, to ensure that an
acknowledgement thereof will eventually arrive. To fix this flaw in our model without adding timing aspects, we ensured
that actions tcp_TW_TIMEOUT of TCP1 and TCP2 occurred in synchrony i.e., TCP1 and TCP2 arrive in the TIME_WAIT state
before the connection can progress to the CLOSED state. However, as connections can progress through the LAST_ACK
state instead of the TIME_WAIT state during the closing procedure, we introduced an additional state LAST_ACK2 and

L. Lockefeer et al. / Science of Computer Programming 118 (2016) 3–23 21
adapted our specification such that the TCP instance will progress from LAST_ACK to LAST_ACK2 rather than CLOSED.
Finally, we adapted the penultimate summand of Section 5.3 as follows:

+ TW_TIMEOUT · TCP(CLOSED, t) � s = TIME_WAIT ∨ s = LAST_ACK2 � δ

It is important to state that by the fact that our model does not include connection establishment, the Connection Tear-
down procedure is only verified starting from the ESTABLISHED state. Scenarios where a connection is closed during
connection establishment, before both ends have reached the ESTABLISHED state, are not included. As discussed in Sec-
tion 3, connections are closed in a simplex fashion. If one of the entities closes its connection, indicating that it has no more
data to send, it must still accept segments from the remote end, and not progress to the CLOSED state until the other end
has also indicated it has no more data to send.

Recall that (i) the TCP instance only accepts a CLOSE call from the Application Layer if it has no more octets to send,
(ii) the FIN segment has a sequence number ≥ i + 1 if i was the sequence number of the last data octet that was sent
over the connection, and (iii) a receiving TCP instance only accepts segments with sequence number i = RCV.NXT. Since
the CLOSED state can only be reached after accepting a FIN segment (see Fig. 1), we can conclude that a receiving TCP
instance will never reach the CLOSED state without having accepted all data octets that were buffered at the sender at the
time that the CLOSE call was issued. However, this does not yet guarantee that connections will be closed whenever an
Application Layer issues the CLOSE call to its TCP instance. To verify this, we had to check several properties on the state
space generated from our model of TCP with Connection Teardown.

The first of these properties, formulated as a regular μ-calculus formula, states that whenever TCP1 accepts the
CLOSE call from the Application Layer, our model will eventually end up in a state from which it may perform the
CONNECTION_CLOSED transition. From our discussion of our specification, we know that this transition is only enabled if
both TCP instances are in the CLOSED state.

[T∗ · TCP1_CLOSE]μX · (〈T〉T∧ [¬CONNECTION_CLOSED]X) (1)

We verified the same for TCP2. Taken together, these properties intuitively state “whenever either of the TCP instances accepts
the CLOSE call from the Application Layer, the connection will eventually end up in the CLOSED state”. Hence, it is a liveness
property. In addition, we verified that both entities must accept the CLOSE call from their Application Layer before the
connection may be closed. To this end, we checked the following safety property:

[(¬TCP1_CLOSE)∗ · CONNECTION_CLOSED]F (2)

The property states that the connection can never reach a state in which it can perform a CONNECTION_CLOSED transition
if TCP1 does not accept the CLOSE call from its Application Layer. Again, we also verified this for TCP2. Taken together, these
properties ensure that both entities must accept the CLOSE call from their Application Layer before the connection ends up
in the CLOSED state. Finally, we verified that our state space does not contain deadlocks as these again signal a problem
for the same reasons as discussed before.

We used the lpo2lps-dist tool of the LTSmin toolset to generate a state space from the linear process equation ob-
tained from our μCRL specification, in a distributed fashion. State space generation was again performed on 8 DAS-4 nodes
equipped with an Intel Sandy Bridge E5-2620 processor clocked at 2.0 GHz, 64 gigabytes of memory and a K20m Kepler GPU
with 6 gigabytes of on-board memory. It took around two minutes to generate a state space consisting of 42 levels, 3.296.792
states and 11.010.169 transitions. During state space generation, it was verified that there are no deadlocks. After the state
space generation, we again minimised the state space modulo branching bisimilarity, using the ltsmin-reduce-dist
tool, and finally, we checked the aforementioned properties using the CADP toolset. All four properties, as well as absence
of deadlocks, were proven to hold for our model.

8. Conclusion

TCP plays an important role in the Internet, providing reliable transport of data over possibly faulty networks. The
protocol is complex and its specification consists of many documents that mainly describe the proposed functioning of the
protocol in natural language. We set out to formally specify TCP extended with the Window Scale Option and verify its
correctness, redressing the lack of consideration paid to this option in earlier verification efforts.

We have recommended revisions to RFC 793 to prevent any misinterpretation of how and when to probe the zero
window, which we have shown can lead to deadlock. Such misinterpretation is inherent to specifications expressed in
natural language. A formal specification provides a more precise reference of the intended function of a protocol. Our
μCRL specification may serve as a useful reference for implementors; we have taken care to bridge the gap between the
functional specification of TCP and our μCRL specification, providing sufficient documentation to reproduce our results. We
found μCRL to be sufficiently powerful to express all pertinent components of TCP, including the Window Scale Option of
primary concern in this paper and believe that the unidirectional instances that we have verified are general enough to
carry over to larger parameterisations without the introduction of errors. However, we do acknowledge the fact that using
control information in the opposite direction is a source of potential errors and requires verification. We therefore set out
to specify bidirectional data transfer but had to abandon a verification as a result of intractable state space explosion. We

22 L. Lockefeer et al. / Science of Computer Programming 118 (2016) 3–23
also split our verification efforts into distinct verifications of the Data Transfer and Connection Teardown phases of TCP, so
that generating the state space from our more general specification remained feasible.

Using the LTSmin toolset, we were able to formally verify that our μCRL specification of unidirectional TCP extended
with the Window Scale Option does not contain deadlocks, and that its external behaviour is branching bisimilar to a
FIFO queue for a significantly large instance. Using the CADP toolset, we also showed that if two TCP entities are in the
ESTABLISHED state and either of them accepts the CLOSE call from the Application Layer, the connection will eventually
be closed. Additionally, we showed that the connection can only be closed if both entities accept the CLOSE call from the
Application Layer.

Although we could only verify the TCP for relatively small parameter values, we believe that the specification is general
enough to make the introduction of errors as parameters are increased highly unlikely. In particular, with regard to sequence
numbers two issues could introduce errors: reuse and wrapping. Firstly, sequence number reuse is not really critical for the
window scale option if the conditions imposed on RFC 1323 are followed strictly, as discussed in Section 3.3.1. Secondly,
and more importantly, the largest sequence number size we managed to model check covers every possible scenario of
sequence number wrapping, where the sequence number transposes from n − 1 to 0 in case of a sequence number space of
size n.

Still, it would clearly be highly desirable to be able to model check the protocol for larger parameter values, and in-
clude features like bidirectional Data Transfer and Connection Teardown into one specification. However, the state explosion
problem inevitably means that even significant advances in explicit state model checking will have a limited impact in
this respect. Techniques like symbolic model checking, abstraction and partial order reduction are essential to push model
checking toward ever larger applications.

Acknowledgements

The authors are indebted to Dr. Barry M. Cook, for posing the initial research question, and Dr. Kees Verstoep, for essential
support in using the DAS-4 cluster.

References

[1] J. Postel, Transmission control protocol, RFC 793.
[2] R. Braden, Requirements for Internet hosts-communication layers, RFC 1122.
[3] V. Jacobson, R. Braden, D. Borman, TCP extensions for high performance, RFC 1323.
[4] B. Badban, W. Fokkink, J. Groote, J. Pang, J. van de Pol, Verification of a sliding window protocol in μCRL and PVS, Form. Asp. Comput. 17 (3) (2005)

342–388.
[5] B. Badban, W. Fokkink, J. van de Pol, Mechanical verification of a two-way sliding window protocol, in: CPA, in: CSE, vol. 66, IOS Press, 2008,

pp. 179–202.
[6] S. Blom, J. van de Pol, M. Weber, LTSmin: distributed and symbolic reachability, in: CAV, in: LNCS, vol. 6174, Springer, 2010, pp. 345–359.
[7] L. Lockefeer, D.M. Williams, W.J. Fokkink, Formal specification and verification of TCP extended with the window scale option, in: FMICS, in: LNCS,

vol. 8718, Springer, 2014, pp. 63–77.
[8] S. Murphy, A. Shankar, Service specification and protocol construction for the transport layer, in: SIGCOMM, ACM, 1988, pp. 88–97.
[9] M. Smith, Formal verification of communication protocols, in: FORTE, in: IFIP Conf. Proc., vol. 69, Chapman & Hall, 1996, pp. 129–144.

[10] M. Smith, Formal verification of TCP and T/TCP, Ph.D. thesis, Massachusetts Institute of Technology, 1997.
[11] M. Smith, K. Ramakrishnan, Formal specification and verification of safety and performance of TCP selective acknowledgement, IEEE/ACM Trans. Netw.

10 (2) (2002) 193–207.
[12] I. Schieferdecker, Abruptly terminated connections in TCP – a verification example, in: Applied Formal Methods in System Design, 1996, pp. 136–145.
[13] H. Garavel, F. Lang, R. Mateescu, W. Serwe, CADP 2011: a toolbox for the construction and analysis of distributed processes, Int. J. Softw. Tools Technol.

Transf. 15 (2) (2013) 89–107.
[14] S. Bishop, M. Fairbairn, M. Norrish, P. Sewell, M. Smith, K. Wansbrough, Rigorous specification and conformance testing techniques for network proto-

cols, as applied to TCP, UDP, and sockets, in: SIGCOMM, ACM, 2005, pp. 265–276.
[15] J. Billington, B. Han, On defining the service provided by TCP, in: ACSC, in: CRPIT, vol. 16, ACS, 2003, pp. 129–138.
[16] B. Han, J. Billington, Validating TCP connection management, in: SEFW, ACS, 2002, pp. 47–55.
[17] B. Han, J. Billington, Experience using coloured Petri nets to model TCP’s connection management procedures, in: CPN, 2004, pp. 57–76.
[18] B. Han, J. Billington, Termination properties of TCP’s connection management procedures, in: ICATPN, in: LNCS, vol. 3536, Springer, 2005, pp. 228–249.
[19] T. Ridge, M. Norrish, P. Sewell, A rigorous approach to networking: TCP, from implementation to protocol to service, in: FM, in: LNCS, vol. 5014,

Springer, 2008, pp. 294–309.
[20] M. Bezem, J. Groote, A correctness proof of a one-bit sliding window protocol in μCRL, Comput. J. 37 (4) (1994) 289–307.
[21] E. Madelaine, D. Vergamini, Specification and verification of a sliding window protocol in LOTOS, in: FORTE, in: IFIP Trans., vol. C-2, 1991, pp. 495–510.
[22] D. Chkliaev, J. Hooman, E. de Vink, Verification and improvement of the sliding window protocol, in: TACAS, in: LNCS, vol. 2619, Springer, 2003,

pp. 113–127.
[23] A. Tanenbaum, Computer Networks, 4th ed., Prentice Hall, 2002.
[24] S. Floyd, J. Mahdavi, M. Mathis, A. Romanow, TCP selective acknowledgment options, RFC 2018.
[25] W. Fokkink, Modelling Distributed Systems, Texts in Theoretical Computer Science, An EATCS Series, Springer, 2007.
[26] D. Peled, Software Reliability Methods, Springer, 2001.
[27] R. van Glabbeek, The linear time – branching time spectrum I – the semantics of concrete, sequential processes, in: CONCUR, in: LNCS, vol. 458,

Springer, 1990, pp. 278–297.
[28] R. van Glabbeek, The linear time – branching time spectrum II, in: CONCUR, in: LNCS, vol. 715, Springer, 1993, pp. 66–81.
[29] R. Milner, A Calculus of Communicating Systems, LNCS, vol. 92, Springer, 1980.
[30] R. van Glabbeek, W. Weijland, Branching time and abstraction in bisimulation semantics, J. ACM 43 (3) (1996) 555–600.
[31] M. Kwiatkowska, Survey of fairness notions, Inf. Softw. Technol. 31 (7) (1989) 371–386.

http://refhub.elsevier.com/S0167-6423(15)00183-5/bib42616462616E4574416Cs1
http://refhub.elsevier.com/S0167-6423(15)00183-5/bib42616462616E4574416Cs1
http://refhub.elsevier.com/S0167-6423(15)00183-5/bib57616E32s1
http://refhub.elsevier.com/S0167-6423(15)00183-5/bib57616E32s1
http://refhub.elsevier.com/S0167-6423(15)00183-5/bib6C74736D696Es1
http://refhub.elsevier.com/S0167-6423(15)00183-5/bib44424C503A636F6E662F666D6963732F4C6F636B656665657257463134s1
http://refhub.elsevier.com/S0167-6423(15)00183-5/bib44424C503A636F6E662F666D6963732F4C6F636B656665657257463134s1
http://refhub.elsevier.com/S0167-6423(15)00183-5/bib4D75727068793A3139383870323637s1
http://refhub.elsevier.com/S0167-6423(15)00183-5/bib536D6974683A3139393670323730s1
http://refhub.elsevier.com/S0167-6423(15)00183-5/bib536D6974683A3139393770323532s1
http://refhub.elsevier.com/S0167-6423(15)00183-5/bib536D6974683A3230303270323533s1
http://refhub.elsevier.com/S0167-6423(15)00183-5/bib536D6974683A3230303270323533s1
http://refhub.elsevier.com/S0167-6423(15)00183-5/bib53636869656665726465636B65723A3139393670323639s1
http://refhub.elsevier.com/S0167-6423(15)00183-5/bib44424C503A6A6F75726E616C732F737474742F4761726176656C4C4D533133s1
http://refhub.elsevier.com/S0167-6423(15)00183-5/bib44424C503A6A6F75726E616C732F737474742F4761726176656C4C4D533133s1
http://refhub.elsevier.com/S0167-6423(15)00183-5/bib426973686F703A3230303570323631s1
http://refhub.elsevier.com/S0167-6423(15)00183-5/bib426973686F703A3230303570323631s1
http://refhub.elsevier.com/S0167-6423(15)00183-5/bib42696C6C696E67746F6E3A3230303370323635s1
http://refhub.elsevier.com/S0167-6423(15)00183-5/bib48616E3A3230303270323738s1
http://refhub.elsevier.com/S0167-6423(15)00183-5/bib48616E3A3230303470323930s1
http://refhub.elsevier.com/S0167-6423(15)00183-5/bib48616E3A3230303570323831s1
http://refhub.elsevier.com/S0167-6423(15)00183-5/bib52696467653A3230303870323839s1
http://refhub.elsevier.com/S0167-6423(15)00183-5/bib52696467653A3230303870323839s1
http://refhub.elsevier.com/S0167-6423(15)00183-5/bib42657A656D3A3139393470323539s1
http://refhub.elsevier.com/S0167-6423(15)00183-5/bib4D6164656C61696E653A3139393170323632s1
http://refhub.elsevier.com/S0167-6423(15)00183-5/bib43686B6C696165763A3230303370323534s1
http://refhub.elsevier.com/S0167-6423(15)00183-5/bib43686B6C696165763A3230303370323534s1
http://refhub.elsevier.com/S0167-6423(15)00183-5/bib54616E656E6261756D3A32303032703431s1
http://refhub.elsevier.com/S0167-6423(15)00183-5/bib57616E33s1
http://refhub.elsevier.com/S0167-6423(15)00183-5/bib50656C65643A3230303170333439s1
http://refhub.elsevier.com/S0167-6423(15)00183-5/bib56616E476C61626265656B3A3230303170333032s1
http://refhub.elsevier.com/S0167-6423(15)00183-5/bib56616E476C61626265656B3A3230303170333032s1
http://refhub.elsevier.com/S0167-6423(15)00183-5/bib56616E476C61626265656B3A3139393370333431s1
http://refhub.elsevier.com/S0167-6423(15)00183-5/bib4D696C6E65723A3139383270333336s1
http://refhub.elsevier.com/S0167-6423(15)00183-5/bib56616E476C61626265656B3A3139393670333537s1
http://refhub.elsevier.com/S0167-6423(15)00183-5/bib4B776961746B6F77736B613A3139383970333438s1

L. Lockefeer et al. / Science of Computer Programming 118 (2016) 3–23 23
[32] J. Groote, F. Vaandrager, An efficient algorithm for branching bisimulation and stuttering equivalence, in: ICALP, in: LNCS, vol. 443, Springer, 1990,
pp. 626–638.

[33] D. Kozen, Results on the propositional μ-calculus, in: ICALP, in: LNCS, vol. 140, Springer, 1982, pp. 348–359.
[34] R. Mateescu, M. Sighireanu, Efficient on-the-fly model-checking for regular alternation-free mu-calculus, Sci. Comput. Program. 46 (3) (2003) 255–281.
[35] L. Lockefeer, Formal specification and verification of TCP extended with the window scale option, Master’s thesis, VU University Amsterdam, 2013,

http://www.cs.vu.nl/~wanf/theses/lockefeer.pdf.
[36] W. Stevens, TCP/IP Illustrated, vol. 1: The Protocols, Addison-Wesley, 1994.
[37] S. Blom, S. Orzan, Distributed state space minimization, Int. J. Softw. Tools Technol. Transf. 7 (3) (2005) 280–291.

http://refhub.elsevier.com/S0167-6423(15)00183-5/bib47726F6F74653A3139393070333437s1
http://refhub.elsevier.com/S0167-6423(15)00183-5/bib47726F6F74653A3139393070333437s1
http://refhub.elsevier.com/S0167-6423(15)00183-5/bib4B6F7A656E3A3139383370333531s1
http://refhub.elsevier.com/S0167-6423(15)00183-5/bib4D617465657363753A3230303370333535s1
http://www.cs.vu.nl/~{w}anf/theses/lockefeer.pdf
http://refhub.elsevier.com/S0167-6423(15)00183-5/bib73746576656E7331393934746370s1
http://refhub.elsevier.com/S0167-6423(15)00183-5/bib426C6F6D3A3230303570333436s1

	Formal speciﬁcation and veriﬁcation of TCP extended with the Window Scale Option
	1 Introduction
	2 Related work
	3 Functional speciﬁcation of TCP
	3.1 Connection management
	3.2 Data Transfer
	3.2.1 Application Layer calls send
	3.2.2 Octets in send buffer?
	3.2.3 Segment arrives
	3.2.4 Retransmission timeout
	3.2.5 Probe zero window
	3.2.6 Application Layer calls RECEIVE

	3.3 Known problems
	3.3.1 Sequence number reuse
	3.3.2 Performance loss due to small window size

	4 μCRL
	4.1 Process terms
	4.2 Process declarations
	4.3 Process equivalence
	4.4 Property checking

	5 Speciﬁcation
	5.1 Preliminaries
	5.2 Data Transfer
	5.2.1 Application Layer calls SEND
	5.2.2 Octets in send buffer?
	5.2.3 Segment arrives
	5.2.4 Retransmission timeout
	5.2.5 Probe zero window
	5.2.6 Application Layer calls RECEIVE

	5.3 Connection Teardown
	5.4 The complete system

	6 Veriﬁcation of the Data Transfer phase
	6.1 Correctness of the Window Scale Option
	6.2 Recommended revision of RFC 793

	7 Veriﬁcation of Connection Teardown
	8 Conclusion
	Acknowledgements
	References

