Compositional Verification of SDL descriptions

Matti Luukkainen®, Ari Ahtiainen

Nokia Research Center

P.O.Box 407, FIN-00045 Nokia Group, Finland
tel: +358-9-437 66072, fax: +358-9-437 66856
email: Matti.Luukkainen@research.nokia.com

Abstract

M odel-checking has shown to be an efficient and easy-to-use technique in verification of formally described pro-
grams. However, thereis one major drawback in using exhaustive model-checking: the behavior models of real-life
programs tend to be extremely large. In the article it is shown how the theories of behavioral equivalences with
a compositional style of state space generation can aleviate the state space explosion in verifying the externally
observable properties of SDL descriptions.
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1 INTRODUCTION

Testing and debugging of concurrent and reactive programsis extremely tedious, partly due to the nondeterminism
caused by the computation environment. |f a program is described by using a formal language, such as SDL [1],
behavior of the program can be defined by means of a mathematically defined structure, such as a behavior graph,
which describes all the possible computation sequences of the program.

If the correctness requirements of aformally defined program are given in a mathematical notation, such as linear
temporal logic [2], branching time temporal logic [3] or infinite state automaton [4], an agorithm called model-
checker [5] can be used to check if the program respects its correctness requirements. The model-checker goes
through every possible computation sequence of the program, thus it is said to be an exhaustive verification tech-
nigque. Because all the possible program runs are went through, model-checking gives a total confidence of the
programs correctness.

M odel-checking has shown to be an efficient and easy-to-usetechniquein program verification. However, there
is one major drawback in using exhaustive model-checking: behavior graphs of real-life programs, for example
communication protocols, tend to be extremely large. In literature this problem is often referred as state space
explosion. In this article we show how theories of behavioral equivalences with a compositional style of state
space generation help usto analyze large program descriptions by alleviating the state space explosion.

The article is structured as follows. Section 2 motivates the use of labelled transition systems as behavioral
model of SDL descriptions. Section 3 shows how the behavioral equivalence theories and compositional style of
state space generation could be used in alleviating the state space explosion. In section 4, the compositional method
is adapted to the context of SDL. Section 5 show results of applying the compositional method in verification of
Inres protocol. Conclusions are finally drawn in section 6.

2 EXTERNALLY OBSERVABLE BEHAVIOR

The behavior of a SDL description can be defined by means of a behavior graph. A behavior graphs consists of
nodes and transitions between the nodes. A node describes a state of the program (i.e. values of the program
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variables, contents of message queues ...) at one moment of time and transitions describe the atomic actions
(i.e. assignment, sending or receiving of amessage ...) that change the state of the program. Transitions may be
labeled with the corresponding action names. Intuitively, the behavior graph of a SDL description contains all the
possible computation sequences of the described system. The behavior graph corresponding to a SDL description
can be obtained implicitly by interpreting the description according to formal semantics of SDL, defined in Annex
F.1 of the Z.100 standard [6].

When using formal techniquesin devel oping reliable software, good tool support is extremely important. Com-
mercial SDL tools, like SDT [7] and Object GEODE [8] offer some means to use model-checking in system verifi-
cation. However, there is a serious drawbacksin model-checking facility of both the tools. When using exhaustive
model -checking to verify aprogram, both of the tools save the complete behavior graph of the program to comput-
ers memory. Since SDL descriptions comprise usually lots of data variables, generation of the complete behavior
graph is extremely memory consuming. Thus, the size of the programsthat can be exhaustively model-checked is
limited.

State space explosion is handled within the tools by using non-exhaustive model-checking methods, such as
checking only some randomly selected computation paths or using the bit state hash technique described in [9].
Drawback of the non-exhaustive methods is that only part of the computations are checked and thus, they do not
give full confidence about the correctness of a program.

We are sometimes interested only in the external behavior of a system, in another words, the activity of the
system which is visible to an external observer, such as the communication actions between the system and its
environment. For example if we specify a communication protocol, it is enough that the service it offers (i.e. the
external behavior visible to the user of protocol) is consistent with the correctness requirements of the protocol.
Thus, asfar as protocol behaves as expected, we do not care how the behavior is achieved.

3 THE EQUIVALENCE THEORY

Externally visible actions of asystem specified in SDL aretheinput and output statementsit usesto communicate
with the environment. Rest of the actionswithin the system and itsinternal state (e.g. values of different variables)
are not interesting if only the external behavior is concerned. As a consequence, the external behavior of a SDL

description can be captured by asimpler structure than behavior graph, namely alabelled transition system, or LTS
in short.

Alabelled transition systemis a quadruple (S, X, A, sq), where

S isaset of states,

e Y isthe set of observable actions,

A C S xXU{r} x Sisthetransition relation, (r denotesan internal actioni.e. an action invisible for the
external observer) and

so € S istheinitial state.

External behavior of a program is easily modeled as a labelled transition system. Let us consider a simple
example, a coffee vending machine. A labelled transition system describing the external behavior of the machine
isin Figure 1. In the initial state s0, the machine is waiting for a coin. When a customer inserts a coin, the
machine moves to another state (transition s0 — coin — s1). In this state, the machine either serves the coffeeto
the customer (transition s1 — coffee — s0) or breaks down. The breaking down is modeled as ainternal action
7 which takes place nondeterministically. Once the machine is broken, it just accepts more coins without doing
anything else.

With the LTS representation of programs, we have possibility of comparing syntactically different programs
with respect to their behavior. Thus, we can check if two programs P; and P, behave similarly, or if a program
Implisa’vaidimplementation’ of another program Spec. We can even search algorithmically for a’minimal’
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Figure 1: A simple vending machine

program which behaves similarly as a given program. Next we define formally what is intended by saying that
two programs behave similarly, in another words the concept of behavioral equivalenceis defined. There exists a
vast amount of different equivalences in the literature, see for example [10]. In the following we use the CFFD
equivalence[11, 12] as our notion of behavioral equivalence.

The following customary definitions are used:

e P —a — P’ meansthat thereistransition ¢ from state P to the state P’, in another words (P, a, P') € A.
e P — a — meansthat thereisexistsastate P’, suchthat P — a — P’.

—(P — a —) meansthat it is not possibleto find astate P’, suchthat P — a — P'.

e P—ajay...a, = Q iff 3P,..., P, suchthat P, = P,P, =QandVie {1...n}: P,y —a; > P;.
P=10bby...b, = Q iff P—71*by7*bo7* ... 7%b,7* — Q, where 7* denotes afinite or empty sequence of
internal actions.

To define the CFFD equivalence, following concepts are al so needed:

e o € Y*isadivergencetraceof astate Pif 3Q : P =0 = Q A Q — 7> —, where 7 denotes an infinite
sequence of internal actions.
e The set of divergencetraces of astate P is denoted by div(P). Divergencetraces of aLTS correspondsto the
divergencetraces of itsinitia state.
A state P isstable, if =(P — 7 —). Predicate stable(P) denotes stability of the state P. A LTS is stableif
and only if itsinitial stateis stable.
Pair (o, A), whereo € ¥* and A C ¥ isastablefailure of state P, if and only if
AQ:P=0=Q A stable(Q) ANVa€ A:~(Q —a—).
The set of stable failures of astate P is denoted by s fail(P). Stable failuresof aLTS correspondsto the stable
faillures of itsinitia state.

Finally we definethe CFFD equivalencerelation betweentwo LTS's. Labelledtransition systemslits = (S, X, A, so)
andlts' = (S', %', A/, () are CFFD-equivalent, its; =cprp ltss, iff

e stable(s,) = stable(s!),
o sfail(so) = sfail(sy),
e div(sg) = div(s]).

If two programs, P and P' are CFFD equivalent, the intuitive meaning is that both have the same set of
possible computation sequences and furthermore P can deadlock after a sequence of actions if and only if P’
can also deadlock after the same sequence of actions. Also the computation sequences that lead to a divergence
(infinite sequence of internal actions) are the same for the two processes.

In[13] it was proven that

CFFD is the weakest congruence relation for finite state systems, with respect to the operators in
LOTOS[14], CSP [15] and CCS[16] process algebras, which preserves truth of nexttime-less linear
temporal logic (or LTL' for short) [2].



In practice the compositionality means that we can replacea LTS with a CFFD equivalent LTS in context of any
of the LOTOS, CSP and CCS operators. It should be noted that thisis not the case with all behavioral equivalences.

Because of compositionality, we can use the following method in building a minimized LTS describing the
behavior of a given system. Assume that the correctness criteria of a system are given in RE(Q which is a set of
LTL formulae. Let us consider that our system consists of several concurrent entities. Naturally all the entities are
modeled as separate LTS's, ltsy, . . ., Its,. Let usassumethat || isaparalel operator that enforces synchronization
on al the common actions of the combined LTS's, similarly as CSP parallel operator. A LTS describing the
behavior of the system is achieved by parallel composition of the separate components sys = ltsy || ... || ltsp.
After building the LTS describing systems behavior, a model-checker is used to test if the system respects the
requirementsgiven by the LT L’ formulaein the set RE(Q.

A much more efficient and memory saving way to build the LTS of the system is to first minimize the sep-
arate system components with respect to CFFD-equivalence, and after that combine the minimized components
Its;™™ ..., Its,™™ to form the LTS describing the behavior of system sys™" = Its;™™ || ... || lts,™".
Because CFFD is a congruence relation, it is guaranteed that sys =crrp sys™™. Furthermore, because CFFD
minimization preserves the truth of all LT L’ formulag, the correctness of the system can be detected by model-
checking the the minimized system description sys™" against the formulagin the set REQ. More formally, the
followingistruefor all LTL' formulae ¢: sys = ¢ iff sys™" |= ¢.

The fact that CFFD is the weakest LTL' preserving congruence relation guarantees that the minimized LTS is
optimally small and still containsall the information needed in verification.

The compositional method of building LTS's is not restricted to the use of CFFD and linear temporal logic
only. We can also use other equivalence relations which are congruence at least with respect of parallel operator.
Another equivalence relation we have used is the observational equivalence[16] which is defined next.

A binary relation R between states is a weak bisimulation if (sq,s2) € R implies that for all actions a, the
following istrue:

e 51 —a— sy implies3s) : s =a = shand(s],sh) € R
e 5o —a — shimplies3ds] : sy =a = s] and (s},s5) ER

Two labelled transition systems, its = (S, X, A, sp) and lts' = (S',¥',A',s;,) are observational equivalent,
ltsy = ltsq, if there exists aweak bisimulation R, such that (so, sp) € R.

Observational equality between two LTS's meansintuitively that each of them can’simulate’ the visible behav-
ior of the other. Minimization with respect to observational equivalence preservesthe visible behavior and branch-
ing structure, but information on 7-loops is lost. Because 7-loops are not preserved, observational equivalence
does not preserve all the liveness properties. Livenessis usually considered in context of fairness requirements. A
typical fairness requirement in context of communication protocolsisto assume that an unreliable communication
channel does not lose al the messages, more accurately: if infinite number of messages are sent to a channel,
infinite number of messagesis also received by the other end. If 7-loopsof aLTS are considered asfair (for exam-
pleif 7-loops are resulting of retransmissions to a unreliable channel), minimization with respect of observational
equivalence preserves also the liveness properties. If still needed, the 7-loop preserving version of observational
equivalence [17] can be used.

4 COMPOSITIONAL STATE SPACE GENERATION FROM SDL DESCRIPTIONS

Externally visible actions of asystem specified in SDL aretheinput and output statementsit usesto communicate
with the environment. Rest of the actionswithin the system, and itsinternal state (e.g. values of different variables)
are not interesting if only the external behavior is concerned.

As it was stated in previous sections, labelled transition system is a convenient mathematical structure to de-



scribe the external behavior of a SDL system. LTS describing the behavior of a SDL system is easily obtained
from the systems behavior graph in the following way.

For every node in the behavior graph thereis astate in the LTS.

If there is atransition between two nodesin the behavior graph, there should also be a transition between the
corresponding statesin the LTS.

If atransition in the behavior graph is caused by an input or an output action, the corresponding transition in
the LTS should be |abelled with the action name.

Other transitionsin the LTS should be labelled with 7, thus they areinvisible to the external observer.

The state in LTS corresponding to the root node of behavior graph isthe initial state of the LTS.

If wewould liketo verify the external behavior of asystem specified in SDL, we can generate the corresponding
LTS and use a suitable minimization to make the model-checking less memory and time consuming. Most transi-
tionsin a LTS describing the external behavior of a system are internal ones, thusit is evident that the minimized
LTS is much smaller than the original one.

The same analogy as above can be used to define the external behavior of an arbitrary component (a process or
ablock) ina SDL specified system. Externally visible actions of acomponent are the input and output statements
it uses to communicate with the rest of the system and the environment. Thus, the external behavior of an arbitrary
component can also be described by meansof aLTS. Note that achannel in a SDL description can also be modeled
asalTS.

We can now use the following procedure to build compositionally a minimized LTS describing the behavior of
acomplete SDL specified system.

Produce the behavior graphs (bg . . . bg,,) from the separate system components.

Trangdlate bg; . . . bg,, to corresponding labelled transition systems its; ... lts,,.

Minimize the LTS s with respect to a suitable equivalence relation.

Model the channels combining separate system componentsby LTS's. Note that alimited channel length has
to be assumed to keep the system finite stated.

5. Combinethe minimized LTS's and channels by using a synchronous parallel operator, and minimize the result.

b

The resulting LTS describes actually more than merely the external behavior: it contains also systems internal
signalling. The LTS which describes only the external behavior of the system is obtained from the LTS resulting
the above procedure by transforming the internal signalling actions to internal actions. This transformation can be
done by using hide-operator of LOTOS process algebra. The operation just renames the corresponding labels with
7's. After hiding, the LTS is minimized again. The resulting LTS describes the external behavior of the original
SDL specified system. If CFFD equivalence is used in minimization, all the safety and liveness properties of the
original system can be checked from the generated LTS. In case of observational equivalence, the visible behavior
and branching structureis still preserved in the minimized model.

If the internal signalling of the system or parts of it are of interest, hiding of internal signals can be skipped
(or done only for those signals that are not needed). Thus, the compositional verification method is not limited to
external behavior only.

4 CASE STUDY: THE INRES PROTOCOL

In this section results of applying the compositional method in verifying the Inres protocol [18] are presented.
The Inres protocol implements areliable, connection-oriented data transfer service, the Inres service, between two
users. The Inres service is not symmetrical: it offers only one way data transition from an initiating process to a
responding process. The protocol itself operates above a medium which offers a connection-less unreliable data
transfer service. Basic architecture of the Inres system is shown in Figure 2.
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Figure 2: Basic architecture of the Inres system

SDL description of the Inres protocol is presented in [19]. The description consists of four processes, two at
the both ends of the protocol (see the Figure 3). Two of the processes Initiator and Responder implement the
service by exchanging protocol data units between each other. Two other processes, coder ini and coder res are
used to hide the interface to the medium. The protocol implementation details (i.e. the SDL code) are not shown
here, so please consult the referred book for a detailed description.

system inres

block ini_station block res_station|

processinitiator process responder

process coder_res

block medium

Figure 3: SDL skeleton of Inres protocol

The compositional method described in previous sections has been tested with the Inres protocol. A LTS cor-
responding to the external behavior of the protocol (i.e. the service it provides) was generated from the original
SDL descriptions. The generated LTS was used in verifying the offered service. SDT Validator [20] was used to
generate the behavior graphs of the processes in Figure 3. They were algorithmically translated to LTS's accord-
ing to guidelines given in section 4. The labelled transition systems representing the channels and process input
gueues were generated with ARA toolset [21]. Casesar/Aldebaran [22] was used in composition and minimization
of LTS's. The minimization was carried out with respect to observationa equivalence. Due to lack of a adequate
tool support, we were unfortunately not able to use CFFD minimization in the case study.

Generation of the LTS corresponding to the external behavior of Inres protocol proceeded as follows:

1. LTS'scorresponding the four SDL processesin Inres protocol description were generated and minimized.

2. TheLTS'sinitiator and coder_ini were combined by parallel operator. Internal communication between the
processes was hidden and the result (ini_station) was minimized. The input queue with size of onewas used.

3. Anaogously responder and coder _res were combined by parallel operator. Internal communication was



hidden and the result (res_station) was minimized.
4. Theresulting LTS s were combined by parallel operator with an unreliable channel, with length of one.
Communication over the channel was hidden and the resulting LTS, Inres was minimized.

Size of the LTS's generated during the process can be seen from the Table 1. As it can be noticed, the resulting
minimized LTS which describes the service provided by Inres protocol, has only 28 states and 71 transitions, so
it isalmost visually verifiable. The largest LTS generated during the process (i.e. the one which had the greatest
memory requirements) had 3217 states and 13614 transitions. Because the Caesar/Aldebaran tool is capable of
handling LTS's with over a million states, the compositiona style could be used with a far larger systems than
Inres protocol.

As acomparison we also tried to generate the state space of Inres protocol with SDT validator. We selected the
input queue length of one and channelswithout capacity, so the same configuration asin our compositional model.
The protocol turned to be too large for exhaustive state space generation, thus we used bit state hash technique to
compute a lower bound of the state space. With alow hash collision percentage, SDT validator generated 388408
unique system states and over 1880000 transitions. So, a system which was impossible to exhaustively verify with
SDT validator was easily handled with our compositional method.

component without minimization minimized
states, transitions states, transitions
Initiator 131, 189 30,75
Coder_ini 92, 161 10, 18
Responder 35,44 14, 21
Coder_resp 101, 177 10, 19
ini_station 3217,13614 1424, 6771
res_station 947, 3859 391, 1845
inres 135, 264 28,71

| State space generated by SDT | 388408, 1880000 | |

Table 1: Sizes of labelled transition systems generated in verifying the Inres protocol
5 CONCLUSIONS

In the text we pointed out the inability of current commercial SDL tools to cope with state space explosion in
exhaustive model-checking. We proposed a labelled transition system based framework to compositionally build
the description of a systems external behavior. The key step of our framework was the minimization of LTS swith
respect to a suitable equivalencerelation. One such isthe CFFD equivalence which preservesthe truth of nexttime-
less linear temporal logics (LTL'), thus the minimization with respect to CFFD equivalence does not change the
outcome of LTL' model-checking. Another equivalence that we have used is the observational equivalence, which
preservesall the observable computation sequences and also the branching information. Even though observational
equivalence abstracts away the information on infinite internal computation sequences, it can be argued to bee a
good choice if internal loops are considered as fair (i.e even if thereisa r loop in a labelled transition system, a
computation leading to an infinite 7-sequence is not performed).

We also presented results of a case study where the compositional method was used to generate a LTS describ-
ing the external behavior of Inres protocol. The initial results were extremely promising, and it can be concluded
that our compositional method is in particular suitable for verification of external or signalling behavior of SDL
specified systems.

The behavior graph of aSDL specified system is obtained implicitly by interpreting the specification according
to formal semantics of SDL. However, the formal semantics of SDL is currently being revised [23] and the new



semantical model will be based on transition systems. In the new formal semantics, behavior of a system com-
ponent is defined compositionally from behavior of its subcomponents. Thus, the new semantical model gives an
explicit operational interpretation to all the system components. With the new formal semantics, the translation
from systems behavior graph to the labelled transition system describing its externa behavior can be explicitly
formalized.
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