
Specification and Analysis of Hardware Systems Using Timed
Process Algebras

K.L. Man
Centre for Efficiency-Oriented Languages (CEOL)

Department of Computer Science
University College Cork (UCC)

Ireland
pafesd@gmail.com

Abstract: The ability of unambiguously specifying (in a mathematical sense) and rigorously analysing timing prop-
erties/constraints is fundamental to design correct hardware systems. Formalisms in which hardware behaviour
and timing properties can be precisely captured is a mandatory prerequisite for designing correct hardware sys-
tems (discrete-time systems by nature). Timed process algebras are such formalisms. To show that timed process
algebras are useful for formal specification and analysis of hardware systems, in this paper, we illustrate the use of
a timed process algebra called timed Chi (χ) with several benchmark examples of hardware systems.

Key–Words: Formal languages, Formal semantics, Process algebras, Real-time systems, Formal specification and
analysis, Hardware systems

1 Introduction

Formal languages with a semantics formally defined
in Computer Science increase understanding of sys-
tems, increase clarity of specifications and help solv-
ing problems and remove errors. Over the years, sev-
eral flavours of formal languages have been gaining
industrial acceptance.

Process algebras [1] are formal languages that
have formal syntax and semantics for specifying and
reasoning about different systems. They are also use-
ful tools for verification of various systems. Generally
speaking, process algebras describe the behaviour of
processes and provide operations that allow to com-
pose systems in order to obtain more complex sys-
tems. Moreover, the analysis and verification of sys-
tems described using process algebras can be partially
or completely carried out by mathematical proofs us-
ing equational theory.

In addition, the strength of the field of process
algebras lies in the ability to use Algebraic Reason-
ing (also known as equational reasoning) that allows
rewriting processes using axioms (e.g. for commuta-
tivity and associativity) to a simpler form. By using
axioms, we can also perform calculations with pro-
cesses. These can be advantageous for many forms of
analysis.

Serious efforts have been made in the past to deal
with systems (e.g. real-time systems [2, 3] and hybrid
systems [4, 6]) in a process algebraic way. Over the

years, process algebras have been successfully used in
a wide range of problems and in practical applications
in both academia and industry for analysis of many
different systems.

On the other hand, the need for a formal and well-
defined semantics of a hardware description language
is widely accepted and desirable for architects, engi-
neers and researchers in the electronic design commu-
nity.

The ability of unambiguously specifying (in a
mathematical sense) and rigorously analysing timing
properties/constraints is fundamental to design correct
hardware systems. Formalisms in which hardware be-
haviour and timing properties can be precisely cap-
tured is a mandatory prerequisite for designing correct
hardware systems. Timed process algebras are such
formalisms.

For illustration purpose, in this paper, we choose
the timed process algebra called timed Chi (χ) [5] as
the main reference timed process algebra for the use of
specification and analysis of hardware systems. This
particular choice is immaterial and other timed pro-
cess algebras may be used as well.

The timed Chi formalism is obtained by means
of the simplification of hybrid Chi formalism [6, 7].
Principally, the timed Chi formalism is suited to mod-
elling, simulation, verification and real-time control.
Its application domain consists of large and complex
manufacturing systems.

The formal semantics of timed Chi is defined by

WSEAS TRANSACTIONS on ELECTRONICS
Manuscript received Jan. 23, 2007; revised April 18, 2007

K.L. Man

ISSN: 1109-9445
71

Issue 4, Volume 4, April 2007

means of deduction rules in a Structured Operational
Semantics (SOS) style [8] that associate a time transi-
tion system with a timed Chi process. A set of ax-
ioms/properties of timed Chi is presented for a no-
tion of equivalence (bisimulation). The straightfor-
ward syntax and semantics is also highly suited to ar-
chitects, engineers and researchers from the hardware
design community.

To show that timed Chi is also well-suited for
addressing various aspects of hardware systems, in
this paper, we illustrate the use of timed Chi with
some benchmark examples of hardware systems: a D
flip-flop, an asynchronous arbiter and a simple arbiter
(with assertion).

In the remainder of this paper, we may usually
refer to timed Chi as χ. Also, we may write formal χ
specification as χ specification.

1.1 Related work

In the hardware design community, architects use
hardware description languages (that are not defined
by means of mathematics) like Verilog [9] and VHDL
[10] to model hardware systems. Since these descrip-
tion languages are not formally (i.e. mathematically)
defined, the models described using them may be am-
biguous.

It is worth mentioning that, after these descrip-
tion languages have been widely used, some research
works on their formal semantics, except some trails
(e.g. [11]), are mostly based on Abstract State Ma-
chine (ASM) specifications and Denotational Seman-
tics (e.g. [12, 13, 14]) that have been done by other
researchers.

Hence, we believe that there is a gap between the
intuition behind the description languages (given by
the developers) and the formal semantics of the de-
scription languages defined by the researchers. Cur-
rently, the analysis of hardware systems (e.g. mod-
elled in Verilog and VHDL) is mainly addressed by
a simulation context.

Simulation engineers apply the simulators, that
are built based on their semantics (that is not formally
defined), to simulate the behaviour of such systems.
The results are then not always guaranteed to be cor-
rect.

Furthermore, it is generally believed that the SOS
style semantics is more intuitive, and the methods of
ASM specifications and denotational semantics ap-
pear to be difficult to apply to describe the dynamic
behaviour of processes.

Since processes are the basic units of execution
for simulating the behaviour of a device or a system
within languages (for hardware systems), process al-
gebras with the SOS style semantics are potentially

a good candidate for giving formal specifications of
systems in the hardware design community.

Note that some comparisons and related work of
formalisms with timing can already be found in [19]
and [20].

1.2 Paper organisation

This paper is organised as follows. In Section 2, we
give a brief overview of the χ formalism. Through
some simple examples, Section 3 shows that the de-
duction rules of χ can ensure the correctness of speci-
fications and can help modellers to make correct spec-
ifications. Some samples (modelling several bench-
mark hardware systems) of the applications of χ are
shown in Section 4.

A variety of approaches that can be used for the
analysis of the formal specifications described in χ is
presented in Section 5. Finally, concluding remarks
are made in Section 6 and the direction of future work
is pointed out in the same section.

2 χ Formalism

χ is such a rich formalism and presenting the complete
formal syntax and formal semantics of it is far beyond
the scope of this paper. Hence, in this section, we
informally present just a small part of χ, disregarding
features1 that may not be relevant for the use in this
paper.

Again, in what follows, we refer to this small part
of timed χ as χ. For an extensive treatment of χ, the
reader is referred to [5].

2.1 Data types, time model, synchronisation
and communication model

2.1.1 Data types

χ is statically strongly typed. Every variable has a
type which defines the allowed values of that variable
and the allowed operations on that variable. The ba-
sic types are natural numbers, integers, real numbers,
booleans, strings and enumerations.

Type constructors operate on existing types to
create structured types. χ uses type constructors to
create sets, lists, array tuples, record tuples, dictionar-
ies, functions and distributions (for stochastic mod-
els).

Channels also have a type that indicates the type
of data that is communicated via the channel. Pure

1For instance, recursive definitions, operators used for scoping
and communication, process definition and process instantiation
are not treated in this paper.

WSEAS TRANSACTIONS on ELECTRONICS K.L. Man

ISSN: 1109-9445
72

Issue 4, Volume 4, April 2007

synchronisation channels, that do not communicate
data, are of the predefined type void.

2.1.2 Time model

The time in χ is dense. So, timing is measured on a
continuous time scale. χ has a strong time determin-
ism principle. This means that passage of time cannot
result in making a choice between the two operands
of the choice.

Also, the maximal progress (a process can delay
only if it cannot do anything else) is not implicit in χ.

In any χ specification, the existence of the pre-
defined reserved global variable time which denotes
the current time, the value of which is initially zero, is
assumed.

2.1.3 Synchronisation and communication model

In χ, the synchronisation and communication mech-
anism are based on CSP [21, 18]. This means that,
although a channel can be used in any number of pro-
cesses, synchronisation or communication always oc-
curs on a point-to-point basis, i.e. synchronisation or
communication always occurs between exactly two
processes.

Also, this synchronisation or communication
mechanism is widely used in the hardware design
community for modelling asynchronous circuits.

2.2 χ specification

A χ specification (restricted to the use in this paper) is
of the following form:

〈 disc s1, . . . , sk

, chan h1, . . . , hl

, i
| p
〉

where

• s1, . . . , sk denote the discrete variables;

• h1, . . . , hl denote the channels;

• i denotes an initialisation predicate that restricts
the allowed values of the variables initially;

• p is a process term defining the behaviour of the
specification.

Notice that the keywords disc and chan are omitted
where there are no discrete variable declarations and
are no channel declarations, respectively. Also, the

initialisation predicate may be omitted, indicating a
predicate that always holds.

The set P of process terms p ∈ P (for the use in
this paper) is defined according to the following gram-
mar:

p ::= xn := en | ∆d | [p] | p; p
| b → p | p [] p | p ‖ p | h !! en

| h ??xn | ∂A(p) | ∗p
Here, xn and en are a list of variables x1, . . . , xn and
a list of expressions e1, . . . , en, respectively. d ∈ R≥0

and b denotes a guard (i.e. a boolean expression).
Moreover, h is a channel and A represents a set of
actions.

In χ, it is allowed to use common arithmetic oper-
ators (e.g. +,−), relational operators (e.g. =,≥) and
logical operators (e.g. ∧,∨) as in mathematics to con-
struct expressions over variables.

The operators are listed in descending order of
their binding strength as follows → , ; , {‖, []}.
The operators inside the braces have equal binding
strength. In addition, operators of equal binding
strength associate to the right, and parentheses may
be used to group expressions. For example, p; q ; r
means p; (q ; r), where p, q, r ∈ P .

2.3 Concise explanation of the syntax

2.3.1 Atomic process terms

The atomic process terms of χ are undelayable pro-
cess term constructors that cannot be split into smaller
process terms. They are:

1. The multi-assignment process term xn := en. It
assigns the values of expressions e1, . . . , en to
variables x1, . . . , xn, respectively, in an atomic
way.

2. The send process term h !!en. It sends the values
(must be defined) of expressions e1, . . . , en via
channel h by means of internal send actions.

3. The receive process term h ??xn. It receives val-
ues (of size n) via the channel h and assigns them
to the variables x1, . . . , xn by means of internal
receive actions.

2.3.2 Operators

Atomic process terms can be combined using the fol-
lowing operators. The operators are:

1. The delay operator ∆d denotes a process term
that first delays for d time units, and then termi-
nates by means of the internal action τ .

WSEAS TRANSACTIONS on ELECTRONICS K.L. Man

ISSN: 1109-9445
73

Issue 4, Volume 4, April 2007

2. The sequential composition of process terms p
and q (i.e. p; q) behaves as process term p un-
til p terminates, and then continues to behave as
process term q ∈ P .

3. By means of the any delay operator [p], delay
behaviour of arbitrary duration can be specified.
The resulting behaviour is such that arbitrary de-
lays are allowed. As a consequence, any de-
lay behaviour of p is neglected. The action be-
haviour of p remains unchanged.

4. The guarded process term b → p can perform
whatever actions p can perform under the condi-
tion that the guard b (a boolean expression) eval-
uates to true in the current state. The guarded
process term can delay according to p under the
condition that the guard b holds. The guarded
process term can perform arbitrary delays under
the condition that the guard b does not hold.

5. The alternative composition of process terms p
and q (i.e. p [] q) allows a non-deterministic
choice between different actions of the process
term either p or q. With respect to time be-
haviour, the participants in the alternative com-
position have to synchronise.

6. The parallel composition of process terms p and
q (i.e. p ‖ q) executes p and q concurrently in an
interleaved fashion with the possibility of syn-
chronisation or communication (in a CSP based)
between p and q. Also, with respect to time be-
haviour, the participants in the parallel composi-
tion have to synchronise.

7. The encapsulation operator ∂A(p) is introduced
to block the actions that p can perform from the
set A.

8. The repetition process term ∗p represents the in-
finite repetition of process term p.

2.4 Formal semantics of χ

This subsection informally describes the formal se-
mantics of χ. It is defined by means of deduction rules
in SOS style that associate a time transition system
with a χ process. Three different kinds of transition
relations are defined namely:

1. one associated with termination transition;

2. one associated with action transition (for discrete
action);

3. one associated with time transition (delay be-
haviour).

3 Correctness of χ Specifications

As we already mentioned in Section 2 that the formal
semantics of χ is defined by means of deduction rules
in SOS style. These deduction rules ensure the cor-
rectness of χ specifications and can help modellers to
make correct specifications.

In this section, for illustration purposes, we define
some deduction rules (only for the use in this section
to give the first impression of such deduction rules to
the reader) and show their use through some toy ex-
amples in χ.

For those who have a Computer Science back-
ground, this section can be left out.

3.1 Deduction rules

Here, we define several deduction rules for atomic
process term: multi-assignment; and operators: se-
quential composition, alternative composition and
parallel composition.

For the set P of process terms p ∈ P (for the use
in this subsection), we have:

p ::= xn := en | p; p | p [] p | p ‖ p

We further define the following deduction rules:

xn := en −→ X 1
p −→ X

p; q −→ q
2

p −→ X
p [] q −→ X 3

p −→ X
q [] p −→ X 4

p −→ X
p ‖ q −→ q

5
p −→ X

q ‖ p −→ q
6

The above deduction rules (of the form premise
conclusion)

have two parts: on the top of the bar we put premise
of the rule, and below it the conclusion. If the premise
holds, then we infer that the conclusion holds as well.
Moreover,−→ and X are used to represent a transition
and a terminated process respectively.

Rule 1 states that xn := en can always perform a
transition to a terminated process (i.e. successful ter-
mination).

The sequential composition of the process terms
p and q (i.e. p; q) behaves as process term p until p
terminates, and then continues to behave as process
term q (see Rule 2).

The effect of applying the alternative operator to
the process terms p and q (i.e. p [] q) is that the execu-
tion of a transition by either one of them results in a
definite choice as shown in Rules 3 and 4.

The parallel composition of the process terms p
and q (i.e. p ‖ q) has as its behaviour with respect to
transitions the interleaving of the behaviours of p and
q (see Rules 5 and 6).

WSEAS TRANSACTIONS on ELECTRONICS K.L. Man

ISSN: 1109-9445
74

Issue 4, Volume 4, April 2007

3.2 Running examples

Using the above deduction rules, for instance, we can
prove that:

1. process term xn := en ; (x′n := e′n [] x′′n :=
e′′n) can terminate successfully after a finite
number of transitions.

• Proof: According to Rule 1, xn := en can
always perform a transition to a terminated
process. Due to this, we can apply Rule 2
to obtain xn := en ; (x′n := e′n [] x′′n :=
e′′n) −→ x′n := e′n [] x′′n := e′′n. Us-
ing Rule 1 together with either Rule 3 or
Rule 4, we can further have x′n := e′n []
x′′n := e′′n −→ X.

2. process term (xn := en ‖ x′n := e′n); x′′n :=
e′′n cannot terminate successfully in two transi-
tions.

• Proof: We assume to have (xn := en ‖
x′n := e′n); x′′n := e′′n −→ x′′n := e′′n −→
X according to Rules 1 and 2. This means
that we must have the transition xn := en ‖
x′n := e′n −→ X as a premise necessarily.
However, this is not possible due to Rules 5
and 6.

3.3 Properties

We can also deduce some properties (that add to the
level of confidence one has with respect to the correct-
ness of the formal semantics) for all specifications that
can be generated by the set P of process terms accord-
ing to the deduction rules as defined in Subsection 3.1.
For instance, we can have the following properties for
equivalence:

• p [] q = q [] p and p ‖ q = q ‖ p (so-called com-
mutativity property);

• p@(q@r) = (p@q)@r, for @ ∈ {; , [], ‖} (so-
called associativity property).

Using properties, we can rewrite a χ specifica-
tion to a simpler form. This can be advantageous for
many forms of analysis. As we already mentioned, in
the field of process algebras, this is so-called algebraic
reasoning.

4 Hardware Systems in χ

This section presents some samples (modelling sev-
eral benchmark hardware systems) of the applications
of χ.

d

clk

Q

Figure 1: A D flip-flop.

4.1 A D flip-flop

D flip-flops are among the basic building blocks of
Register-Transfer Level (RTL) designs. A D flip-flop
has a clock input (clk) in the sensitivity list, a data
input (d) and a data output (Q).

When a positive or negative edge occurs in the
clock signal (which means that (clk ∧ ¬clk−) ∨
(clk− ∧ ¬clk)), the value of input port d is assigned
to output port Q. Note that x− denotes the value of
variable x before execution of an discrete action.

Figure 1 depicts such a D flip-flop. A χ specifica-
tion is given as follows:

〈 disc d,Q, clk
, d = true, Q = true, clk = false
| ∗(DFF ‖ (CLKa [] CLK7))
〉,

DFF ≈ (clk ∧ ¬clk−) ∨ (clk− ∧ ¬clk) → Q := d,

CLKa ≈ [SWITCH; INPUT],

CLK7 ≈ ∆7; SWITCH; INPUT,

SWITCH≈¬clk−→ clk := true [] clk−→ clk := false,

INPUT ≈ d := true [] d := false.

In the χ specification, clk, d and Q are modelled by
boolean variables. The complete system is modelled
by a repetition of the parallel composition of process
terms DFF and a choice between process terms CLKa

and CLK7.
The process term DFF describes the behaviour of

the D flip-flop. When a positive or negative edge oc-
curs in clk, the value of d is assigned to Q. Otherwise,
it performs an arbitrary delay.

The process terms CLKa and CLK7 model the
behaviour of the clock clk with the frequency of ar-
bitrary and 7 time units respectively. The switching

WSEAS TRANSACTIONS on ELECTRONICS K.L. Man

ISSN: 1109-9445
75

Issue 4, Volume 4, April 2007

client−1

client−2

a
c

arbiter

b

Figure 2: An asynchronous arbiter.

from positive edge to negative edge or vice versa is
modelled by the process term SWITCH.

A non-deterministic choice of the clock fre-
quency (any value) for at most 7 time units is as-
signed to clk by means of the alternative composition
of CLKa and CLK7 (i.e. CLKa [] CLK7).

In the process term CLKa, the any delay operator
[] is needed to apply to SWITCH; INPUT, because
otherwise CLKa [] CLK7 may not delay together for
at most 7 time units (as already explained in Section 2
that χ a has strong time determinism principle).

For simulation purposes, a test-bench of d (as-
signing a value “true” or “false” to d arbitrarily) is
given by the process term INPUT.

4.2 An asynchronous arbiter

Asynchronous arbiter circuits are standard hardware
verification benchmark circuits. An arbiter circuit
controls the exclusive access of one out of a number
possibly competing processes to a shared resource.

Figure 2 shows an (untimed) asynchronous arbiter
(taken from [15]) such that two clients (client-1 and
client-2) complete for a shared resource. Each client
sends a request (a number 1 for client-1 and a number
2 for client-2) for the resource to the arbiter via an
individual channel (a and b).

The arbiter chooses non-deterministically be-
tween clients with pending requests, and then sends
the number of the selected client-(1 or 2) via another
channel (c) to the environment. A χ specification is
given as follows:

〈 disc x
, chan a, b, c
, x = 0
| ∗(∂A(CLI1 ‖ CLI2 ‖ ARB))
〉,

CLI1 ≈ a !! 1, CLI2 ≈ b !! 2,

ARB ≈ (a ?? x [] b ?? x); c !! x.

The process terms CLI1, CLI2 and ARB model
the behaviour of the client-1, client-2 and arbiter re-
spectively as described above.

The encapsulation operator is applied to CLI1 ‖
CLI2 ‖ ARB to block some undesired internal send
and receive actions (specified in the set A) via chan-
nels a and b. This means that only successful commu-
nication actions via channels a and b are allowed.

4.3 A simple arbiter

In general, the role of an arbiter is to grant access
to the shared resource by raising the corresponding
grant signal and keeping it that way until the request
signal is removed.

A test for such an arbiter can be generated by an
assertion as follows:

“assertion : grant ∧ request”.

If the assertion holds, this means that the arbiter work
as expected.

Below is a χ specification of the simple arbiter:

〈 disc clk , clkc , grant , request , t
, clk = clkc = grant = request = false, t = 0
| INIT; ∗(ARB ‖ CLK ‖ ASSER)
〉, where

INIT ≈ clk , grant , request := false, false, false
ARB ≈ R1 ; G; R0

R1 ≈ ∆4; request := true
G ≈ ∆4; grant := true
R0 ≈ ∆4; request := false

CLK ≈ ∆5; clkc , clk := clk ,¬clk
ASSER ≈ ¬clkc

− ∧ clk− ∧ grant−∧
request− → t := time

The χ specification of the arbiter is a sequential com-
position of the process terms INIT and the repetition
of the parallel composition of process terms ARB,
CLK and ASSER:

• INIT - It assigns the initial values to variables
clk , clkc , grant and request (i.e. the initialisa-
tion).

• ARB - It models the change of behaviour of vari-
ables clk , clkc , grant and request according to
time.

• CLK - It models the behaviour of a clock (i.e.
clk) which swaps the values between “false” and
“true” every 5 time units.

WSEAS TRANSACTIONS on ELECTRONICS K.L. Man

ISSN: 1109-9445
76

Issue 4, Volume 4, April 2007

• ASSER - It expresses the assertion for the arbiter
(as indicated above). Also, it models the fact
that the test of the assertion is executed whenever
there is a positive change in clk . When this hap-
pens, the current time is assigned to the variable
t.

In the process term CLK, variable clkc is intro-
duced (as a copy of clkc) to save the temporary value
of clk , which is used to model event change on the
variable clk (i.e. event controls).

4.3.1 Hardware description of the arbiter

For those who are familiar with hardware description
languages, the formal χ specification of the arbiter
presented in Subsection 4.3 can be regarded as the
mathematical model of the below hardware descrip-
tion of the arbiter in Verilog.

module assert();
reg clk, grant, request;
time current_time;
initial begin

clk = 0;
grant = 0;
request = 0;
#4 request = 1;
#4 grant = 1;
#4 request = 0;
#4 $finish;

end
always #5 clk = ˜ clk;
always @ (posedge clk)
begin
if (grant == 1 && request == 1)

begin
current_time = $time;
$display
{‘‘working as expected’’);
end

end
endmodule

5 Analysis of χ Specifications

5.1 Hardware systems

This subsection briefly presents several analysis re-
sults of the hardware systems modelled in χ as shown
in Section 4.

5.1.1 D flip-flop

The dynamic behaviour of the D flip-flop in χ was
simulated using the χ simulator [26]. The simulation

results are correlated to the behaviour of the D flip-
flop as described in Section 4.1.

5.1.2 Asynchronous arbiter

The specification of the asynchronous arbiter was
translated to the corresponding specification in mCRL
[25] and then further verified the safety property: the
mutual exclusion using CADP [22].

5.1.3 Simple arbiter

Using the deduction rules and properties of χ, the as-
sertion property of the simple arbiter was proved by
means of a complete mathematical proof.

5.2 Summary and other analysis techniques
for χ

In this subsection, we survey various approaches that
can be effectively used for the analysis of hardware
systems described in χ (for different analysis pur-
poses).

• Various properties (e.g. safety and liveness) can
be proved by means of mathematical proofs us-
ing χ deduction rules and properties. However,
this approach may not be intuitive to those who
have not a strong Computer Science background,
because rewriting of the specifications (based on
the properties) and formal reasoning (based on
the deduction rules) have to be made.

• In process algebras, linearisation is a transfor-
mation of a recursive specification into a linear
representation, i.e., a kind of normal form that
is convenient for many forms of analysis. Note
that these linear representations are expressed
as recursive specifications as well, but they use
only a small subset of the full process algebra.
In general, such linear representations can also
be considered very compact representations of
a possibly infinite state space. The original re-
cursive specification and its transformation are
required to be bisimilar, which ensures that the
relevant specification properties are preserved.
Some algorithms for linearisation of Hybrid Chi
have already been developed (see [16] for de-
tails). These algorithms can be reasonable easily
adopted for χ.

• χ can serve as a single-formalism-multi-solution,
this means that we can translate a χ specifica-
tion to the input languages of several verification
tools (e.g. CADP, SPIN [23] and Uppaal [24])

WSEAS TRANSACTIONS on ELECTRONICS K.L. Man

ISSN: 1109-9445
77

Issue 4, Volume 4, April 2007

and it can be verified in those verification tool
environments. This work was reported in [17].

• We can use χ tools for simulation and verifica-
tion of χ specifications. Below is a summary for
χ tools:

– χ simulator: a simulator for χ specifica-
tions was built (based on the formal seman-
tics of χ);

– χ translators: automatic translation tools,
which convert χ specifications to the cor-
responding models/specifications in mCRL
(the input language of CADP), Promela
(the input language of SPIN) and timed au-
tomata (the input language of Uppaal);

– availability: simulator, translation tools
and manuals of χ can be found in [26].

6 Conclusions and Future Work

χ can be reasonably and effectively used to give for-
mal specifications of hardware systems and possibly
to analyse them using various analysis approaches as
indicated in this paper.

In order to illustrate our work clearly, only sim-
ple hardware systems in χ were given in this paper.
Nevertheless, the use of χ is generally applicable to
all sizes and levels of hardware systems.

In our opinion, with respect to common hardware
description languages (e.g. VHDL and Verilog), χ can
precisely describe the behaviour of hardware systems
in a complete mathematical way. Prior to χ, from
literature, several process algebra based formalisms
(e.g. CHP [15]) were used to give formal specifica-
tions of hardware systems.

In addition to those formalisms, χ enhances
strength for formal specification, because χ has a
comprehensive set of operators that enables process
re-use, encapsulation, hierarchical and/or modular
composition of processes, etc. Furthermore, χ has a
rich set of support tools.

Recently, several other timed process algebras
have been developed (e.g. SystemCFL [28, 27, 29]
and PAFSV [30]) that can also be used for formal
specification and analysis of hardware systems.

Our future work will focus on:

• a comparative study between χ and other timed
process algebras for the use of specification and
analysis of hardware systems;

• the investigation of the applicability of existing
techniques (e.g. genetic algorithms) to optimise
χ specifications;

• the development of a χ synthesis-able subset
based on the traditional technology mapping.

Availability

For research purposes, we would be pleased to receive
interesting case studies on formal specification and
analysis of hardware systems from anyone working in
this area.

For more information, please send mail to
pafesd@gmail.com or visit PAFESD web-site
http://digilander.libero.it/pafesd/.

Acknowledgements

K.L. Man wishes to thank Jos Baeten, Bert van Beek,
Mohammad Mousavi, Koos Rooda, Ramon Schiffel-
ers, Pieter Cuijpers, Michel Reniers, Kees Middel-
burg, Uzma Khadim and Muck van Weerdenburg for
many stimulating and helpful discussions (focusing
on process algebras for distinct systems) in the past
few years.

He is indebted to Andrea Fedeli for his significant
contribution to the draft version of this paper.

Also, he would like to thank Michel Schellekens
and Menouer Boubekeur for many stimulating and
helpful discussions.

References:

[1] Baeten, J.C.M., Weijland, W.P., Process alge-
bra, volume 18 of Cambridge tracts in Theo-
retical Computer Science, Cambridge University
Press, Cambridge, United Kingdom, 1990.

[2] Baeten, J.C.M., Middelburg, C.A., Process al-
gebra with timing, EATCS Monographs Series,
Springer-Verlag, 2002.

[3] Nicollin, X., Sifakis, J., The algebra of timed
processes ATP: theory and application, Infor-
mation and Computation, 114(1):131-178, Oc-
tober, 1994.

[4] Cuijpers, P.J.L., Reniers, M.A., Hybrid process
algebra, Journal of Logic and Algebraic Pro-
gramming, 62(2):191-245, 2005.

[5] van Beek, D.A., Man, K.L., Reniers, M.A.,
Rooda, J.E., Schiffelers, R.R.H., Syntax and
semantics of timed Chi, Technical Report CS-
Report 05-09, Eindhoven University of Tech-
nology, Department of Computer Science, The
Netherlands, 2005.

WSEAS TRANSACTIONS on ELECTRONICS K.L. Man

ISSN: 1109-9445
78

Issue 4, Volume 4, April 2007

[6] Man, K.L., Schiffelers, R.R.H., Formal specifi-
cation and analysis of hybrid systems, PhD The-
sis, Eindhoven University of Technology, The
Netherlands, 2006.

[7] van Beek, D.A., Man, K.L., Reniers, M.A.,
Rooda, J.E., Schiffelers, R.R.H., Syntax and
consistent equation semantics of hybrid Chi,
Journal of logic and algebraic programming,
68(1-2):129-210, 2006.

[8] Plotkin, G.D., A structural approach to opera-
tional semantics, Technical Report DIAMI FN-
19, Aarhus University, Department of Computer
Science, Denmark, 1981.

[9] IEEE standard for Verilog hardware descrip-
tion language, IEEE Std 1364-2005 (revision of
IEEE Std 1364-2001), IEEE Computer Society,
2005.

[10] IEEE standard for VHDL language reference
manual, IEEE Std 1076-2000 (incorporates
IEEE Std 1076-1993 and IEEE Std 1076a-2000),
IEEE Computer Society, 2000.

[11] Schneider, G., Qiwen, X., Towards an opera-
tional semantics of Verilog, UNU/IIST Report
No. 147, International Institute for Software
Technology, United Nations University, Macau,
1998.

[12] Breuer, P.T., Delgado Kloos, C., Formal seman-
tics for VHDL, Kluwer Academic Publishers,
1995.

[13] Sasaki, H., Mizushima, K., Sasaki, T., A formal
semantics for Verilog-VHDL simulation interop-
erability by abstract state machine, Proceedings
of the Conference on Design, Automation and
Test in Europe, Munich, Germany, 1999.

[14] Huibiao, Z., Jifeng, H., A DC-based semantics
for Verilog, UNU/IIST Report No. 183, Interna-
tional Institute for Software Technology, United
Nations University, Macau, 2000.

[15] Salaun, G., Serwe, W., Translating hardware
process algebras into standard process algebras
- illustration with CHP and LOTOS, Proceedings
of the International Conference on Integrated
Formal Methods, Eindhoven, The Netherlands,
2005.

[16] Baeten, J.C.M., van Beek, D.A., Rooda, J.E.,
Handbook of dynamic system modeling (chapter
process algebra), CRC Press LLC, 2006.

[17] Bortnik, E.M., Trcka, N., Wijs, A.J., Luttik, B.,
van de Mortel-Fronczak, J.M., Baeten, J.C.M.,
Fokkink, W.J., Rooda, J.E., Analyzing a Chi
model of a turntable system using Spin, CADP
and Uppaal, Journal of logic and algebraic pro-
gramming, 65(2):51-104, 2005.

[18] Davies, J., Schneider, S., A brief history of Timed
CSP, Theoretical Computer Science, 138:183-
235, 1995.

[19] Westerlund, T., Plosila, J., Formal timing model
for hardware components, Technical Report 640
(tWePl04a), Turku Centre for Computer Sci-
ence, Finland, 2004.

[20] Baeten, J.C.M., A brief history of process alge-
bra, Technical Report CS-Report 04-02, Eind-
hoven University of Technology, Department of
Computer Science, The Netherlands, 2004.

[21] Hoare, C.A.R., Communicating sequential
processes, Communications of the ACM,
21(8):666-467, 1978.

[22] Fernandez, J.C., Garavel, H., Kerbrat, A.,
Mounier, L., Mateescu, R., Sighireanu, M.,
CADP - a protocol validation and verification
toolbox, Proceedings of the 8th Conference on
Computer Aided verification, volume 1102 of
Lecture Notes in Computer Science, pages 437-
440, 1996.

[23] Holzmann, G.J., The SPIN model checker,
Addison-Wesley, 2003.

[24] Larsen, K.G., Pettersson, P., Yi, W., UPPAAL in
a nutshell, Journal on Software Tools for Tech-
nology Transfer, 1(1-2):134-152, 1997.

[25] mCRL homepage, http://homepages.cwi.nl/˜

mcrl/.

[26] Chi tools and manuals are available on
http://se.wtb.tue.nl/sewiki/chi/installation.

[27] Man, K.L., SystemCFL: Formalization of Sys-
temC, IEEE Proceedings of the Mediterranean
Electrotechnical Conference, Dubrovnik, Croa-
tia, 2004.

[28] Man, K.L., Formal verification of SystemCFL

specifications using SPIN, Proceedings of the
5th WSEAS International Conference on Micro-
electronics, Nanoelectronics and Optoelectron-
ics, Prague, Czech Republic, 2006.

WSEAS TRANSACTIONS on ELECTRONICS K.L. Man

ISSN: 1109-9445
79

Issue 4, Volume 4, April 2007

[29] Man, K.L., SystemCFL: Formal specification
and analysis of hardware/software co-designs,
Journal of The World Scientific and Engineering
Academy and Society Transactions on Circuits
and Systems, 3(5):361-368, 2006.

[30] Man, K.L., Boubekeur, M., Schellekens, M.P.,
Process algebraic approach to SystemVerilog,
Proceedings of the IEEE Canadian Conference
on Electrical and Computer Engineering, Van-
couver, British Columbia, Canada, April, 2007.

WSEAS TRANSACTIONS on ELECTRONICS K.L. Man

ISSN: 1109-9445
80

Issue 4, Volume 4, April 2007

