
A Tutorial on ADT semantics for LOTOS users

Part II: Operations on Types

José A. Mañas

Dept. Ingenieŕıa Telemática
E.T.S.I. Telecomunicación

Ciudad Universitaria

E-28040 MADRID
SPAIN

jmanas@dit.upm.es

14 November, 1988

Quis Custodiet Ipsos Custodes?
Decimus Junius Juvenalis

Abstract

In a LOTOS specification there are many types that are build from more basic
ones. The operations allowed for types are presented with plenty of examples.

1 Introduction

This tutorial intends to cover the gap between normal specifiers and algebricians. The
question to answer is

what are the abstract data types of LOTOS?

LOTOS syntax is used, but not introduced in detail. Readers are referred to the standard
[ISO, 88]. This tutorial is dealing with semantics.

1

The author is not a mathematician, nor an algebrician, but a plain computer scientist,
with a very pragmatic interest on abstract data types.

The presentation will be straightforward, introducing only those theoretical concepts that
are strictly required. Many examples will be presented, not big ones, but meaningful ones.

The theory of abstract data types is not a single theory, but there are as many as ADT
languages. We shall concentrate on ACT ONE, the language used in LOTOS. When there
are several choices, they will be briefly presented, but only the one followed by ACT ONE
is carried on.

In real specifications there will be many types. These types can be combined in different
forms. Namely, renamed, composed, extended and actualized.

2 Renaming

In LOTOS there is syntactic support to define morphisms. A new type NT may be derived
from and old one OT by means of a morphism

m : OT → NT

that is written as

type NT is OT renamedby

sortnames

ns for os

. . . .

opnnames

no for oo

. . . .

endtype

where m is defined as

m(os) = ns for sorts
m(oo) = no for operations

2

The syntax forces to preserve the functionality of the operations: number of arguments
and format (prefix, infix) is not modified; just the names are consistently changed all over
the signature.

LOTOS puts a requirement on these morphisms: they must be injective. This require-
ment is not very theoretical, but practical. LOTOS designers think that it is not very
sensible to write morphisms that confuse things. But it may be very restrictive in certain
cases1. However, there is not much more fun with renaming.

3 Composition

It is much more challenging to compose types. LOTOS supports two forms of composition,
namely union and “enrichment”2. Union appears as multiple import of types, as in

type ... is A, B, ..., Z with ...

where types A, B, ...Z are composed, that is

A + B + ... + Z

Enrichment appears when sorts and/or operations are introduced, as in

type ... is ... with

sorts ... opns ... eqns ...

endtype

Let’s start with some theoretical background.

Let

A =< S, F, E >

be an algebra with sorts S, operations F and semantics defined by (positive conditional)
equations E. We extend this algebra by adding more of everything,

A + A′ =< S + S ′, F + F ′, E + E ′ >

1For instance, users cannot specify the mapping of Mod4 into Mod2, (see Part I).
2We shall briefly define a propriety called enrichment, so let us write the LOTOS construction within

quotes.

3

where + stands for disjunctive set union (i.e. standard or). The use of set union is
interesting in actual practice. Suppose two types include booleans. In the composition of
them there will be only a single boolean, as usually expected.

3.1 Consistency

If in (the initial model of) algebra A there exist two terms t1 and t2 that are not equal,
but they become equal in (the initial model of) algebra A+A′, then we say the extension
is inconsistent.

In positive terms, an extension is consistent iff ∀t1, t2 ∈ |A|

E + E ′ ` t1 = t2 ⇒ E ` t1 = t2

To be read: if in A + A′ we can prove two terms are equal, it must be provable too in the
original algebra. Consistency means equivalence classes are not collapsed.

For instance, when you write down types involving booleans, you must be careful that
things are either true or false, but never

true = false

3.1.1 Example

Let’s consider natural numbers

type Naturals

sorts nat

opns 0 : -> nat

s : nat -> nat

endtype

that we extend to have stacks of natural numbers3

type Inconsistent.Stack is Naturals with

sorts stack

opns empty : -> stack

3We do not claim it is a useful stack at all. But be aware that the strange equation [3] is too closed to
what normal specifiers write when they want a finite stack: something where nothing else can be added.

4

push : nat, stack -> stack

top : stack -> nat

eqns

[1] top (empty) = 0 ;

[2] top (push (n, s)) = n ;

[3] push (n, s) = s;

endtype

It can be easily shown this type is an inconsistent extension of naturals:

[4] top (push (s (0), empty)) = s (0) [2]
[5] top (empty) = s (0) [4]← [3]
[6] 0 = s (0) [5]← [1]

We can easily demonstrate that

∀x : nat, s(x) = 0

ALL the naturals are equal to zero. We have just ONE equivalence class.

However, don’t be distressed by this terrible example. There are many practical cases
where it is possible to live with inconsistencies. A bit more later on.

3.2 [Sufficient] Completeness

If for some sort s ∈ A, there exist terms in |A + A′|s for which there is no equal term in
|A|s, then we say the extension is incomplete.

In positive terms, an extension is complete4 iff

∀s ∈ A, ∀t ∈ |A + A′|s, ∃t1 ∈ |A|s, E + E ′ ` t = t1

Completeness means that we are not inventing new equivalence classes.

For instance, when you write down types involving booleans, it is important that for every
t: bool you can prove

t = true or t = false

4Some authors call it sufficiently complete. We shall not make any difference.

5

3.2.1 Example

Let’s now try another definition of stacks of natural numbers5.

type Incomplete.Stack is Naturals with

sorts stack

opns empty : -> stack

push : nat, stack -> stack

top : stack -> nat

eqns

top (push (n, s)) = n;

endtype

It can be easily shown this type is an incomplete extension of Naturals. Here you have a
few new equivalence classes for sort nat

top (empty)
s (top (empty))

s (s (top (empty)))
. . .

3.3 Enrichment

We say an extension is an enrichment iff it is consistent and complete.

Enrichment means there are the same equivalence classes before and after the extension.
Neither less, nor more.

3.3.1 Example

Lastly, let’s define a good stack of nats.

type Good.Stack is Naturals with

sorts stack

opns empty : -> stack

push : nat, stack -> stack

top : stack -> nat

5We do not claim it is a useful stack at all. But be aware that lack of previous equation [1] is too close
to what normal specifiers write when ignoring errors.

6

eqns

[1] top (empty) = 0 ;

[2] top (push (n, s)) = n ;

endtype

It can be shown this type is an enrichment of Naturals:

1. Consistency

(a) it is enough to consider sort nat, just because there is no other sort in Naturals.

(b) there is only one operation producing nat: top

(c) we have to prove that

6 ∃s : stack, top(s) = s1 and top(s) = s2

and Naturals ` s1 6∈ s2

i. for s = empty, top(empty) = 0 is unique.

ii. for s = push(n, s), top(push(n, s)) = n is unique too.

2. Completeness

(a) we have to prove that ∀t = top(s) ∈ nat, ∃n : nat such that top(s) = n

i. top(empty) = 0 ∈ |Naturals|nat

ii. top(push(n, s)) = n ∈ |Naturals|nat

3.4 Do we need enrichments?

LOTOS does not restrict extensions. Specifiers may write inconsistent and incomplete
types freely. It’s their full responsibility6. Inconsistent specifications may save paper.
For example, let us suppose we have a very nice theory of groups. We can easily go into
abelian groups

type Abelian.Group is Group with

eqns

x . y = y . x

endtype

which is clearly inconsistent, because a.b 6= b.a in group theory.

6For readers surprised by such a permissiveness, we must recognize that, in general, these proprieties
are indecidable. That’s the true reason to allow them: who sorts them out?

7

Incompleteness is very often used in relation with partial algebras. Coming back to that
example of type Incomplete.Stack, the peculiar equation for top(empty) reflects that it
is an exception. We can comfortably live with incomplete types, so far as we can prove
(somehow) that the undesirable terms will be never produced. The issue is not trivial,
and here we just have the room to mention it. When ADT languages are more oriented
to produce working products (lotos is mostly devoted to algebra) it is usual to introduce
“application conditions” or predicates that are tested on produced terms, and mut be
fulfilled in order to the term to be accepted. It is closely related to exception mechanisms
that raise a signal (in Ada terms) when the operands fail to comply with some requirement,
as is the case for operation top on operand empty.

To put another example, the definition of a partial ordering relation will yield TRUE,
FALSE or UNKNOWN (for unrelated pairs). It’s clearly an incomplete extension of
Booleans.

To summarize, LOTOS allows for inconsistent and incomplete types. Such types may be
harmless, or cause troubles. That’s up to the specifier. Nevertheless, it would be great
having a tool to check it. Such a tools, are currently under study, but their applicability
is quite restricted.

4 Parameterized Types: Introduction

Reusability is a major goal of modern software engineering. In order to achieve this goal,
it is necessary that software be broken into components that are as resuable as possible;
parameterization is a technique that can greatly enhance the reusability of components.
For example, lists of X, sets of X, etc. Generic modules also greatly ameliorate the
otherwise odious need for defining abstractions whenever they are used. Without some
such facility, strong typing would not be tolerable in practice.

Before giving details, we shall informally introduce the concepts we are going to deal with.
A free use of Pascal will help in fixing the wishes.

5 Parameterization: Informal Presentation

5.1 Just Abstraction

It is typical of Pascal programmers to define LISP lists as

TYPE list= record item: integer; next: ^list end;

8

And then code some functions and procedures to handle these lists, namely header, tail,
concatenation, etc.

LOTOS uses normal ADTs for this business:

type Lists is Naturals with

sorts list

opns nil : -> list

_ .. _ : nat, list -> list (* cons *)

hd : list -> nat (* car *)

tl : list -> list (* cdr *)

_ ++ _ : list, list -> list (* append *)

eqns

hd (nil) = 0 ; (* exception *)

tl (nil) = nil ; (* exception *)

hd (n .. L) = n ;

tl (n .. L) = L ;

nil ++ L = L ;

L ++ nil = L ;

(n .. L1) ++ L2 = n .. (L1 ++ L2) ;

endtype

Now, the Pascal programmer wants a sorting function:

function sort (L: list): list;

begin

(* some wonderful algorithm *)

end

The LOTOS specifier just extends the previous type:

type Sorts.Nats is Lists with

opns

sort : list -> list

sorted : list -> bool

in : X, list -> bool

hase : list, list -> bool

(* HAs Same Elements *)

eqns

[1] hase (L, L) = true ;

[2] hase (L1 ++ (x .. L2),

9

M1 ++ (x .. M2)) = hase (L1 ++ L2, M1 ++ M2) ;

[3] x in L1 = true,

x in L2 = false =>

hase (L1, L2) = false ;

[4] hase (L1, L2) = hase (L2, L1) ;

[5] x in nil = false ;

[6] x in (y .. L) = (x eq y) or (x in L) ;

[7] sorted (nil) = true ;

[8] sorted (x .. nil) = true ;

[9] sorted (x .. (y .. L)) = (x <= y) and sorted (y .. L) ;

[10] hase (L1, L2) = true,

sorted (L2) = true =>

sort (L1) = L2 ;

endtype

While the Pascal programmer needed a parameterized function, the LOTOS specifier uses
just an extended ADT.

Sorting may be specified in many ways. While the Pascal programmer has to go directly
for a sorting algorithm,the LOTOS specifier doen’t need any: he just states the properties
of sorting, namely getting something sorted. The previous presentation is particularly
independent of any sorting algorithm. The key ideas come from prof.dr. Manfred Broy,
at Passau.

5.2 Parameterization

Now, our Pascal programmer wants something better, a list of anything, something he
tries to write as

TYPE list (X) = record item: X; next: ^list (X) end;

but the Pascal compiler shouts.

No problem for the LOTOS specifier:

type Lists.of.X is

formalsorts X

10

formalopns E : -> X (* for error *)

sorts list

opns nil : -> list

_ .. _ : X, list -> list (* cons *)

hd : list -> X (* car *)

tl : list -> list (* cdr *)

_ ++ _ : list, list -> list (* append *)

eqns

hd (nil) = E ; (* the error *)

tl (nil) = nil ;

hd (n .. L) = n ;

tl (n .. L) = n ;

nil ++ L = L ;

(n .. L1) ++ L2 = n .. (L1 ++ L2) ;

endtype

Now, for lists of naturals,

type Lists.of.Nats is Lists.of.X

actualizedby Naturals using

sortnames nat for X

opnnames 0 for E

endtype

The poor Pascal programmer is still alive7 to try

function sort (L: list (X),

<=: function (X, X): boolean): list (X) ;

where he is trying to pass both a list of anything and a boolean function to compare those
anythings. Of course, the Pascal compiler shouts more and more . . .

In the meanwhile, our LOTOS specifier goes on without trouble . . . 8

type Sorts.Lists.of.X is Lists.of.X with

formalsorts

bool

7Incredible! Why didn’t he yet learn LOTOS?
8He sings in the rain, you know.

11

formalopns

_ <= _ : X, X -> bool

_ eq _ : X, X -> bool

true,

false : -> bool

_ and _,

_ or _ : bool, bool -> bool

opns

(* same as above in type Sorts.Nats *)

eqns

(* same as above in type Sorts.Nats *)

endtype

If you want to sort natural numbers, just instantiate it ...

type Sorts.Lists.of.Nats is Sorts.Lists.of.X

actualizedby Naturals using

sortnames nat for X

opnnames 0 for E

endtype

Again, notice that those sorts and operations with the same names do not need to be
explicitly stated. E.g. bool for bool. (We suppose Naturals include Booleans, as usual).

5.3 Interface Requirements

Readers may be shivering by the power of these constructions. While in poor Pascal
strong type checking is good enough, here we are going far further. Is strong sort checking
enough? Shouldn’t we ask for more security?

Yes, we can go further. Notice you can build lists of anything, but you can only sort lists
of things on which a total ordering is defined. LOTOS permits to impose conditions on
actual parameters. For our case, we would like the following formal semantics9

(* eq must be an equality relation *)

[1] a eq a = true ; (* reflexive *)

[2] a eq b = b eq a ; (* symmetric *)

[3] a eq b = true ,

9Semantics for the formal algebra, that is, restrictions to put on any potential actual algebra.

12

b eq c = true =>

a eq c = true ; (* transitive *)

(* <= must be a total ordering *)

[4] a <= a = true ; (* reflexive *)

[5] a <= b = true ,

b <= a = true =>

b eq a = true ; (* antisymmetric *)

[6] a <= b = true ,

b <= c = true =>

a <= c = true ; (* transitive *)

[7] (a <= b) or (b <= a) = true ; (* total *)

(* true and false must be different *)

[8] true <> false ;

(* and must be as expected *)

[9] true and a = a ;

[10] false and a = false ;

[11] a and b = b and a ;

(* or must be as expected *)

[12] true or a = true ;

[13] false or a = a ;

[14] a or b = b or a ;

LOTOS permits to state all these conditions under the section formaleqns. But there is
an exception: only (positive conditional) equalities are allowed. Thus, [8] is not accepted.

In general ADT theory, the formal equations are needed only to certify an actual candi-
date is acceptable. Once accepted, they may be dropped. But in LOTOS, these formal
equations are retained as part of the result type. Then the discussion above about ex-
istence of an initial model for algebras specified using unequalities comes back. LOTOS
just request (positive conditional) equalities.

As perspicacious readers did already notice the difficulty arises when one has to prove that
the conditions hold for some particular module. Of course, the simpler the conditions the
better the chance of actually getting the proof. But be ready for hard work!

Automatic theorem provers are not very good in actual practice. But, it is usually the
case that the formal equations are syntactically equal to the equations of the actual
parameter. In these cases, the demonstration is trivial. For instance, the formal equations
imposed on operations and and or. are very likely to be present in the actual type
Booleans. That greatly simplifies life.

13

5.4 General Instantiation

We have already done some instantiations or actualizations of parameterized ADTs. They
were rather conventional in the sense that the result is an algebra10. But let’s go a little
bit further and allow actual parameters to be parameterized ADTs as well. For instance,
lists of lists . . .

type Lists.of.Lists.of.X is Lists.of.X

actualizedby Lists.of.X using

sortnames list for X

opnnames nil for E

endtype

We get another parameterized ADT that can be instantiated. For instance, lists of lists
of natural numbers . . .

type Lists.of.Lists.of.Nats is Lists.of.Lists.of.X

actualizedby Naturals using

sortnames nat for X

opnnames 0 for E

endtype

When several actualization steps are involved, the order of actualization is not relevant.
That is, we can as well specify

type Lists.of.Lists.of.Nats is Lists.of.X

actualizedby Lists.of.Nats using

sortnames list for X

opnnames nil for E

endtype

5.5 Higher Order Programming

This last example will not introduce new concepts, but let’s put it forward to show the
power of LOTOS ADTs.

10Better say a category of algebras out of which we choose the initial model.

14

LISP and functional languages in general claim that they provide higher order functions.
In simple terms, they treat functions as first class citizens that can be passed as argu-
ments and returned as results. LOTOS is not a higher order language and arguments to
operations cannot be operations. But with parameterized specifications, something can
be done.

The next example shows a classical case of higher order programming. In LISP style it is
expressed as

mkiter= function (star, one)

return iter

where

iter= function (L)

if (L = NIL)

then

return one

else

return star (car (L), iter (cdr (L)))

But we have something more than in LISP: we can impose conditions on the formals ...

type On.Lists is Lists.of.X with

formalopns

1 : -> X

_ * _ : X, X -> X

_ + _ : X, X -> X

formaleqns

a * 1 = a ; (* right neutral *)

opns

iter : list -> X

_ & _ : list, list -> list

eqns

iter (nil) = 1 ;

iter (x .. L) = x * iter (L) ;

L & nil = L ;

nil & L = nil ;

(x1 .. L1) & (x2 .. L2) = (x1 + x2) .. (L1 & L2) ;

This type may be instantiated with Naturals using

15

+ for *

0 for 1

f for +

Then iter adds the elements of a list. And you can count the elements as

iter (L & (1 .. 1 .. 1))

Or you can use

+ for *

0 for 1

* for +

Then & corresponds to the internal product.

It is left as an exercise to the reader instantiating it to evaluate the Pythagoras’ distance.

6 Parameterization: Formal Presentation

In general, a LOTOS ADT will include some formal sorts FS, some formal operations
FF , some formal equations FE, some sorts S, some operations F and some equations E.

Let’s introduce some notation,

PSPEC is the parameterized ADT
FA is the formal parameter =< FSIG, FE >

AA is the actual parameter =< ASIG, AE >

RA is the result of instantiation =< RSIG, RE >

6.1 Parameterized Specifications

A parameterized specification is defined as a pair of algebras

PSPEC =< FA, A >

where there is a formal and a target algebras

16

FA =< FS, FF, FE >

A =< FS + S, FF + F, FE + E >

FA states properties that actual parameters must have. A extends the result of importing
an actual with more sorts, operations and equations.

6.2 Basic Actualization

Actualization is a total morphism

g : FSIG→ ASIG

Total morphism means that every formal sort and every formal operation must be instan-
tiated. LOTOS does not support the so called partial actualizations where some formals
are instantiated while others remain formal.

If the actual is a simple algebra AA, the result is defined as

RA =< AS + g(FS) + S, AF + g(FF) + F, AE + g(FE) + g(E) >

Notice we write g(E) because formal operations may appear in the target part, and the
actualization morphism have to be applied to them.

That expression may be simplified to

RA =< AS + S, AF + F, AE + g(FE) + g(E) >

because g(FS) must be a subset of AS, and g(FF), a subset of AF .

g(FSIG) ⊂ ASIG

With respect to equations, they could be dropped, but LOTOS holds them. (See require-
ment 2 below).

17

6.3 General Actualization

In general, the actual parameter may be another parameterized ADT

APSPEC =<< AFS, AFF, AFE >< AFS + AS, AFF + AF, AFE + AE >>

then the instantiation is a nice game of unions

PSPEC(APSPEC) = << AFS, AFF, AFE >

< AFS + AS + g(FS) + S,

AFF + AF + g(FF) + F,

AFE + AE + g(FE) + g(E) >>

With respect to requirements, see requirement 2 below.

6.4 Nonparameterized types

The types studied up to this section were not parameterized. They strictly correspond to
parameterized specifications with an empty formal part

<<>, < S, F, E >>

They play a similar role to nullary operations: somehow they are constants.

6.5 Operations on parameterized ADTs

Parameterized ADTs may be renamed and composed. When renamed, the morphism
applies both to the formal and target parts.

When composed, they are or’ed componentwise. I.e.

PSPEC1 + PSPEC2 = << FS1 + FS2, FF1 + FF2, FE1 + FE2 >,

< FS1 + FS2 + S1 + S2,
FF1 + FF2 + F1 + F2,
FE1 + FE2 + E1 + E2 >>

18

6.6 Requirement 1

The formal part must be a self-contained ADT. That means that sorts used in FF and
FE must belong to FS, and operations used in FE must belong to FF .

Referring back to the example of type Sorts.Lists.of.X, notice bool appears as a formal
sort that will be later actualized by actual booleans.

6.7 Requirement 2

The formal equations must hold for the actual parameter. That is, FE must be a conse-
quence of AE

AE ` g(FE)

in terms of categories,

Alg(ASIG, AE) ⊆ Alg(ASIG, g(FE))

in words, the actual parameter must be a subcategory of the formal algebra after mapping
it to the actual signature.

word algebra

�
�

�
�

�
�

@
@

@
@

@
@

?g(FE)
�

�
�

��

@
@

@
@@

?AE
�

�
�

@
@

@

@
@

@
@

@
@R

�
�

�
�

�
�	

bottom algebra

When the actual is a parameterized ADT, then the formal equations must be guaranteed

AFE + AE ` g(FE)

19

6.8 Persistency

Let’s consider every sort s in AS. When the target is added, we are adding new terms to
that sort. After considering the whole set of equations AE + g(FE) + E, the number of
equivalence classes in the sort s in the result algebra may be

• bigger than in AA

that’s similar to extending an ADT incompletely; we say AA does not persists
through actualization;

• smaller than in AA

that’s similar to extending an ADT inconsistently; we say AA does not persists
through actualization;

• equal

that’s similar to enriching an ADT; we say AA persists through actualization;

A PSPEC is persistent if for every actual algebra AA that have the properties required
by FE, and for every sort in AA, the equivalence classes of s in AA are the same as in
RA.

Usually, pspecs are not persistent for every valid actual algebra, but only for some of them.
Persistency is similar to consistency and completeness between the actual parameter and
the resultant algebra. The intuition is rather natural and not too complicated, but the
mathematical treatment is too large to be covered in this tutorial.

6.8.1 Examples

Type Lists.of.X is persistent over any actual because

1. There is no formal condition FE, thus any actual type may be used for instantiation.

2. The equations do not make equal any term in X11.

3. No new equivalence class is introduced in sort X.

Persistency in actualizations is very similar to consistency in extensions. For instance,

11It is not true by definition; you have to prove it, but the proof is very easy.

20

type Stack.of.X is

formalsorts X

formalopns E : -> X

sorts stack

opns empty : -> stack

push : nat, stack -> stack

top : stack -> nat

eqns

[1] top (empty) = E ;

[2] top (push (x, s)) = x ;

[3] push (x, s) = s;

endtype

is not persistent for any actual, because it makes every term of sort X equal to E.

6.9 Do we need persistent types?

As with enrichments, persistency is a nice propriety, but very often it is too restrictive.
So, it’s reasonable that LOTOS does not require parameterized ADTs to be persistent.
Nevertheless, it would be great having a tool to check it. Such a tools are currently under
study, but its applicability seems to be quite restricted.

However, persistency is very important when libraries of ADTs are considered. Parame-
terized ADTs in libraries should be carefully documented, clearly specifying the interface
requirements, the class of ADTs for which they are persistent, and what happens with
other ADTs for which they are not persistent, but may still be useful.

Nobody would accept type Stack.of.X (as presented in the last section) in the standard
library. But specifiers may accept a version that introduces new equivalence classes (some-
thing similar to the type Incomplete.Stack presented before). Of course, specifiers must
be warned.

To summarize. Persistency is a nice property, LOTOS does not enforce it, it is not easily
checkable, you can live without it, but it must be clearly documented, mainly for types
in the standard library.

6.10 Composability

Persistency of PSPECS guarantees composability of actualizations. An example was
already shown building

Lists.of.Lists.of.Nats = Lists.of.Lists.of.X (Naturals)

21

= (Lists.of.X (Lists.of.X)) (Naturals)

= Lists.of.X (Lists.of.Nats)

= Lists.of.X (Lists.of.X (Naturals))

and both routes yield the same result.

7 The Case for LOTOS

Most of the use of parameterized specifications in LOTOS has been already presented.
Let’s now introduce the last details with respect to scopes, in order to unsderstand the
use of signatures and algebras in actual specifications.

7.1 Requirement

Surprisingly, LOTOS requires actualization morphisms to be injective for operations. So,
you cannot actualize type On.Lists using + both for ∗ and +. I wonder why.

7.2 Scope signatures

LOTOS specifications are organized in scopes that can be nested as usual in block struc-
tured languages as Pascal. There is a global scope that encompasses from the specification
header down to the end of the specification. Gloal data types have this scope:

specification ...

global data type definitions

behaviour

. . . .

endspec

There are nested scopes called definition blocks. They are introduced after the behaviour
key word (as in the previous pattern), and as the body of process definitions:

behaviour expression

where

local data type definitions

22

When we refer to a sort identifier to qualify a formal parameter (of specification or pro-
cess), or in a behaviour expression, we are referring to some signature that gives the
syntax of the terms of that sort, and to some algebra that gives the semantics of values
of that sort.

But, when there are several types with the same scope, ones being extensions of others,

which signature are we referring to?

Let’s put an example ...

process P ...

... g ?x: SA ; BE

where

type A is

sorts SA

opns a : -> SA

endtype

type B is A with

opns b : -> SA

endtype

endproc

where type B is an incomplete extension of type A.

which are the valid values for x : SA ?

the answer is: you build a signature per scope that is the union of all the types defined
in that scope12. That signature is used to produce ground terms for x. In the previous
example,

type this.scope is

sorts SA

opns a : -> SA

b : -> SA

endtype

12Standard rules for visibility and hiding of identifiers in nested scopes, as in Pascal, are used.

23

and

g ?x: SA ; BE

is equivalent to

g !a ; BE [a/x]

[]

g !b ; BE [b/x]

The procedure is systematic, but usually there are infinite ground terms, and you cannot
expand ?-experiment offers in a finite piece of paper. But that’s only a minor trouble.
However, a bigger trouble rises when considering the following section. In-line expansion
of ground terms is not always correct.

7.3 Canonical Data Type

Previous section presented the case for signatures, but we are also interested on the
algebra. Which algebra are we referring to when there are several types involved? Sur-
prisingly, we are not referring to the algebra resulting of the union of local algebras. Let’s
put another example,

hide g in

g ?x: SA ; ...

|[g]|

P [g]

where

type A is

sorts SA

opns a : -> SA

endtype

process P [g] ... :=

g !b ; ...

where

type B is A with

opns b : -> SA

endtype

endproc

24

will actions on g synchronize?

According to the scope signature procedure, they would not, because term b is ignored
outside process P , and thus g ?x: Sa would only expand into g !a. But that’s an incom-
plete view of the story. In fact they synchronize because LOTOS uses ONLY ONE algebra
for the WHOLE specification. This single algebra is called canonical and results of the
union of ALL the types spread along the specification. Of course, only non parameterized
types are considered. Parameterized ADTs were already used to build nonparameterized
types.

7.4 Last comment

The procedures to build scope signatures and the canonical algebra imply that it is EX-
TREMELY DANGEROUS to extend types incompletely or inconsistently, or deal
with nonpersistent parameterized ADTs.

For instance, imagine you extend some type including Booleans and, inadvertently, you
make

true = false

You have destroyed Booleans everywhere!

But, as already mentioned, those bad types are useful. There is a systematic trick to deal
with this business. If you want a new type NT that is based on an old one OT , and
NT modifies the partition of OT sorts into equivalence classes, and you want OT to be
preserved as it is, then do the extension (actualization) in two steps:

first rename OT:

type ROT is OT renamedby

sortnames

. . . .

opnnames

. . . .

endtype

then operate on ROT:

type NT is ROT with

... your nasty business goes here

endtype

25

When LOTOS joins OT + ROT + NT , NT destroys ROT , but OT is not disturbed.

8 Further Readings

The bible is [Ehrig, 85], but it is unreadable for beginners and covers too many topics and
issues currently under research. Language ACT ONE, the ancestor of LOTOS for ADTs,
is presented in chapter 9, with examples.

For LOTOS, the standard reference is [ISO, 88], both for syntax and precise semantics.
This tutorial has not been too precise with syntax. If you really intend to write data
types in LOTOS, have a look at the concrete syntax. For the semantics, I think that the
only way through is letting the semantics analyser complain till it gets through. Then,
use a simulator till you are confident with your types.

[Broy, 81] introduces the proprieties of composition from the point of view of category
theory.

Parameterization is subject to very intensive research. A good introduction with reason-
able examples can be found in [Goguen, 85a]. There is some philosophy in [Goguen, 85b].
It is interesting to read [Goguen, 79] where a working language is presented with many
examples.

[Wagner, 81] is more formal, but still readable. This last paper was presented to a congress
in [Tatcher, 82] in a more formal style. If the reader wants brain food, he may try
[Ehrig, 81]. At least there are several interesting examples.

9 Acknowledgements

Presentations of ADTs use to be too trivial or too complicated for laymen. Understanding
the theory and putting it in simple words with examples has been a time consuming task.
Many people have helped in discussing issues, examples, papers and books.

I have to acknowledge the early help of Huub van Thienen in the Twente University of
Technology13, as well as the other members of the SEDOS Project, mainly those at the
Technical University of Berlin.

Apart from SEDOS, I am very thankful to the Research Center of Standard Electrica at
Madrid, for inviting to the highly illuminating lectures of prof.dr. Manfred Broy from
Passau.

And last, but not least, I have to remind the members of the Department of Ingenier̀ıa

13Current affiliation: Dpt. of Informatics, Faculty of Science, University of Nijmegen, The Netherlands.

26

Telemática, and the students attending to the courses on LOTOS at the ETSITM, who
have stoically attended the lectures and provided fruitful feedback.

References

[Broy, 81] M. Broy, C. Pair and M. Wirsing. A Systematic Study of Models of Ab-
stract Data Types. 1981.

[Ehrig, 81] H. Ehrig, H.J. Kreowski, J.W. Tatcher, E.G. Wagner and J.B. Wright.
Parameter Passing in Algebraic Specification Languages. Workshop on
Program Specification, Aarhus, 1981. LNCS vol. 134, pp. 322-369.

[Ehrig, 85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification, Part 1.
Springer Verlag, Berlin, 1985.

[Goguen, 85a] J. Goguen and J. Meseguer. EQLOG: Equality, Types, and Generic Mod-
ules for Logic Programming. Int. Summer School on Advanced Prog. Tech-
nologies, M.F. Verdejo (ed.). Fac. Informatica de San Sebastian, 1985. pp.
1-69.

[Goguen, 85b] J. Goguen. Parameterized Programming. Int. Summer School on Ad-
vanced Prog. Technologies, M.F. Verdejo (ed.). Fac. Informatica de San
Sebastian, 1985. pp. 70-121.

[Goguen, 79] J.A. Goguen and J.J. Tardo. An Introduction to OBJ. IEEE Conf. Spec.
for Reliable Software, M.I.T. April, 1979. pp. 170-189.

[ISO, 88] ISO - Information Processing Systems - Open Systems Interconnection -
LOTOS, A Formal Description Technique Based on the Temporal Order-
ing of Observational Behaviour. IS 8807, 1988.

[Tatcher, 82] J. Tatcher, E. Wagner and J.B. Wright. Data Type Specification: Param-
eterization and The Power of Specification Techniques. Trans. Prog. Lang.
and Systems, 4(4), 1982. pp. 711-732.

[Wagner, 81] E.G. Wagner. Lecture Notes on the Algebraic Specification of Data Types.
IBM, Thomas J. Watson Research Center, Yorktown Heights, New York.
RC 9203, Oct. 1981.

27

