
Dialogue modelling in the framework of an
interactor model

Panos Markopoulos, Jon Rowson and Peter Johnson

Dpt. of Computer Science
Queen Mary and Westfield College

University of London

Abstract

This paper discusses a formal interactor model called ADC as an architectural construct for modelling human computer
interface software.  Some intuitions related to the model introduced in [1] are approached more formally.  The present
exposition focuses upon the specification of one component of the model, called the controller unit, which provides the
scope for the dialogue representation.  The decomposition of interactors is discussed and exemplified through some
extracts from a case study.  Decomposition and its opposite the synthesis of interactors [2] are specification
transformations that are essential for the use of interactors in the design and development of user interface software.
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Introduction

Interactor models are increasingly popular abstractions for modelling interactive systems.  Duke et. al. [3] define
interactors as ‘components in the description of an interactive system that encapsulate a state, the events that manipulate
the state, and the means by which the state is made perceivable to the users of the system...’.  They can be used
analytically for modelling properties of interactive systems but also as building blocks in the specification of interface
software.

The ADC interactor model discussed hereby was introduced in [1] as a variation of the interactor model of [4].  It is
named after its main components the abstraction, the display and the controller.  ADC is characterised by the
specification in distinct modules of the data operations and the temporal ordering of the behaviour of the interactor.
The advantages sought with this modularity pertain to the derived engineering properties.  In [1] a scrolling list was
modelled as the composition of the specifications of a scrollable list of elements and a scroll-bar interactor.  It was
observed that the composition expression could itself be written in the form of the ADC model.  It was suggested that
this was a general property for compositions of ADC interactors that was built into the model.  This rewriting is more
rigorously discussed as a transformation of interactor specifications called synthesis in [2].  Synthesis serves the bottom
up construction of higher level components from simpler constituents.  Top down development requires the refinement
of interactor specifications.  One form of refinement is the decomposition of interactor specifications discussed below.

The concept of the abstract view of an ADC interactor is introduced.  An abstract view of an ADC interactor
specification concerns mostly compound expressions where some of the internal organisation of the composition is
abstracted away from.  The presentation in later sections aims to discuss the meaning of abstract views, their
decompositions and to exemplify their use.  Examples are taken from a case study in the specification of a graphical
interface to a multimedia application, using the ADC model, albeit with an imaginary sequence of design steps.

The focus of this paper is the issue of dialogue representation in the context of the ADC model.  Dialogue modelling
and notations for the specification of the dialogue structure supported by an interface are traditional concerns of
research in human computer interaction [5].  An architectural model like the ADC interactor provides a framework that
defines the scope of the dialogue representation.  Further it facilitates the verification of dialogue properties in a
modular fashion.

The first section introduces the ADC model briefly.  The full definition of the model found in [1] is not repeated as this
presentation focuses upon the specification in LOTOS of the controller unit, that contains the dialogue specification.
Some of the properties of the ADC model, the concept of abstract views and their manipulations are discussed in
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Figure 1.  The internal structure of an interactor.

section 2.  Section 3
discusses the scope of
dialogue modelling in the
ADC model.  In section 4,
these ideas are exemplified
in the context of the
specification of a simple
interactive application.

1. A brief
introduction to the
ADC model

Similar to Paternó [4],
interactors are seen as basic
communication entities that
cooperate with each other in
order to manage the
dialogue between a user and
an application.  Interactors
are modelled as LOTOS
processes which can communicate with each other and possibly with the user or the application.  Interactions take place
over the gates of the process, they have no duration but may have a structure that models the transfer of data into or out
of the interactor.  The interface can be modelled as a graph whose nodes are the interactors and whose edges correspond
to connections between them over a pair of gates.  Interactors may also be connected to agents representing the
application and the user.  Unlike LOTOS processes the communication of information is directed.

When both the display state and the abstraction state are used to interpret received input, this is considered to be
arriving at the display side.  Intuitively, this corresponds to user input that the interactor needs to de-reference with
respect to the current display.  In practice this is the only difference between input arriving to one side or the other.
Choosing which side an interactor gate belongs to does not depend on what it connects to but on how the information
received should be interpreted. Note that the interpretation of input based on the display contents characterises graphical
interaction.

The ADC model distinguishes three aspects of the interactor description which are described in distinct modules:

(a) the data held by the interactor and the operations it applies to the data described in the AD (abstraction - display)
data type.

(b) a process holding as its local parameters (information hiding) the abstraction and the display states of the interactor.
This process called the Abstraction and Display Unit (ADU) links the data operations to the events that cause them.

(c) the temporal ordering of its behaviour described in the Controller Unit (CU).

The ADC interactor is  defined as a LOTOS process that is formed by the parallel composition the ADU and the CU.

ADC[G c∪ Gio](State) =  ADU[Gio ](State) |[Gio ]| CU[Gc ∪ Gio]

where State  stands for the state parameters of the ADU, pertaining to the abstraction and the display state of the
interactor. The set of input and output gates Gio contains all the gates of the ADU.  An event occurrence on such a gate
may update the abstraction and display states of the ADU and may output their values.  Gio  is partitioned into subsets,
distinguished by the direction of communication (input or output) and the side of the interactor (abstraction or display).
Event occurrences over a gate invoke different operations for each of these subsets.  The operations applied by the ADU
are defined by the data type AD.  For a particular type of interactor a corresponding data type AD has to be defined.
The signature of these data types follows the general form introduced in [1].  This is not repeated as the present
discussion focuses on the specification of the CU.  However it is worth noting that the gates in the set Gio  are typed,
according to their purpose.  In figure 1, it can be seen that on the display side input gates may receive data of sort
dInpData and output gates will offer data of sort dOutData.  On the application side input gates may receive data of sort
aInpData and output gates may offer data of sort aOutData.  Finally, events on the gates in Gc do not have any effect on
the abstraction and display state and carry no data.  They are used only in the specification of the controller behaviour
and are indicated in figure 1 as single lines to gates of the controller unit.

Characteristically, the ADU is neutral with respect to the temporal ordering of its interactions: at all times it offers
events on all its gates.  The temporal ordering of these events is determined by the CU with which the ADU
synchronises over all of its gates (figure 1).  The CU maintains no state, in terms of values of state parameters, but
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simply encodes an ordering of events on its gates.  It also encodes some standard behaviours built in the ADC interactor
structure.  The interactor is defined with gate sets that have the effect of starting, suspending, resuming, restarting and
aborting the operation of the interactor.  For short these standard behaviours and the corresponding gates are referred to
as SSRRA behaviours (res. gates).  They are offered to the specifier-user of the model in a parameterised form, that
requires only instantiation of the gate identifiers and appropriately connecting the gates to other interactors.

Interactors are represented in diagrams as barrel shaped nodes with the top and bottom arches dedicated to connections
to the abstraction and display side respectively.  The vertical sides are dedicated to controller connections, i.e. gates of
the controller process that do not belong to the ADU.

A LOTOS process definition below shows the overall structure of the CU component.  For simplicity, assume that gate
sets are atomic, thus there is only one start event, only one resume event etc. which are named accordingly.  Similarly
let Gio  = {dInp, dOut, aInp, aOut} whose purpose is respectively: to receive input at the display side, to output the
display state and to receive input and output data at the abstraction side.  It has already been mentioned that events on
these are typed, in accordance to the typing of the ADU.  However, the CU does not impose any selection predicate on
the values offered and does not record this information in some local state component.  Other than the typing
information on its gates, which is necessary for the synchronisation with the ADU, the CU ignores the data values
associated with events.

The standard structure of the CU aims to support the standard SSRRA behaviours, while dialogue particular to the
interactor is encoded in the constraints component (CC).  The CC specifies separately the temporal ordering of events
on the input and output gates that are common with the ADU and gates dedicated for dialogue control.  The latter have
no effect on the values of the data held by the ADU, so they do not belong in the alphabet of this process, but may
easily alter the ‘dialogue state’.  Let Gdialogue ={d} in the following discussion; in practice there could be zero or more
such events.

CU[start, restart, suspend, resume, abort, d, dInp, dOut, aInp, aOut] :=
start; RUN [restart, suspend, resume, abort, d, dInp, dOut, aInp, aOut]

RUN[restart, suspend, resume, abort, d, dInp, dOut, aInp, aOut] :=
(CC[d, dInp, dOut, aInp, aOut]
|[d, dInp, dOut, aInp, aOut]|
SUSP_RESUM [suspend, resume, d, dInp, dOut, aInp, aOut])
[> INTERRUPT[restart, suspend, resume, abort, d, dInp, dOut, aInp, aOut]

SUSP_RESUM [suspend, resume, d, dInp, dOut, aInp, aOut] :=
ANYORDER [d, dInp, dOut, aInp, aOut]

[> suspend; resume; SUSP_RESUM [suspend, resume, d, dInp, dOut, aInp, aOut]

ANYORDER [d, dInp, dOut, aInp, aOut] :=
d; ANYORDER [d, dInp, dOut, aInp, aOut]

[] dInp?X:dInpData; ANYORDER [d, dInp, dOut, aInp, aOut]
[] dOut?X:dOutData; ANYORDER [d, dInp, dOut, aInp, aOut]
[] aInp?X:aInpData; ANYORDER [d, dInp, dOut, aInp, aOut]
[] aOut?X:aOutData; ANYORDER [d, dInp, dOut, aInp, aOut]

CC[d, dInp, dOut, aInp, aOut] :=
d; dInp?X:dInpData; dOut?X:dOutData;aInp?X:aInpData; aOut?X:aOutData; CC[d, dInp, dOut, aInp, aOut]

INTERRUPT[restart, suspend, resume, abort, d, dInp, dOut, aInp, aOut] :=
restart; RUN[restart, suspend, resume, abort, d, dInp, dOut, aInp, aOut]

[] abort; EXIT

Process SUSP_RESUM describes the suspension behaviour of the interactor: it halts with the suspend event and
resumes where it was with a resume ; the rest of the time it allows events in Gdialogue ∪  G io  to happen in any order.  Event
abort  terminates the operation of the interactor and the process exits.  In the contrived case above process CC imposes a
strict sequence of events on its gates, that corresponds to the clockwise direction on figure 1.  A restart  event has the
effect of restarting the constraints process, so that the local dialogue returns to its initial state i.e. the one that follows a
start event.

It takes a complex process definition to support the standard control behaviours.  Here, they are supported by syntactic
extensions only.  The same result could be achieved by simple extensions to the semantics of LOTOS, but then existing
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tool support would not be usable. The parameterised description of standard behaviours is an attractive feature of the
model, as their definition becomes a simple task for the specifier-user of the model.

There is a similarity in the naming and the purpose of the components of the ADC model and the informal conceptual
software architecture PAC[14] which also constructs the interface software as a composition of elementary units.
However the two are quite distinct.  In the PAC model the presentation and the abstraction are held by distinct agents as
opposed to been managed by a single ADU.   In the ADC scheme, a formal specification template has been defined for
the AD data type that outlines the relationship between abstraction and display.  In PAC it is the responsibility of the
controller component to maintain a correspondence between the two; the CU of the ADC model specifies only the
temporal structure of interactions with the environment.

The ADU can be thought of as a passive transducer of information converting the information from a user perceivable
represetnation to an internal application oriented representation and vice versa.  This is the designated role of the
communication component in the model proposed by Kovacevic [15].  Kovacevic also introduces a control component
similar to the CU which specifies the dialogue structure. The model of Kovacevic adopts a macroscopic view of the
interface software.  The two components already mentioned plus a buffering component are put together to form the
interface software in its totality.  In terms of the ADC interactor model this would amount to modelling the whole
interface as a single interactor.

Example

Consider the resize box for a simple window based application like for example the one  indicated in figure 5.   It is
always displayed as an icon, which is standard for Macintosh applications.  Its position on the screen may be modified
if the user drags it.  The other elements of the display in figure 5 are resized or repositioned when the user stops
dragging the resize box.  If this resize box is modelled as an ADC interactor, then its abstraction will be some screen
coordinate that is passed on to the other interactors comprising the interface and is interpreted by them accordingly.  Its
display state is simply its position on the screen, and possibly some default value denoting the resize box icon.
However, when this icon is dragged it provides some feedback which is the outline of the window.  Operation
echoMove represents this intermediate output.  The ADU component for this resize box will have the form below (data
type specifications are omitted for brevity):

RESIZE_ADU[press, move, release,  dOut, aOut](a:rct, dc,ds:icon) : noexit :=
dOut!dc; RESIZE_ADU [...] (a, dc, dc)

[] press?x:pnt; RESIZE_ADU [...] (inpPr(ds,a,x), echoPr(ds,a,x), ds)
[] move?x:pnt; RESIZE_ADU [...] (inpMov(ds,a,x),echoMove(ds,a,x), ds)
[] release?x:pnt; RESIZE_ADU [...] (inpRel(ds,a,x), echoRel(ds,a,x), ds)
[] aOut!result(a); RESIZE_ADU [...] (a, dc, ds)

The dialogue structure described in the CC follows easily from the description above.  After a press or a move the
intermediate feedback is shown, while the other interactors receive the new position information only after a release
event, through gate aOut.  A constraint is added, described in process INP_CONTROL, that a press is followed by a
sequence of zero or more moves and finally terminated with a release.

RESIZE_CC [press, move, release, dOut, aOut]:=
SEQ[press, move, release, dOut, aOut]

|[press, move, release]|
INP_CONTROL[press, move, release]

where
SEQ [press, move, release, dOut, aOut a]:=

press?x:pnt; dOut?x:icon; SEQ [...] []
move?x:pnt; dOut?x:icon; SEQ [...] []
release?x:pnt; dOut?x:icon;  aOut?x:rct; SEQ [...] []
dOut?x:rct; SEQ [...]

INP_CONTROL[press, move, release]:=
press?x:pnt;  (REPEAT[move]  [>  release?x:pnt; INP_CONTROL[...])

2. Design transformations of ADC interactor specifications

This section is a brief account of some of the engineering properties of the ADC model.  The presentation consists in a
set of propositions without their proofs.  The focus of this section is not on establishing the truth of these properties but
to outline some essential manipulations of ADC specifications that correspond to intuitive design steps.  In particular
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Figure 2.  The synthesis of two interactors into one

the propositions try to provide a theoretical underpinning of user interface dialogue design in the context of the ADC
model.

2.1 Compositionality and the synthesis transformation

Compositionality is an important attribute of ADC interactors.  It pertains to the synthesis of higher level interactors
from lower level ones.  Compositionality is discussed extensively in [2] where the proposition below is proven, in a
more general form, as the correctness preservation requirement in a rewriting transformation of specifications of ADC
interactors called the synthesis transformation.  Synthesis rewrites a LOTOS composition expression that involves two
ADC interactors into a strongly equivalent ADC interactor specification.  In the remaining of this paper only the
synchronous composition of interactors is discussed.

Proposition 1.  A composition of two ADC interactor specifications over a gate set G can be rewritten as a strongly
equivalent ADC interactor, called the compound form.  The CU of the compound form is the parallel composition of
the two component CUs over the gate set G and its ADU is formed by the parallel composition of the two component
ADUs over a gate set

G1 = G io
A ∩ G io

B ∩  G - ((G io
A ∩ Gc

B) ∪  (Gio
B ∩ Gc

A))

where the gate sets for interactors ADCA and ADCB are indicated accordingly (figure 2).  The transformation termed
synthesis, preserves strong observational equivalence, denoted by ~.

  ( | [ ] | ) | [ ] | ) ~ ( ) | [ ] | )ADU G CU G CU ADU G G CU CUA io
A

A io
B

B A io
A

io
B

A B| [G] | (ADU  | [G ] | ADU ( | [G] |B 1 B ∪

The right hand side of the above equivalence is a behaviour expression that can be itself considered to be an ADC
interactor.  The parallel composition of the two ADUs can be shown to be itself an ADU [2].  This transformation is a
form of a distribution of the synchronisation operator with the proviso that the ADUs synchronise not on the gate set G
itself but to its subset G1 that excludes gates that might reflect cross synchronisation of the ADU with the CU of the
other interactors.

2.2 Abstract Views of Interactors

Hiding may be applied to an interactor, or to a group of interactors to abstract from internal detail.  In the discussion
that follows, the term  abstract view refers to an interactor some of whose gates are hidden.  Abstract views are
illustrated as black boxes enclosing the interactors-barrels.  In specifying interface architectures abstract views are as
interesting as interactors themselves.  Composite interactors need to be examined without reference to their internal
organisation and abstract views are useful so as to hide gates connecting their components. The synthesis
transformation applies to abstract views, as well as simple interactors.  It might involve an abstract view and an
interactor, or two abstract views.

Proposition 2. A synchronous composition of the abstract views of two ADC interactors, can be rewritten in an
observationally equivalent form, as the abstract view of the synthesis of the two interactors (figure 3).  The only
condition for this is that the gate labels hidden by each abstract view do not overlap with the gate labels of the other.
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Proof.  By application of the graphical composition theorem with hiding [6].
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Figure 3.  Synthesis of an abstract view from two abstract views, or an abstract view and an interactor.

In the special case where gB∩ (Gc
B∪ Gio

B) = ∅ , the above describes the composition of an abstract view with an
interactor.  If the same holds for gA then the above reduces to the equivalence of proposition 1.

2.3 Decomposition

The synthesis transformation and its variation for abstract views illustrated in figure 3 may be considered in the reverse
direction, in which case they describe the decomposition of a compound interactor.  A LOTOS behaviour expression
describing a compound interactor or its abstract view is rewritten as a composition expression involving smaller scale
components.  This could serve a process of stepwise refinement of a higher level abstract specification to a detailed
architectural model of the interface. Just as the synthesis transformation it involves a rearrangement of the components
of a synchronous composition expression.

This rearrangement of the component processes is only possible if the behaviour expression has the structure of the
compound form:  a pair-wise composition of two ADU and two CU components.  In general an ADC specification will
not have this form.  It seems that apart from the re-arrangement discussed so far, it is necessary to consider the
decomposition of an interactor specification that involves the decomposition of its components as well.  A special case
is examined below where the interactor is written in the constraint oriented style.  This refers to the specification of the
CC, the only component process with a variable specification style.  The constraint oriented style fits better the initial
stages of the design, where requirements are specified without reference to the architecture of the software designed [7].
It should be possible to extend this transformation to other structures of the CC, but algorithms to do so are quite
complicated and restricted (cf. [9] for the decomposition of finite basic LOTOS processes).

As mentioned previously the CC component describes the custom dialogue properties of the interactor modelled.  In the
constraint oriented style of specification, each logical constraint on the dialogue of the interactor is expressed as a
behaviour expression.  These expressions are composed by means of parallel operators.  Unsynchronised composition
(interleaving) combines the logical constraints in a disjunction.  Synchronised composition produces a conjunction of
the logical constraints expressed.

Proposition 3.   Consider an interactor whose CU has the standard structure of section 2:

CU := start; RUN
RUN := (CC|[G dialogue ∪  Gio ]|SUSP_RESUME) [> INTERRUPT

Let CC be written in the constraint oriented style, as the parallel composition of constraints CCA, CC B, CCAB,
respectively describing temporal ordering constraints on gate sets A, B and AB ⊆ A∪ B.

CC := CCA[A] |[G]| CCB[B] |[AB]| CCAB[AB]
where AB ⊆ A∪ B= Gdialogue ∪  Gio   and  G ⊆  Gdialogue ∪  Gio

Then the CU can be rewritten in the strongly equivalent form

CU A[SSRRA∪ A] |[ SSRRA∪ G]| CU B[SSRRA∪ B] |[SSRRA∪ AB ]| CUAB[SSRRA∪ AB]

where 

CU x := start; RUNx

RUNx := (CCx|[x]|SUSP_RESUMEx)[> INTERRUPTx,  x ∈ {A, B, AB}

where processes RUN x, SUSP_RESUMx and INTERRUPTx are defined as in section 1.

Corollary.   Provided that the CU is written in the constraint based style it is always possible to rewrite an ADC
interactor as a synchronous composition of simpler interactors, that synchronise at least on the SSRRA gates.  The
composition expression relating the ADC interactors is isomorphic to the parallel composition expression of the original
CC component.



DSV-IS’96 Informal Proceeding

Consider an ADC interactor whose CC is written in the constraint based style:

CC[A ∪ B] = CCA[A]  |[G]| CC B[B]  |[A ∪ B]| CCAB[AB]

This can be rewritten as the composition of three interactors

ADCx= ADU x[G io
x]|CUx, x∈ {A,B} and ADCAB= CUAB,

where CUX is defined as in proposition 3 and the ADU is rewritten as

ADU[Gio] = ADU A[G io
A] |[G1]| ADUB[G io

B], where Gio
x= x ∩Gio

By application of proposition 1, the ADC can be decomposed as:

ADC = ADC A[SSRRA∪ GA]  |[ SSRRA ∪ G]| ADCB[SSRRA∪ GB]  |[ SSRRA ∪ GA∪ GB]| CU AB[SSRRA∪ GA∪ GB]

Individual constraints that are composed in the CC concern subsets of its gates.  The most modular decompositions
result when there are no constraints across the two subsets of gates as in CCAB

 above.  This also holds in the more
extreme case where there are no constraints established on the temporal ordering of events on the interactor considered,
e.g. because it is still an early stage of the design activity.  In both these cases the third component CUAB may be
omitted, and the interactor is decomposed into components ADCA and ADC B only.

Several types of decomposition have been discussed.  They can be used in a stepwise design process that starts from a
high level view of the designed interface as a single interactor, or a single abstract view, and proceeds to create an
architectural model that implements it and that also defines the architecture of the designed system.  An imaginary such
design trajectory is presented in section 4.

3. Dialogue modelling and the ADC model

In the context of human computer interaction the term dialogue is conventionally interpreted as the syntactic structure
of the interaction between user and computer that determines the temporal ordering of input and output that the
interface software  supports.  The notion of syntax is rooted in linguistic models [5] of interaction that distinguish the
lexical, syntactic and semantic levels of abstraction.  The barrier between these levels of abstraction is not at all clear
cut.  Where it is set is affected by the notation used for the specification of the dialogue, the implementation architecture
and the personalised specification style adopted by the designer.  The distinction of these levels, is not an inherent
characteristic of the modelled interaction but a characteristic of the representation scheme chosen and the intended use
of the model.

In the framework of the ADC interactor the semantics of the interface are modelled as operations on data handled by
interactors.  The temporal ordering of such interactions is nominally the dialogue.  In a specification of an interface
based on the ADC model the dialogue will be distributed among the CU components of the interactors involved.
However, it is stressed that what is modelled as dialogue in the ADC model is not inherently a property of either the
specificand, i.e. the modelled interface or the ADC model itself.  What one specifier may choose to encode as dialogue
ordering, may be encoded in the semantics of data operations by another.  The choice is in fact identical to the choice
between specification notations for representing interaction dialogues.  For example Palanque and Bastide [8] compare
the specification of a small interaction dialogue in three different notations.  Their comparison shows how the same
elements of dialogue may be encoded in  either of an event based formalism, a state oriented formalism or a Petri Net.

The barrier with the lexical level interaction is also fuzzy.  In the case of the ADC model there is no distinct lexical
level.  It is defined implicitly by the lowest level of abstraction events considered.  For example if mouse input is
considered as the lowest level input event, then this is where the barrier is put, and similarly for output events.

Within the framework of the ADC model, dialogue design consists partly in the instantiation of the standard (SSRRA)
behaviours and partly in designing the temporal ordering for the remaining of interactions.  This latter set of behaviours
is defined entirely in the constraints component of the CU.  These intuitions are formalised in the following paragraph.

A formal treatment of dialogue modelling

From the understanding of what is dialogue it follows that the data values associated with events may be ignored when
discussing dialogue properties.  This may be achieved in practice by a transformation from Full LOTOS to Basic
LOTOS.  One such transformation, the naive transformation, creates a basic LOTOS specification that offers an event
defined by a gate identifier only for each event modelled by the full LOTOS specification.  A rigorous definition of the
relationship between the two specifications can be found in [9]. The intuition of what is dialogue can now be rephrased
as below.
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Figure 4. Simple Player™ and its components

Definition.  The dialogue of an ADC specification is described by P(ADC) where P is the naive transformation from
full LOTOS to basic LOTOS that simply ignores the whole of the data component of a LOTOS action specification.

The following proposition can be shown on the basis of properties of the naive transformation and of the ADC
structure.

Proposition 4.  P(ADC), which represents the specification of the interaction dialogue in an ADC interactor,  is strongly
observationally equivalent to P(CU).

P(ADC) ~ P(CU)

Clearly, to verify dialogue properties of the specification it will be enough that they are verified for the basic LOTOS
transformation of the CU.  This is useful to overcome the practical difficulty in verifying properties of full LOTOS
specifications and also of managing complex behaviour expressions.

4. Exposition of a specification in a top down fashion

Simple Player™ is an application program for the Macintosh computer that provides access to play back and editing
facilities of the QuickTime™ system software extension.  This section presents some aspects of a reverse engineered
specification that was developed as part of a case study [10].  The case study aimed to test the feasibility and
practicality of basing the specification of a realistic graphical interface on the ADC interactor model.  This section
examines how the decomposition of interactors or their abstract views corresponds to simple design steps that lead to an
architectural model of the interface software.  Only the dialogue specification is discussed below.  By proposition 4 this
limits the discussion to the formal specification of the controller unit component.

An architectural model of the Simple Player™ graphical interface was constructed.  It is stressed that this architecture is
fictional in the sense that the actual software is not at all structured according to the ADC model.  The  scope of the
specification includes only the graphical interaction, since this is the intended domain of application of the ADC
interactor model.  Only the application functionality accessed through graphical interaction is relevant, and the only
physical input device modelled is the mouse with the addition of the keyboard modifiers to mouse input.  The subset of
functionality modelled is referred to as the functional core .

The exposition of the case study is top down: it follows an imaginary trajectory from the most abstract as a single
abstract view, to its decomposition to a network of interactors that implement the abstract specification.  In this case all
interactors start, restart, suspend and abort as one, so the design of the dialogue for each interactor need only be
concerned with the constraints component while all the interactors are assumed to synchronise over their SSRRA gates.
By specifying the dialogue in the constraints components for each of the interactors identified in this process a
refinement of the specification results.  Further refinement results with the specification of the associated data types.
The data type specifications are not in the scope of this exposition; the reader is referred to [10] for a full description of
the specification.

A QuickTime™ movie is modelled as a sequence of frames which can be output as video with sound or stills, and
which are indexed according to an integer time coordinate.  Selections may be defined on this sequence and attributes of
the movie like its display area, and the current volume may be modified.  The decision of what to model as the
behaviour of the functional core and what as behaviour of the interface is an arbitrary decision that defines the scope of
the specification exercise [10].  Below the borderline between the two is described by a list of functions invoked by the
interface.  It was attempted to follow as much as possible the definitions of the Movie Controller and Movie Toolbox
function libraries documented in [11].  The invocation of an application function is modelled as an event on a gate of
the top level ADC interactor.  The gates and their purpose are the following:
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Figure 6.  Decomposition into an interactor and the level 1 abstract view

getMovieVolume, setMovieVolume.  The interface reads/modifies the current setting of the volume.

getTime/gotoTime .  The interface reads/modifies the time coordinate of the current frame.

gotoEnd /gotoStart.  The current time is set respectively to 0 or to the duration of the movie.

out_ok.  Models the synchronisation of the functional core with the display.

video .  Events on this gate represent the output of movie data.

play.  An action on this gate is associated with an integer value as a parameter which indicates the rate of play.  It plays
forward for a positive value, backwards for a negative value and pauses for a value zero.

pause.   The interface makes the application to stop playing the movie.

setAllFrames.  It sets a Boolean value associated with the movie, that indicates whether all frames should be played or
not.  If true, all frames will be played even if this means that the required rate of play is not achieved.

setSelection.  The interface sets the current selection of the movie.  This is defined by two integers in between 0 and the
duration of the movie.

setMovieBox.  This action models the invocation of the movie controller function setMovieBox by which the application
handles changes to the display region.

Consider the whole of the graphical interface modelled as an ADC interactor.  On its abstraction side it interacts
directly with the functional core and on the display side directly with the user.  Neither the user nor the functional core
are described below, although in [10] a process modelling the behaviour of the functional core was specified as a boot
strapping activity.  The interface is assumed to have several hidden internal communications, so it is represented as an
abstract view (level 0) where all possible mouse input is grouped under the heading mouseInput and all keyboard
modification input under the heading keyboardModifiers.  In an initial design stage where the interactors have not yet
been decided, these headings are place holders for the gate names that will be filled-in later. Arrows indicate gates
where data values are associated with events and simple lines where they do not.

Lets assume that the first step in the imaginary design trajectory is the separate description of volume control.  Gates
specific to volume control are ‘assigned’ to a separate interactor.  This is connected to level 1 abstract view (what
remains from level 0) by the SSRRA gates and the gate setMovieBox , from where it receives display coordinates.  In
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accordance to proposition 4 the dialogue is sufficiently described by P(CU).  Since all interactors will have
synchronised SSRRA behaviours, dialogue design need only be concerned with P(CC).  The volume control is a slider
that pops up with a mouse press and its output informs the user about the current volume setting and allows the user to
modify it.  It pops down when the user releases the mouse button.  The CC is the composition of process SEQ that
handles end to end constraints and an input control process identical to the one for the resize box.

CC_VOLUME[press, move, release, outVol, setMovieBox, getVolume, setVolume]:=
SEQ[press, move, release, outVol, setMovieBox, getVolume, setVolume]

|[ press, move, release]|
INP_CONTROL[press, move, release]

SEQ[press, move, release, outVol, setMovieBox, getVolume, setVolume]:=
press; getVolume; outVol; SEQ[...] []
move; outVol; setVolume; SEQ[...] []
release; outVol; SEQ[...] []
setMovieBox; SEQ[...] []
outVol; SEQ[...]

The Caesar/Aldebaran [12] model checking tool was used to verify some properties that could be of interest to the
designer.  For example, it might be required that an instant syntactic feedback, i.e. an event on gate outVol, is offered
for all user input.  This property was found not to be true for the above specification:  the volume interactor asks the
application about the current volume, with an event getVolume after each mouse press, and before showing the current
volume setting in the form of a pop up slider, with an event outVol .  On the contrary it was shown that feedback is
always given before new input is given by the user, and that movement of the mouse will instantly trigger a setVolume
event etc.  In each of these cases, the required property is directly modelled in LOTOS and the observational
equivalence between the property and the specification may be shown.  This equivalence is shown up to a renaming that
maps all user input to a single event in the property specification and a hiding of the events which are irrelevant to the
property modelled.

Level 1 is decomposed further to an abstract view that represents all interactions with the player bar (figure 7).  This
could be modelled as a single interactor, but as it turns out it was easier to model as a complex of three interactors and
two connectives.  This is simply the approach chosen for the specification and does not suggest that this is how the
player bar is in fact implemented or that it should necessarily be specified with this configuration.  The interactors are
the playerBar , the  selectionBand  and the thumb.  Their specification can be found in [10], and their composition to a
higher level interactor describing all player bar interactions is discussed extensively in [2].  The dialogue of this
compound component is described by a CC which is formed by the composition of the CCs of the parts.

CC[...]:=
 ((CC_PLAYERBAR[inpPLR, oaSB, outPLR, setMovieBox, getTime, gotoTime, setSelection]

|[ outPLR]|
CC_AND1[outPLR, iaTHMB, iaSB])

|[iaTHMB, inpPLR]|
(CC_THUMB[pressPLR, moveTHMB, relTHMB, outTHMB, iaTHMB, oaTHMB]

|[oaTHMB]|
CC_AND2[oaTHMB, inpPLR, inpSB]))

|[inpSB, oaSB, iaSB]|
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Figure 9.  The levels of decomposition so far, and the resulting interactor nodes.

CC_SB[inpSB, outSB, iaSB, oaSB, erase, enable, send]

The model checking tool was used to verify some properties that a designer might wish to verify for this group of
interactors.  For example, it was verified that mouse input on the thumb effects a gotoTime  command, or that an output
from the application of a current time value via the gate getTime will result in an update of the display of the thumb on
gate outTHMB.  The properties that may be inferred by model checking mentioned so far serve to establish the
correctness of the interface software.  For example, in each occasion it is asked whether an input event on the display
side will cause an output event on the application side, whether it has echo etc.  There is generally no ‘correct’ answer
to these questions nor has there been a fixed set of such questions predefined. It is left upon the interface designer to
choose how the interactor should behave.

The designer may encode design constraints that could, to her judgement, improve usability.  Thus returning to the
example discussed the designer might wish to add extra constraints across components e.g. that the output for the
selection band and the thumb should be in step, and with the selection band always trailing the thumb.  This could be
written as a process synchronising with the above expression over gates outSB  and outTHMB, and which would be:

INSTEP[outTHMB, outSB] := outTHMB; outSB; INSTEP[outTHMB, outSB]

The revised constraint component would be defined by

CC’[...] := CC|[outTHMB, outSB]| INSTEP[...]

By the application of the corollary of proposition 3, the graph on the right side of figure 7 would be amended with an
interactor consisting only in a controller unit that could connect to gates outTHMB of thumb and outSB  of
selectionBand .

The output of video and still images is achieved through the display area of the Simple Player which also serves for
input: the user may double-click on it to start playing the movie, or click on it to stop playing.  It does not maintain an
abstraction state so it is illustrated in figure 8 as a half barrel directed towards the display side (downwards).  Its
specification can also be found in [10].
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The resize box of Simple Player indicated in figure 4 can also be separately modelled by an ADC interactor.  It
synchronises with level 4 over a gate setMovie box, over which it sends its screen coordinates to the rest of the
interactors that appear on the display.  The specification for this interactor was outlined as an example in section 2.  The
decomposition proceeds in this fashion, until a composition expression involving only elementary interactors results.
Figure 9 shows the levels of the de-composition  considered so far, and the nodes of the resulting composition graph.

The example demonstrates the use of the ADC model for the modular decomposition of a specification problem.  The
actual design of the architecture of the specification accomplished for the purposes of the case study, resembles closely
this idealised view, possibly due to the reverse engineering character of the case study.  Deviations reflect problems
found on the way, e.g. unforeseen dependencies between interactors, or the introduction of logical connectives, as in
figure 8.  The most interesting aspect of the decomposition is that it results in manageable units whose dialogue and
data handling are modelled individually.

The decomposition of interactors is most useful when the design introduces dialogue constraints at the higher level of
specification.  According to proposition 3, constraints are preserved during decomposition in the architectural model
produced.  Unfortunately the gate sets involved in the specification of the constraints at the top level have to be
identified in advance of the architecture design. This is consistent with a top down design method but not necessarily
consistent with actual design practice.  In the exposition shown previously this issue was concealed by using sets of
gate identifiers, e.g. mouse input etc.  Such categorisation of gates is also useful in the analytical evaluation of interface
properties, that will relate such classes of gates: e.g. input and feedback etc.  This observation highlights a limitation of
LOTOS as a formal framework for the specification of interactors in that it cannot support the refinement of gate
identifiers.

Conclusion

Interactor models serve two complementary purposes.  One is analytic, for the study of phenomena of interaction and
the other is an engineering role for the description of the structure of a designed system.  The two roles are not
exclusive; an engineering model ought to be an analytic tool for the design, while an analytical model that is used to
capture high level requirements, in practice has to be refined to a system design.  In [3] two interactor models are
compared with respect to these uses.  It is concluded that the interactor model of [4] is better geared for engineering the
interface and that of [13] for analytical use.  Most remaining differences can be traced back to the notations used for
their specification.

In terms of the engineering use of interactors, research related to [13] is concerned with the refinement of interactor
specifications towards implementations, while [4] approaches the problem in terms of the combination of interactors to
capture the behaviour of a complete system.  Not surprisingly, these two approaches are symmetrical.  The ADC model
discussed throughout the paper, and which as mentioned is a variation of that of [4], combines the two approaches.  It is
equipped by its construction with the property of compositionality [2].  This allows compositions of interactors to be
rewritten themselves as interactor structures.  This rewriting was explored both as a synthesis transformation and in the
opposite direction as a decomposition of an abstract specification.  The present paper focused on the documenting
properties and exemplifying the decomposition transformation.  A more theoretical handling of the synthesis
transformation is documented in [2].

The notion of an abstract view of an interactor was introduced.  It specifies the externally observable behaviour of an
interactor with some of its internal detail hidden.  Abstract views can be composed or decomposed in a way similar to
interactors.  Some forms of decompositions of interactors and their abstract views that preserve the specified behaviour
were described.  An imaginary design process that proceeds step by step refining an abstract specification of an
interface demonstrated the envisaged use of the ADC interactors in a top down development process which
complements the traditional use of behaviour expressions that compose pre-defined interactors, which is essentially a
bottom-up activity.

In such a process, the analytical use of interactors is assisted, as at each occasion where some property is built in the
system or is verified, the scope of the problem is restricted to a small component of the interactor specification.  This
facilitates the use of tool support for model checking which is otherwise hindered by the size of the interpretations
produced.  Decomposition also serves as a conceptual framework for the designer that localises dialogue design to the
most appropriate component.  As a design step it is essential in any modular software development.  This paper
provides the formal basis of this elementary design activity in the terms of the ADC interactor model. Further it has
shown how the dialogue encoded as high level constraints in the initial description of a system as a single interactor
becomes distributed across its constituent interactors.  The decomposition of process specifications that will preserve
the behaviour specified is usually achieved with algorithms that apply to small and restricted subsets of the language
(finite basic LOTOS in [9]).  The approach shown here only works for ADC interactors written in the constraint
oriented specification style, but it has the advantage that it applies to ADC specifications that include specifications of
data and of course are recursive (Full LOTOS).
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The research presented here, as well as in [1] and [2], is targeted towards an engineering model that can be used within
realistic projects.  Several requirements follow this ambition.  Visual representations of specifications and powerful tool
support are one aim.  These need to be complemented with the development of a theoretical understanding of the formal
manipulations of the specifications.  The arguments presented serve this goal.  It is planned that the model be tested
through case studies such as [10] before developing a visual language out of the conventions currently employed for the
visualisation of the specifications.  Further, the identification of recurring components of the specification and the
creation of a library of such components should pave the way for a the tool support appropriate for the specification of
interactive systems.
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Appendix.  A few elements of LOTOS

This appendix is a brief introduction to some of the elements of the LOTOS language used in the paper.  It explains
some of the syntactic conventions adopted in the presentation above instead of the standard LOTOS syntax.   The
reader is referred to [17] for a proper tutorial to the language.

A system is described in LOTOS as a set of interacting processes. This paper has not discussed the specification of data
types and is only concerned with extracts of process definitions.  The deviation from the standard syntax of [16] was
adopted for economy of the presentation.  A simple process definition is formulated, rather elliptically, as follows:

< process identifier> [<gate list>]  (parameter list) : =
<behaviour expression>

where
<process definitions>

The gate list is the set of gates, i.e. the interaction points through which the process may communicate values with the
occurrences of events.  Sequencing information about events is found in behaviour expressions. The simplest behaviour
expression is just a process instantiation.  Two built-in processes are the stop and exit processes.  Stop implies that
no further events are offered; exit implies successful termination.  More complex behaviour expressions are built up
by the composition of process instantiations with the LOTOS operators shown in Table 1.
<action>; B perform <action> then perform process B (action prefix)
[b] -> B if the Boolean expression b is true then perform B (guard)
A [] B perform A or B (choice)
A ||| B processes A and B are independent of one another, but can be performed simultaneously:

they are multi threaded (interleave)
A >> B completing the performance of A enables performance of process B (enable)
A [> B perform A until its termination, unless at some point B has to be performed interrupting A (disable)
A|[a,b,...]|B  processes A and B communicate synchronously through the gates a, b,... in the brackets.

Table 1.  A summary of some of the elements of the LOTOS language.

A LOTOS action declaration may sometimes be of the form g?x:t ,where x is a name of a variable and t is a sort
identifier indicating the domain of values over which x ranges.  This corresponds to a set of possible actions for the
behaviour expression.  For example an action with a variable declaration might be g?x:integer.  This specifies a set of
actions g<v> where <v> is in the domain of the integers.

Suppose processes A and B are composed in parallel over a gate g as in  A|[g]|B.  If A offers a value over that gate e.g.
g!true and B offers any event a?g: bool, then a value is passed from A to B.  Where data communication may take place
the process definition should specify the type of the data that is passed through a gate.  Data types are defined sepa-
rately in the type definition component of the specification with the ACT-ONE language, which is not used in this
paper.  Finally, the schema for a process definition shows how a process is defined with parameters. The value taken by
the parameters upon process instantiation, in combination with the set of events that the process is ready to offer charac-
terise the state of the process at any point.


