
Safety Critical Systems Formal Verification

using Execution Traces

Fabio Martinelli⇤, Francesco Mercaldo⇤, Vittoria Nardone†, Albina Orlando‡, Antonella Santone§, Gigliola Vaglini¶
⇤

Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche, Pisa, Italy

{fabio.martinelli, francesco.mercaldo}@iit.cnr.it
†

Department of Engineering, University of Sannio, Benevento, Italy

vnardone@unisannio.it

‡

Istituto per le Applicazioni del Calcolo “M. Picone”, Consiglio Nazionale delle Ricerche, Napoli, Italy

a.orlando@iac.cnr.it

§

Department of Bioscience and Territory, University of Molise, Pesche (IS), Italy

antonella.santone@unimol.it

¶

Department of Information Engineering, University of Pisa, Pisa, Italy

gigliola.vaglini@unipi.it

Abstract—Data breaches usually involve financial informa-

tion such as credit card or bank details. Automated formal

verification of safety critical systems has been mostly focused

on analysing high-level abstract models which, however, are

significantly different from real implementations written in

programming languages. In this paper we propose a technique

that links model checking verification closer to real imple-

mentations, with particular regard to financial environment,

in order to identify possible causes of data breaches. A formal

model starting from execution traces is retrieved. Thus, the

discovered model can be analysed to verify it respects the

defined properties. A real safety critical system has been used

as a case study to evaluate the proposed methodology.

I. INTRODUCTION AND RELATED WORK

In the spring of 2016, the SecurityScorecard security
company analyzed 7,111 financial institutions in order to
find existing vulnerabilities within investment banks, asset
management firms, and major commercial banks to deter-
mine the strongest and weakest security standards based
on security hygiene and security reaction time compared to
their peers. The emerging scenario is that cyber attacks on
corporations and banks are really accelerating. This scenario
calls for new approaches in order to push banks and financial
companies to make investment in cyber security. Many
insurance companies aware of the risk of cyber threats,
begin to offer insurance policies for risks arising from cyber
threats. This is the reason why high assurance about their
correctness is highly desirable also from a cyber insurance
point of view. Due to the inherent complexity, developing
safety critical systems demands rigorous, mathematically
based methods for reasoning about their correctness. For
example, the application of formal methods, like model
checking, is significant. Model checking [1] applies to a
formal description of the system behaviour as a labeled
transition system (LTS) and to a temporal-logic formula

representing the requirement to be verified. Nevertheless,
a gap still exists between these models and a real-world
system and its execution. In fact, in the context of software
verification, a non-trivial problem to be faced is the actual
availability of an LTS description of the system. In the best
cases, such models might have been obtained in the design
phase of the system development process. Usually, UML
dynamic diagrams are used to attempt a translation to LTS.
But, even then, design models are not always consistently
updated in the implementation activities.

In this preliminary paper, we propose a method, not
fully validated, that reduces the gap between models and
implementations, trying to extract model from execution
traces. The first step extracts execution traces from a soft-
ware system. The code is instrumented with instructions
to generate logs containing just the necessary events for
the verification of a specific set of properties. Then, using
the “Mine Transition System” plugin in ProM1 we obtain
a labelled transition system, that can be easily used to
prove properties. Differently from [2], our aim is to use an
existing model checker such as CADP [3], which is a mature
verification tool. The most widely used model checkers are
by now extremely sophisticated programs that have been
crafted over many years by experts in the specific techniques
employed by the tool: any re-implementation of similar tools
could likely yield worst performance. A real case study in
the financial field has been considered as a proof of concept
of our methodology. Using synthetic data obtained from
bank transactions, a formal model has been automatically
constructed.

Traditionally, models used in model checking are man-
ually constructed. However, such model-construction can
be extremely time-consuming, or even infeasible in the

1http://www.promtools.org/doku.php

case of insufficient documentation for an existing system,
thus there is an increasing interest in model learning for
formal verification. For example, in [4] a learning algorithm
has been proposed for probabilistic systems. A limit of
this approach is that the algorithm might not converge to
the good model in general. It is ensured that only with
sufficiently big sample set of traces, a given property will
hold on the original and the learned model with the same
probability. Moreover, [4] assume that learning is based on
data consisting of many independent finite execution runs,
each starting in a distinguished, unique initial state of the
system. In many situations, it will be difficult or impossible
to obtain data of this kind: we may not be able to run
the system under laboratory conditions where we are free
to restart it any number of times, nor may we be able
to reset the system to a well-defined unique initial state.
For deterministic system models it has been suggested to
use Angluin’s [5] approach to learning deterministic finite
automata. Many modeling approaches have been proposed.
They differ in the kind of properties they help reasoning
about, and in the level of precision or formality of the results
one may obtain through them. In [6], the authors focus on
models that may be used to reason about non-functional
properties of the software-to-be. In this case, models are
heavily dependent on parameters that must be provided a-
priori by domain experts or are extracted by other similar
systems.

The paper is organized as follows. In Section II, after
having recalled preliminary concepts of the selective mu-
calculus temporal logic, the proposed method is described.
The approach has been applied to a simple real case study
in Section III. Finally, concluding remarks are given in
Section IV.

II. THE METHOD

We assume the reader familiar with the basic concepts of
model checking and of the selective mu-calculus logic. For
details the reader can refer to [1], [7]. We have chosen to use
the selective mu-calculus logic since, as demonstrated in [8],
it is useful to combat the state explosion problem, typical of
the model checking technique and equivalence checking [9].
We propose a formal based methodology to verify critical
systems starting from execution traces. Figure 1 shows the
work-flow of the complete methodology. The methodology
is mainly based on the creation of a formal model from
traces. It consists of three steps: First step: The first step,
see Figure 1 (1), consists of obtaining execution traces
from programs. The execution traces, recovered during a
software system execution, include both static and dynamic
information. Static information regards, for instance, class
structure in terms of methods and fields. Dynamic informa-
tion refers to method calls, field access in read or write mode
and synchronization on objects. For obtaining execution
traces, software systems need to be instrumented adding

some instructions called instrumentation code. Different
executions of the same software systems will generally
produce different traces depending on the execution order of
the different instructions due to thread scheduling or other
software external context. Text files are used for storing
the execution traces. Then, we generate XES-based Event
Streams from execution traces. The process aims to clean,
filter and convert the execution traces collected in textual
format in the previous process into eXtensible Event Stream
(XES)-compliant log format (IEEE XML-based standard
for event logs). During this conversion, all the unnecessary
information is filtered out. Second step: The second step,
see Figure 1 (2), consists in creating the model from the
traces. For the purpose of this work, we have chosen
the XES format since we use Process Mining Workbench
(ProM)2. Process Mining research is concerned with the
extraction of knowledge about a process from its process
execution logs. From the XES Event Log, using the “Mine
Transition System” plugin in ProM developed by H.M.W.
Verbeek, we obtain a labelled transition system, where the
transitions correspond to the events in the log, whereas a
state corresponds to a situation in between two events. Third

step: The third step, see Figure 1 (3), consists in applying
the model checking technique. Once the formal model has
been retrieved we can easily use it to prove properties using
model checking. This step checks the sets of logic properties
against the formal model obtained starting from the feature
set, as described above. In our approach, we invoke the
Construction and Analysis of Distributed Processes (CADP)
tool [3] as formal verification environment. In order to apply
CADP, we have to convert the transition system obtained
into the input format of CADP. This is obtained by parsing
the automaton ProM file. Moreover, the property, written in
selective mu-calculus, can be equivalently transformed in the
syntax of the logic used by the CADP environment.

Figure 1: The Work-flow of Our Approach

2http://www.promtools.org/

III. EXPERIMENTAL EVALUATION

For the evaluation we considered an example of a real
system taken from ProM website3 that describes a realistic
transaction process within a banking context. In this prelimi-
nary evaluation, we have jumped the first step since we have
considered a real case study already developed and available
from the repository of the ProM database. The analysed
process contains all sort of monetary checks, authority
notifications, and logging mechanisms responding to the
new degree of responsibility and accountability that current
economic environments demand. As stated in [10], “the
banking regulation states that serial numbers must be com-
pared with an external database governed by a recognized
international authority (“Check Authority Serial Numbers
CASN”). In addition, the bank of the case example decided
to incorporate two complementary checks to its policy: an
internal bank check (“Check Bank Serial Numbers CBSN”),
and a check among the databases of the bank consortium
this bank belongs to (“Check Inter-Bank Serial Numbers
CIBSN”). At a given point, due to technical reasons (i.e.,
peak hour network congestion, malfunction of the software,
deliberated blocking attack, etc.), the external check CASN
is no longer performed, contradicting the modeled process,
i.e., all the running instances of the process involving cash
payment can proceed without the required check”.

Adopting our methodology, we formulate this anomaly
in the mu-calculus logic formula ' (we have omitted the
formal definition for lack of space). The model checker
returns “false” when evaluating ', stating that the anomalous
situation is immediately detected, identifying the anomalous
subprocess (process cash payment), and eventually taking
the necessary countermeasures. The advantage is that it is
better to discover the error as soon as possible. Detecting
such an error only in forensic analysis performed months
after the incident are severe and difficult to recover from.
It is worth noting that when a property does not hold, the
model checking algorithm generates a counter-example, i.e.,
an execution trace leading to a state in which the property
is violated. This ability to generate counter-examples, which
can be exploited to pinpoint the cause of an error, is the
main advantage of model checking, as compared to other
well-known techniques for software verification, as abstract
interpretation-based static analysis.

In the used dataset there are six different scenarios: (i)
2000-all-noise; (ii) 2000-all-nonoise; (iii) 2000-scen1; (iv)
2000-scen2; (v) 10000-all-noise; and (vi) 10000-all-nonoise.

The first item of the string is the number of traces in the
XES event stream file. “noise” (resp. “nonoise”) specifies
if the considered traces are (resp. are not) affected by the
noise. Furthermore, there are two files used in [10] which
present two possible scenarios: Serial Number Check and

3http://data.4tu.nl/repository/uuid:c1d1fdbb-72df-470d-9315-
d6f97e1d7c7c

Receiver Preliminary Profiling, i.e., “scen1” and “scen2”,
respectively. The results of the verification of ' formula
are: “True” in 2000-all-nonoise, 2000-scen2 and 1000-all-
nonoise, “False” in the other cases. In particular, anomalous
situations are detected in the presence of noise which
could be due for different reasons, i.e., deliberate blocking
attack, peak hour network congestion or malfunction of the
software.

Table I: ' Model Size

aaaaaaaaModel

Size

States Transition

2000-all-noise 94,803 96,801

2000-all-nonoise 89,810 91,808

2000-scen1 88,863 90,861

2000-scen2 81,792 83,790

10000-all-noise 480,361 490,359

10000-all-nonoise 434,073 444,071

The sizes of models used in the experimental evaluation
are shown in Table I. The size of a model is expressed in
terms of states and transitions. In order to better analyze
the results obtained by the ' formula, we defined additional
eight formulae able to check every single trace belonging to
a specific scenario. In particular, these formulae investigate
the cause of ' failure. The specified properties are expressed
by selective mu-calculus formulae 'i, i 2 [1..8]. We have
omitted the formal specification for lack of space. In the
following, we only report their informal meaning.
'1 checks if all the three actions (CASN, CIBSN and CBSN)
are performed.
'2 checks if all CASN, CIBSN and CBSN are not per-
formed.
'3 checks if CIBSN and CBSN actions are performed and
the CASN action is not performed.
'4 checks if CASN and CBSN actions are performed and
the CIBSN action is not performed.
'5 checks if CIBSN and CASN actions are performed and
the CBSN action is not performed.
'6 checks if CIBSN and CBSN actions are not performed
and the CASN action is performed.
'7 checks if CBSN and CASN actions are not performed
and the CIBSN action is performed.
'8 checks if CIBSN and CASN actions are not performed
and the CBSN action is performed.

Table II shows the results obtained during the verification
of the formulae specified above. In particular, Table II
is organized as follow: the above specified formulae are
described in the rows, while the scenarios in the columns.
Each single model represents a single realistic banking
transaction trace. The first four sets have 2000 different
traces, so 2000 formal models. The last two have 10000
traces corresponding to 10000 different formal models. The
last row is the total number of the analyzed traces resulting
true to the formulae. This value is obtained by adding to

each other the values in the corresponding column. The table
shows the number of true achieved by every type of analyzed
model. As the results shown and according to the “True”
values of the ' formula, the files with no noise and the
files of second scenario have all the traces of transactions
correct, i.e., whenever a client executed a payment in cash,
the three required actions have been performed. This result
is highlighted by positive values of '1 and '2 and the values
equal to zero achieved by the other formulae. In the “False”
cases the anomalous situations are caused by several reasons.
In the “scen1” scenario bad and unsafe transactions occur
because only the action CASN has not been performed. Fi-
nally, in the scenarios affected by noise the causes of failure
occur because one or two required actions are not performed
during a payment in cash. The proposed method is also able
to localize potentially fraudulent bank transactions. As we
stated into the introduction, the proposed method can be
considered as back-end tool for a financial organization (for
instance, a bank) but also for cyber-insurance companies in
order to be certain that the company to ensure have effective
protection systems from cyber security threats.

Table II: Detailed Properties

Traces

Formulae all-noise all-nonoise scen1 scen2 all-noise all-nonoise

'1 531 708 327 701 2478 3326
'2 1293 1292 1348 1299 6678 6674
'3 67 0 325 0 249 0
'4 50 0 0 0 259 0
'5 49 0 0 0 260 0
'6 5 0 0 0 28 0
'7 3 0 0 0 18 0
'8 2 0 0 0 30 0

of Traces 2000 2000 2000 2000 10000 10000

IV. CONCLUSION AND FUTURE WORK

In last years data breaches are plaguing financial compa-
nies, thus the cyber insurance market is emerging. Consider-
ing that financial transactions are supported by safety critical
systems, in this paper we have proposed a method to retrieve
formal models starting from execution traces. In this way, we
try to the fill the gap still exists between formal models and a
real-world system and its execution. A real system has been
used as a case study to evaluate the proposed methodology,
obtaining encouraging results. Since the obtained formal
models tend to be large and complex, our aim is to use
also efficient model checking techniques to reduce the state
explosion problem, as for example those technique based
on the use of selective mu-calculus logic [11], [8]. Another
research direction is represented by the application of the
proposed method to cyber physical systems [12], [13], [14].
Furthermore, as future work we plan to extend our approach
as a runtime verification approach [15], in order to apply our
method at runtime to all bank transactions.

ACKNOWLEDGMENT

This work has been partially supported by H2020 EU-
funded projects NeCS and C3ISP and EIT-Digital Project

HII and PRIN “Governing Adaptive and Unplanned Systems
of Systems” and the EU project CyberSure 734815.

REFERENCES

[1] Clarke, E.M., Grumberg, O., Peled, D.: Model checking. MIT
Press (2001)

[2] Awad, A., Decker, G., Weske, M.: Efficient compliance
checking using BPMN-Q and temporal logic. In: BPM.
Volume 5240 of LNCS., Springer (2008) 326–341

[3] Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011:
a toolbox for the construction and analysis of distributed
processes. STTT 15(2) (2013) 89–107

[4] Mao, H., Chen, Y., Jaeger, M., Nielsen, T.D., Larsen, K.G.,
Nielsen, B.: Learning probabilistic automata for model
checking. In: QEST 2011, IEEE Computer Society (2011)
111–120

[5] Angluin, D.: Learning regular sets from queries and coun-
terexamples. Inf. Comput. 75(2) (1987) 87–106

[6] Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model
evolution by run-time parameter adaptation. In: 31st Inter-
national Conference on Software Engineering, ICSE, IEEE
(2009) 111–121

[7] Barbuti, R., Francesco, N.D., Santone, A., Vaglini, G.: Selec-
tive mu-calculus and formula-based equivalence of transition
systems. J. Comput. Syst. Sci. 59(3) (1999) 537–556

[8] Barbuti, R., Francesco, N.D., Santone, A., Vaglini, G.: Re-
duced models for efficient CCS verification. Formal Methods
in System Design 26(3) (2005) 319–350

[9] De Francesco, N., Lettieri, G., Santone, A., Vaglini, G.:
Heuristic search for equivalence checking. Software and
Systems Modeling 15(2) (2016) 513–530 cited By 10.

[10] Munoz-Gama, J.: Conformance Checking and Diagnosis in
Process Mining - Comparing Observed and Modeled Pro-
cesses. Volume 270 of Lecture Notes in Business Information
Processing. Springer (2016)

[11] Santone, A., Vaglini, G.: Abstract reduction in directed model
checking CCS processes. Acta Inf. 49(5) (2012) 313–341

[12] Martinelli, F., Mercaldo, F., Orlando, A., Nardone, V., San-
tone, A., Sangaiah, A.K.: Human behavior characterization
for driving style recognition in vehicle system. Computers &
Electrical Engineering (2018)

[13] Martinelli, F., Mercaldo, F., Nardone, V., Santone, A.: Car
hacking identification through fuzzy logic algorithms. In:
Fuzzy Systems (FUZZ-IEEE), 2017 IEEE International Con-
ference on, IEEE (2017) 1–7

[14] Martinelli, F., Mercaldo, F., Nardone, V., Orlando, A., San-
tone, A.: Who’s driving my car? a machine learning based
approach to driver identification. In: ICISSP. (2018)

[15] Leucker, M., Schallhart, C.: A brief account of runtime ver-
ification. The Journal of Logic and Algebraic Programming
78(5) (2009) 293 – 303 FLACOS07.

