
Formal Modeling and
Discrete-Time Analysis of
BPEL Web Services

Radu Mateescu
Inria / Vasy project-team, Centre de Recherche Grenoble – Rhône-Alpes
655, avenue de l’Europe, Montbonnot, F-38334 Saint Ismier Cedex, France
E-mail:Radu.Mateescu@inria.fr

Sylvain Rampacek
Le2i, Faculté des Sciences Mirande, Aile de l’Ingénieur,
Université de Bourgogne, BP 47870, F-21078 Dijon Cedex, France
E-mail:Sylvain.Rampacek@u-bourgogne.fr

Abstract: Web services are increasingly used for building enterprise information sys-
tems according to the Service Oriented Architecture (Soa) paradigm. We propose in
this paper a tool-equipped methodology allowing the formal modeling and analysis of
Web services described in the Bpel language. The discrete-time transition systems
modeling the behavior of Bpel descriptions are obtained by an exhaustive simulation
based on a formalization of Bpel semantics using the Algebra of Timed Processes
(Atp). These models are then analyzed by model checking value-based temporal logic
properties using the Cadp toolbox. The approach is illustrated with the design of a
Web service for Gps navigation.

Keywords: Web services, formal specification, model checking, exhaustive simulation,
process algebra.

1 Introduction

Information systems present in companies and organiza-
tions are complex software artifacts involving concurrency,
communication, and coordination among various applica-
tions that exchange data and participate to business pro-
cesses. Service Oriented Architecture (Soa) [18] is a state-
of-the-art methodology for developing information systems
by structuring them in terms of services, which can be dis-
tributed and composed over a network infrastructure to
form complex business processes. Web services are a useful
basis for implementing business processes, either by wrap-
ping existing software or by creating new functionalities as
combinations of simpler ones. Bpel (Business Process Ex-
ecution Language) [17] is a standardized language of wide
industrial usage for describing abstract business processes
and detailed Web services. It allows to capture both the
behavioral aspects (concurrency and communication) and
the timing aspects (duration of activities) of Web services.

The Bpel language allows to create Web services ei-
ther from scratch, or as the composition of existing sub-
services, which can be invoked sequentially (one at a time)
or concurrently (several ones at the same time). Each Web
service described in Bpel can be used as a sub-service by
other Web services (described in Bpel or not), thus en-

abling a hierarchical construction of complex Web services.
A Bpel business process is defined by a workflow consist-
ing of various steps, which correspond internally to algo-
rithmic computations (possibly with time constraints) and
externally to message-passing interactions with a client.
Business processes are typically built upon existing Web
services (although this is not mandatory), each one being
specialized for carrying out a particular task. These sub-
services are invoked every time a specific information is
needed during a step of the workflow; therefore, a business
process is not simply the set of sub-services it is built upon,
but acts as an orchestrator of these sub-services in order
to provide newly added functionalities.

The conjunction of concurrency and timing constraints
makes business processes complex and requires a careful
design in order to avoid information losses and to obtain
a satisfactory quality of service. In this context, formal
modeling and analysis techniques available from the do-
main of concurrent systems allow to improve the quality
of the design process and to reduce the development costs
by detecting errors as soon as possible during the business
process life cycle. These techniques can operate success-
fully on languages equipped with a formal semantics defi-
nition, from which suitable models can be constructed and
analyzed automatically.

1

In this paper, we propose a tool-supported approach for
the formal modeling and analysis of business processes and
Web services described in Bpel. Our approach consists of
the following ingredients: the definition of a formal se-
mantics of Bpel in terms of process algebraic rules, tak-
ing into account the discrete-timing aspects [13, 14]; the
automated generation of models (state/transition graphs)
from the Bpel specifications using an exhaustive simula-
tion based on the formal semantics rules, implemented in
the WSMod tool; and the analysis of the resulting models
by using standard verification tools for concurrent systems,
such as Cadp [11]. We illustrate the application of this ap-
proach to the design and discrete-time analysis of a Web
service for Gps navigation.

Related work. The modeling and analysis of Web ser-
vices benefits from a considerable attention in the research
community. The Wsat tool proposed in [7, 8] gives to
Web service designers the possibility of verifying Ltl prop-
erties on Bpel business processes by applying the Spin
model checker. Each Bpel process is transformed into a
Promela model (via a pattern) and connected to other
processes in the description. This work covers only the
untimed aspects of Bpel.

Another approach, proposed in [32], uses the Cress
(Chisel Representation Employing Systematic Specifica-
tion) notation for specifying the untimed behavior of Web
services. Cress descriptions are translated into the for-
mal description technique Lotos [16] and analyzed with
dedicated tools, such as Topo, Lola or Cadp. A direct
translation from Bpel to Lotos is given in [6], enabling
the use of the aforementioned tools for analyzing the un-
timed behavior of Web services. Bpel was also used as tar-
get language for producing executable Web services from
Lotos specifications [2, 28]; this allows to combine the ad-
vantages of the formal verification using Cadp and of the
deployment and execution features of Bpel.

Compared to existing work, our approach differs in the
following respects: it is based on a translation of Bpel
directly into state/transition graphs, without using an in-
termediate language such as Promela or Lotos, thus be-
ing potentially more efficient; and it handles not only the
behavioral, but also the discrete-time aspects of Bpel de-
scriptions.

Paper outline. Section 2 presents our methodology and
software platform for modeling and analyzing Bpel de-
scriptions. Section 3 describes the Gps Web service case-
study and its analysis using the platform. Finally, Sec-
tion 4 gives some concluding remarks and directions for
future work.

2 Modeling and Analysis Approach

Web services can be seen as complex distributed systems
that communicate by message-passing. Therefore, their

design methodology can be naturally supported by the for-
mal modeling and analysis techniques stemming from the
domain of concurrent systems. To apply these techniques,
it is necessary to represent the dynamic behavior of Web
services in a formal, non-ambiguous manner.

The approach we propose for the modeling and anal-
ysis of Web services described in Bpel is illustrated in
Figure 1. Our software platform consists roughly of two
parts, described in the sequel: the Bpel descriptions are
first translated into discrete-time Ltss using the WSMod
tool, and are subsequently analyzed using the Cadp veri-
fication toolbox.

2.1 Translation from BPEL to discrete-time LTSs

The behavior of a Web service comprises not only the
concurrency and communication between its various con-
stituent activities, but also the delay of response of the
service. These aspects can be modeled using dtLtss
(discrete-time Labeled Transition Systems), i.e., state/-
transition graphs in which every transition is labeled by an
action performed by the Web service. The actions are of
the following kinds: emissions and receptions of messages,
prefixed by ’ !’ and ’?’, respectively; elapsing of time, rep-
resented by the symbol χ (discrete-time tick, also noted
time); the internal action τ (or tau) denoting unobserv-
able activity of the service; and the terminating action

√

(or done), which is the last internal action that a service
can do.

The global behavior of the Web service (and therefore,
the actions it can perform) is obtained by an exhaus-
tive simulation of the Bpel description, performed by the
WSMod tool (see Figures 2, 3), which is able to handle
both discrete [13] and continuous [14] time representations.
WSMod takes two different inputs (see Figure 1):

• A Web service description in Bpel [17], a standard-
ized language allowing to specify the behavior of busi-
ness processes. Bpel supports two different types of
business processes: executable processes specify the
behavior of business processes in full detail, such that
they can be executed by an orchestration engine; and
abstract business protocols specify the public message
exchanges between the service and a client (i.e., ex-
cluding the message exchanges which take place inter-
nally, e.g., during invocations of sub-services).

• A formal representation of the Bpel semantics, based
on the Algebra of Timed Processes (Atp) [27], which
specifies using operational rules how the model of the
business process behavior is generated. Depending on
the time representation chosen, the resulting model is
either a dtLts, or a timed automaton (Ta) [1]. The
Atp rules formalizing the Bpel semantics in discrete-
time is shown in Table 1. For example, the process
“time” can only elapse time (represented by the χ
action), and the process “receive” or “reply” can send
or receive a message (first rule) or elapse time too
(second rule).

2

Figure 1: Platform for Web service modeling and analysis

Figure 2: Screenshot of the WSMod tool

Figure 3: Main functionality of WSMod tool (dtLts: discrete-time Lts, Ta: timed automaton)

To generate the model representing the behavior of the
input Bpel description, WSMod performs an exhaustive
simulation guided by the operational Atp rules. The tool
is also able to synthesize automatically the model of an
adapted client interacting with the Web service, whose be-

havior complies with that of the service as regards emis-
sion and reception of messages, time elapsing, etc (see Fig-
ure 3). In this study, we focus only on the Web service
model generation feature of WSMod in discrete time.

3

Table 1: The process algebra formalizing BPEL, in discrete-time

BPEL ATP

empty empty
√

−−−→ 0

time time
χ−−→ time

throw ∀ e ∈ EX , throw[e]
e−−→ 0

with EX set of exceptions that can be thrown.

receive / ∗o[m]
∗m−−−−→ empty with ∗ ∈ {?, !}

reply ∗o[m]
χ−−→ ∗o[m]

sequence (;) ∀ a 6= √
, P

a−−→P ′

P ; Q
a−−→P ′ ; Q

∀ a, P

√
−−−→P ′ ∧ Q

a−−→Q′

P ; Q
a−−→Q′

switch switch[{Pi}i∈I] – ∀ i ∈ I, switch[{Pi | i ∈ I}] τ−−→ Pi

while while[P]
τ−−→ P ; while[P]

while[P]
τ−−→ empty

scope Let MI = {mi | i ∈ I} a set of messages and
let EJ = {ej | j ∈ J} a set of exceptions.

scope(P, E) with E = [{(mi, Pi) | i ∈ I}, (d, Q), {(ej, Rj) | j ∈ J}]
P

√
−−−→

scope(P,E)

√
−−−→0

∀ a /∈ {χ,
√} ∪ EX ∪ MI

P
a−−→P ′

scope(P,E)
a−−→scope(P ′,E)

d > 1, P
χ−−→P ′ and ∀ a∈EX∪{τ,

√}, ¬(P
a−−→)

scope(P,Ed)
χ−−→scope(P,Ed−1)

P
χ−−→P ′ and ∀ a∈EX∪{τ,

√}, ¬(P
a−−→)

scope(P,E1)
χ−−→Q

∀ i ∈ I, ∀ a∈EX∪{τ,
√}, ¬(P

a−−→)

scope(P,E)
?mi−−−−→Pi

∀ j ∈ EJ , P
ej−−−→

scope(P,E)
τ−−→Rj

∀ e /∈ EJ , P
e−−→

scope(P,E)
e−−→0

pick pick[E] = scope(time, E)
with E = [{(mi, Pi) | i ∈ I}, (d, Q), {(ej, Rj) | j ∈ J}

flow flow[{Pi}i∈I}] executes simultaneously the set of processes {Pi}.
∀ a ∈ EX ∪ {τ}, ∃ j∈I, Pj

a−−→P ′

flow[{Pi | i∈I}] a−−→flow[{Pi | i∈I\{j}}∪{P ′}]

∀m ∈ M,
∃ j∈I, Pj

∗m−−−−→P ′ and ∀ i6=j, ∀ a∈EX∪{τ}, ¬ ∃k∈I, (Pk

a−−→)

flow[{Pi | i∈I}] ∗m−−−−→flow[{Pi | i∈I\{j}}∪{P ′}]
∀ i∈I, Pi

√
−−−→0

flow[{Pi | i∈I}]
√

−−−→0

∃J 6=∅, J⊆I, ∀ i∈J, Pi

χ−−→P ′
i and ∀ i∈I\J, Pi

√
−−−→

flow[{Pi}i∈I]
χ−−→flow[{P ′

i
}i∈J∪{Pi}i∈I\J]

2.1.1 BPEL Process to ATP

This section describes shortly each algebra rule presented
in Table 1. In fact, each process described here corresponds
to a process in Bpel language. For readability, we do not
follow the (verbose) Xml syntax of a Bpel process.

The empty process can only terminate (the notation 0
is the null process).

The time process can only elapse time (represented by
the χ action).

The throw process can raise an exception. Generally,
in a correct specification, the exception must the catched
in some scope process.

The receive or reply process can send (!o[m]) or receive
(?o[m]) a message (first rule) or elapse time too (second
rule). They correspond to input/output Wsdl operations.

4

The sequence P ; Q process executes the process P fol-
lowed by the process Q. Since the operator “;” is asso-
ciative, we safely restrict the number of operands to two
processes. The sequence process acts as its first subprocess
while this process does not indicate its termination. In the
latter case, the sequence process acts as the second process
can do.

The switch[{Pi}i∈I] process chooses to execute one of
Pi process. In Bpel, the choice is done internally by the
Web service: the client doesn’t know the result of the con-
dition evaluation. So, we translate this choice by the in-
ternal action (τ).

The while[P] process executes the process P as long
as an internal condition is evaluated at true. Again, the
client does not know the result of the condition evaluation.

The scope(P, E) process executes the process P accord-
ing to some events and guards (timing and exception) de-
fined by the Web services and represented here by the ex-
pression E = [{(mi, Pi) | i ∈ I}, (d, Q), {(ej , Rj) | j ∈ J}],
where:

• mi are the events and Pi the associated processes trig-
gered;

• d the maximum execution time unit for process P
(otherwise, the process Q is executed);

• ej the exceptions that can be catched and Rj the as-
sociated processes triggered.

The pick process is a particular case of scope in which
there is no main process (and more precisely, only one that
consist to elapse time).

The flow[{Pi}i∈I}] process executes simultaneously the
set of processes Pi, according to the rules concerning time,
exceptions, etc. In Bpel, there is a mechanism that en-
ables the Web service to do some synchronization depen-
dencies (links) that is not present in the rules, but taken
into account in the WSMod tool.

2.1.2 Transition system synthesis

Transition system synthesis begins from the algebra rules
(describe in Table 1) and the intermediate language (see
Figure 3). This intermediate language is based on a syn-
tactical tree. We can remark that the root of the syntac-
tical tree is the global business process, which denotes the
global behavior of the Web service.

By analysing its root according to the algebra rules, we
can infer a set of actions that can be executed: these ac-
tions will be represented by transitions in the dtLts. Due
to the structure of the global expression representing the
business process, it can be useful to repeat the analysis
recursively to refine the set of actions.

?a

?a
χ→?a

?a
a→ empty

(a) Process ?a

?a; !b

?a; !b
χ→?a; !b

?a; !b
b→ empty; !b

(b) Process ?a; !b

!b or empty; !b

!b
χ→!b

!b
b→ empty

(c) Process !b

empty

empty
√
→ 0

(d) Process empty

Figure 4: Actions set synthesis example for the process
?a; !b, in discrete time.

For example, we can take the process “?a; !b” corre-
sponding to the reception of an “a” message, followed se-
quentially by the reply of a “b” message. The set of actions
that a process sequence can do, depends on the first pro-
cess in it. So, we must analyze, first, the process “?a”.
This process can do two actions: (i) the time elapsing or
(ii) receiving the message “a” (see Figure 4(a)). Next, we
must verify the compatibility of the process “?a” actions
with each guard of sequence process, and then, determine
the action set that this one can realize. Here, the two sets
are identical.

The “empty; !b” process has been created during the pre-
vious step. We can simplify this process, according to the
sequence algebra rules, for two reasons: (i) the “empty”
process can only terminate (

√
action), and (ii) if the first

sub-process of a sequence can terminate, then the sequence
process executes the second sub-process. So, “empty; !b”
process can become (or is equivalent to) “!b” process.

The analysis of “empty; !b” and empty processes are ex-
plained respectively in Figure 4(c) and Figure 4(d).

Each step enables us to determine the global dtLts of
“?a; !b” process (see details in Figure 4). The initial state is
“?a; !b” and the final state is “0”. Of course, each analysis
step is not hard-coded, but the tool analyses the algebra
rules to determine each derivate action to be executed by
a given process.

2.2 Analysis of discrete-time LTSs

Once the dtLts model of the Bpel specification under
design has been obtained, it can be analyzed by using
standard tool environments available for concurrent sys-
tems. For our purpose, we use the Cadp (Construction
and Analysis of Distributed Processes) toolbox [11] dedi-
cated to the formal specification and verification of con-
current asynchronous systems. Cadp accepts as input
specifications written in process algebraic languages, such
as Lotos [16], Fsp [21, 29] or Chp [22, 30], as well as
networks of communicating automata given in the Exp
language [19]. These formal specifications are translated
by specialized compilers into labeled transition systems
(Ltss), i.e., state spaces modeling exhaustively the dy-
namic behavior of the specified systems. Ltss are the for-

5

mal model underlying the analysis functionalities offered
by Cadp, which aim at assisting the user throughout the
whole design process: code generation and rapid prototyp-
ing, random execution, interactive and guided simulation,
model checking and equivalence checking, test case gener-
ation, and performance evaluation.

An Lts can be represented within Cadp in two com-
plementary ways: either explicitly, by its list of states and
transitions encoded as a file in the Bcg (Binary Coded
Graphs) format equipped with specialized compression al-
gorithms, or implicitly, by its successor function given as
a C program complying to the interface defined by the
Open/Cæsar [9] environment for graph manipulation.
The explicit representation is suitable for global verification
algorithms, which explore transitions forward and back-
ward, whereas the implicit representation is suitable for
local (or on-the-fly) verification algorithms, which explore
transitions forward, thus enabling an incremental construc-
tion of the Lts during verification. To deal with large sys-
tems, Cadp provides several advanced analysis techniques:
on-the-fly verification, partial order reductions, composi-
tional verification, and massively parallel verification using
clusters of machines.

Cadp contains currently over 40 tools and libraries for
Lts manipulation, which can be invoked either in inter-
active mode via the Eucalyptus graphical interface, or
in batch mode via the Svl [10] scripting language dedi-
cated to the description of complex verification scenarios.
The toolbox was used for the validation of more than 100
industrial case-studies1.

2.2.1 A fragment of the MCL language

Since we focus on model checking discrete-time properties
on dtLtss, we could apply in principle existing tools oper-
ating on Ltss, such as the Evaluator 3.5 [23] on-the-fly
model checker of Cadp, which takes as input temporal
formulas expressed in regular alternation-free µ-calculus,
an extension of alternation-free µ-calculus [5] with regular
expressions over transition sequences. However, the eval-
uation of discrete-time properties requires the counting of
time actions in the dtLts; this can be encoded in standard
modal µ-calculus [31] using fixed point operators (one oper-
ator for each counter value), but may lead to prohibitively
large temporal formulas, as noticed in the framework of
temporal Ccs [26]. Discrete-time properties can be suc-
cinctly and naturally formulated using data-handling ex-
tensions of the modal µ-calculus, such as the Mcl lan-
guage underlying the Evaluator 4.0 tool recently inte-
grated into Cadp.

Mcl (Model Checking Language) [24] is an extension of
the alternation-free µ-calculus [5] with regular expressions
and data-handling operators. We describe below the syn-
tax and semantics of an Mcl fragment containing modal
operators equipped with extended regular expressions over

1See the online catalog at
http://www.inrialpes.fr/vasy/cadp/case-studies

transition sequences, a more detailed description of the lan-
guage being available in [24]. The Mcl fragment consid-
ered consists of action formulas (noted α), regular formulas
(noted ρ), and state formulas (noted φ), which character-
ize actions, transition sequences, and states of the dtLts,
respectively. Action formulas have the following syntax:

α ::= a
| true

| false

| ¬α
| α1 ∨ α2

| α1 ∧ α2

An action formula α denotes a set of action names (transi-
tion labels) of the dtLts. The action name a denotes the
singleton set containing the action a. The boolean connec-
tors have their usual interpretation: true and false denote
the set of all actions of the dtLts and the empty set; ¬α
denotes the complement of the action set denoted by α;
α1 ∨α2 and α1 ∧α2 denote the union and the intersection
of the action sets denoted by α1 and α2. Action formulas
provide a simple, yet useful means of characterizing sub-
sets of actions. This kind of formulas were originally intro-
duced in action-based logics such as Actl (Action-based
Computation Tree Logic) [4].

Regular formulas have the following syntax:

ρ ::= α
| nil

| ρ1.ρ2

| ρ1|ρ2

| ρ∗

| ρ+

| ρ{m}
| ρ{m...n}
| ρ{m...}

A regular formula ρ denotes a binary relation containing
the couples of states which are source and target of a tran-
sition sequence in the dtLts such that the word obtained
by concatenating all actions labeling the transitions of the
sequence belongs to the regular language defined by ρ. The
regular formula α denotes all one-step sequences consist-
ing of a single transition labeled by an action satisfying
the action formula α. The nil operator denotes the empty
sequence, containing zero transitions. The concatenation
ρ1.ρ2 denotes the sequences containing two adjacent sub-
sequences satisfying ρ1 and ρ2, respectively. The choice
ρ1|ρ2 denotes the sequences satisfying either ρ1, or ρ2. The
transitive reflexive closure ρ∗ (resp. the transitive closure
ρ+) denotes the sequences consisting of the concatenation
of zero or more (resp. one or more) subsequences sat-
isfying ρ. The bounded iterations ρ{m}, ρ{m...n}, and
ρ{m...} denote the sequences consisting of the concatena-
tion of exactly m, between m and n, and at least m sub-
sequences satisfying ρ, respectively. These extended regu-
lar operators are similar to the operators implemented by
string searching tools such as the egrep utility available on

6

Unix systems; in practice they turn out to be as useful for
describing transition sequences in dtLtss as their egrep

counterparts are for describing character strings.
State formulas have the following syntax:

φ ::= true

| false

| ¬φ
| φ1 ∨ φ2

| φ1 ∧ φ2

| 〈ρ〉φ
| [ρ]φ
| X
| µX.φ
| νX.φ

A state formula φ denotes a set of states of the dtLts.
The boolean connectors have the usual interpretation over
the set of dtLts states. The possibility modality 〈ρ〉φ de-
notes the states from which there is (at least) an outgoing
transition sequence satisfying ρ and leading to a state sat-
isfying φ. The necessity modality [ρ]φ denotes the states
from which all outgoing transition sequences satisfying ρ
must lead to states satisfying φ. The minimal fixed point
operator µX.φ (resp. the maximal fixed point operator
νX.φ) denote the minimal (resp. maximal) solution of the
equation X = φ interpreted over the powerset lattice of the
state set. Propositional variables X denote sets of states;
they are bound by the fixed point operators in a way simi-
lar to quantifiers in first-order logic. The state formulas of
the Mcl fragment above are similar to those of the modal
µ-calculus, except for the two modalities containing regu-
lar formulas, which are inspired from dynamic logics such
as Pdl (Propositional Dynamic Logic) [15].

The usage of this Mcl fragment for specifying discrete-
time properties of Bpel descriptions will be illustrated in
Section 3.3.

3 Case Study: A Web Service for GPS Navigation

We illustrate in this section the application of our approach
to the modeling and analysis of a Web service dedicated
to Gps navigation. Given the relative complexity of this
Web service, we do not detail here its textual Bpel and
Wsdl descriptions, but present its workflow graphically
using the Bpmn [12] notation.

3.1 System description

The purpose of the Gps Web service is to compute
itineraries from a position to a destination fixed by a
user (client of the service). In addition to the requested
itinerary, the user can also obtain: pictures of the travel
(taken from the air), the global map of the itinerary, and
various kinds of information (about traffic, radar stations,
point of interest (Poi), etc). At last, the user can configure
the subscription to the various kinds of information, as well
as some parameters of the travel (e.g., to take motorway

or not, to deviate toward a Poi, etc.). The relationships
between these functionalities are represented in Figure 5.

Figure 5: Functionality workflow of the Gps Web service

The behavior of the Gps Web service consists of two
main phases, described in the sequel: the initialization
phase (login, setting of the initial position and destination)
and the main loop phase (management of the itinerary,
modification of the parameters, etc.).

3.1.1 Initialization phase

The initialization phase comprises three activities: login,
position and destination.

Login activity. The access to the Web service is re-
stricted to authenticated users only. To identify itself, the
user must send a couple login/password, to which the ser-
vice responds by a message “Ok” or “NOk” depending
whether the couple is valid or not.

Position activity. After authentication, in order to use
the main functionalities of the Web service, the user must
indicate where the start location of the travel is. This
is done by sending a message with information about the

7

street, city, and country where the navigation session must
be started; the message must be resent until the start lo-
cation is accepted by the service (message “Ok”).

Destination activity. Finally, before the service may
attempt to calculate an itinerary, the user must enter a
destination. This is similar to the position activity above:
the user must retry until the end location is accepted by
the service.

3.1.2 Main loop phase

After the initialization phase, the service can compute an
itinerary, send information about traffic, Poi, etc. To
maintain the connection with the user, the service requires
that the time elapsed between certain consecutive user ac-
tions does not exceed a given timeout value (a kind of
“ping alive”). In Section 3.2 we will consider for analysis
configurations of the system with a timeout value ranging
from 1 to 60 seconds.

From the Web service point of view (see Figure 5), this
timeout is managed by a “scope” process: when the time-
out is reached, this process generates an exception that
will be caught by another process. The main activity of
this “scope” process is a “pick” process. This kind of
choice enables the user to select a desired action; if we used
the “switch” Bpel construct instead, the choice would be
made by the Web service and not by the user. Further-
more, the “scope” is encapsulated into a “while”, enabling
the user to do more than one operation during the session
(notice that the first action carried out by the service when
entering the “while” is the emission of a ready message to
the user). Finally, the “while” is the main activity of a sec-
ond “scope”, that catches the first exception thrown when
the timeout is reached.

The activities executed by the main loop are partitioned
in two modes, described in the sequel: the navigation mode
(obtaining the itinerary, modifying the current position or
destination, getting a picture or a roadmap), and the con-
figuration mode (subscribing to a Poi, getting information
on radars or traffic, setting of parameters).

Navigation mode. In navigation mode, the user can
change the current position and the destination (using the
same procedure as for the initialization phase). Next, the
user can ask for the itinerary, a picture, the roadmap, or
enter in configuration mode. There are two types of answer
for itinerary requests: either a complete itinerary leading
from the current position to the destination, with various
information (about street, radar, Poi, etc.) depending on
the user subscriptions, or simply a destination message

indicating that the current position is (near) to the des-
tination. The requests for picture and roadmap allow the
user to obtain an air-picture of the area (in Png format)
or a veritable roadmap (in Svg format).

Configuration mode. In configuration mode, the user
can subscribe or cancel his subscription to information
about Poi, radar or traffic. This information is added
to the itinerary if necessary. Additionally, the user can set
various parameters, such as the kind of the itinerary (on
motorway or not), etc.

3.2 Discrete-time LTS synthesis

Starting from the Bpel description of the Gps Web ser-
vice, we apply the WSMod tool in order to obtain a dtLts
on which the verification tools of Cadp will operate. We
show below the dtLts model obtained for a timeout of 1
second, then we study its variation in size as the timeout
value increases, and finally we discuss the behavior of the
Web service w.r.t. the ambiguity detection feature imple-
mented in WSMod.

Discrete-timed labeled transition system. dtLts
models represent the observable behavior of Web services.
The actions labeling the dtLts transitions denote the mes-
sages exchanged (emissions and receptions are prefixed by
’ !’ and ’?’, respectively), the elapse of a discrete-time unit
χ (or time), the internal action τ (or tau), and the termi-
nation action

√
(or done). The global behavior of the Web

service is obtained by an exhaustive simulation of the Bpel
description driven by the Atp rules given in Table 1. The
dtLts obtained in this manner for the Gps Web service
with a timeout value of 1 second is shown in Figure 6.

Variation of DTLTS size with the timeout value.

The size of the dtLts (number of states and transitions)
depends on several aspects of the Bpel description: the
number of Bpel processes, their complexity and nesting,
the amount of communications, and the values of the time-
outs. For the sake of readability, we have shown in Figure 6
the dtLtss for a timeout of 1 second (corresponding to one
χ in discrete-time), but we carried out verification also for
larger values of the timeout.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 10 20 30 40 50 60

L
T

S
 s

iz
e

 (
n

u
m

b
e

rs
 o

f
tr

a
n

s
it

io
n

s
/s

ta
te

s
)

TimeOut (in sec.)

Variation of LTS size depending on timeout value

transitions
states

8

0

11

TAU

22

TAU

TIME

20

!bye

TIME

3

!Ready

1

!Destination

15

TIME

7

TAU

2

!Ok

10

TIME

!Ok

TIME

18

TIME

27

?setPosition?setDestination 5

?getItinerary

26

?getPicture

17

?getRoadMap

25

?configMode

TIME

6

?getRoadMap

12

?setPosition ?setDestination13

?configMode

24

?getItinerary

19

?getPicture

TAU

16

TAU

9

TAU

8

TAU

!Picture

TIME

!RoadMap

TIME?POISubscribe ?setRadarSubscribe?setTrafficSubscribe ?setParameters TIME

4

!GoodJourney

TIME

!Itinerary

23

TIME

!Destination

TIME

!RoadMap

TIME

TIME

!ConnexionError

14

DONE

!Itinerary

TIME

TAU

21

TAU

!NOk

TIME

TIME

?POISubscribe ?setRadarSubscribe ?setTrafficSubscribe?setParameters

!NOk

TIME

TAU TAU

!Picture

TIME

28

TAU

phase
Main loop

phase
Initialization

Figure 6: dtLts model of the Gps Web service, with zoom on the initialization phase. The action !GoodJourney makes
the link between the initialization phase and the main loop phase.

9

The figure above shows the variation of the dtLts size
for timeout values ranging from 1 to 60. We observe a
linear increase of both the number of states and transitions;
this is a consequence of the fact that the Bpel description
contains a single timeout (according to the Atp rules). In
the presence of multiple, overlapped timeouts, the size of
the dtLts may increase much more quickly.

Non ambiguous Web service. In this study, we fo-
cus on the verification of the Web service behavior. How-
ever, the WSMod tool can also synthesize automatically
a dtLts modeling the behavior of an adapted client in-
teracting with the Web service, provided that the model
of the service respects certain properties (concerning non
ambiguity in message exchanges, time elapsed, etc.) de-
tailed in [13]. Here, the Gps Web service is identified as
non ambiguous by WSMod, meaning that the tool can
synthesize an adapted client that can know, on each mes-
sage exchange, the exact choice made on the service side,
and therefore the client and the service can evolve without
any deadlocks or mismatches.

3.3 Verification of discrete-time properties

We analyze below the behavior of the Gps Web service
(considering a timeout of 50 seconds) by means of discrete-
time model checking using the Evaluator 4.0 [24] tool
of Cadp. Table 2 illustrates the formulation in Mcl of
several safety and liveness properties, of both untimed and
timed nature. The colored parts of the formulas indicate
discrete-time properties, which involve the counting of time
actions. All properties were successfully verified on the
corresponding dtLts of the system, which has 535 states
and 1473 transitions.

Safety properties: they specify informally that “some-
thing bad never happens” during the execution of the sys-
tem. In the Mcl language, these properties can be ex-
pressed in a concise manner by identifying the undesirable
execution sequences, characterizing them using extended
regular expressions, and forbidding their existence in the
dtLts model using necessity modalities.

Properties S1 and S2 concern the ordering of actions
during the initialization phase: S1 specifies that the user
cannot set the position or the destination before logging in
successfully, and S2 states that after requesting the posi-
tion or the destination, the Web service cannot begin the
main loop before receiving an appropriate answer from the
user. Properties S3 and S4 deal with the main loop phase:
S3 forbids the user to make another request before the cur-
rent one (here, an itinerary demand) has been handled by
the service, and S4 states that a demand cannot be fulfilled
anymore by the service after the timeout has expired.

Liveness properties: they specify informally that
“something good eventually happens” during the execution
of the system. In Mcl, these properties contain diamond

modalities and minimal fixed point operators for encod-
ing the existence of certain desirable execution sequences
(potentiality) or trees (inevitability) in the dtLts.

Properties L1 and L2 concern the initialization phase:
L1 specifies that after the user has logged in, the Web
service will eventually ask for the position, the destina-
tion, or end the initialization, and L2 states that after the
initialization was finished the service will end up in the
main loop or decide to terminate the session. Properties
L3 and L4 deal with the main loop phase: L3 indicates
that as long as the timeout has not expired, the service
can still prompt for a user request, and L4 states that an
expiration of the timeout eventually interrupts the con-
nection. The AF p operator of Ctl [3] expressing the in-
evitable reachability of a state p is defined in µ-calculus as
µX.p ∨ (〈true〉 true ∧ [true]X).

4 Conclusion and Future Work

The design of complex business processes according to
the Soa approach requires to carefully take into account
the presence of concurrency, communication, and timing
constraints induced by the interaction of Web services.
To facilitate the design process, we propose here a tool-
equipped methodology for modeling and analyzing Web
services described in Bpel. We focus on the behavioral
and discrete-time aspects of Web services, and rely upon
the model-based verification technologies stemming from
the concurrency domain. The state/transition models of
Bpel Web services are produced automatically by the
WSMod tool, which implements an exhaustive simulation
algorithm based on a formalization of Bpel semantics by
means of process algebraic rules. The tool is able to han-
dle both discrete and continuous time constraints; for the
moment we handle only discrete-time models, which can
be analyzed using the Evaluator 4.0 model checker [24]
of the Cadp toolbox [11]. Discrete-time safety and live-
ness properties can be concisely expressed using the data-
handling facilities of the Mcl language accepted as input
by Evaluator 4.0, and particularly the extended regu-
lar expressions over transition sequences, which allow to
count tick actions occurring in the model. We illustrated
the verification of discrete-time properties on the exam-
ple of a Gps Web service; however, most of them can be
easily adapted for other business processes described in
Bpel. Our methodology enables the Web service design-
ers to carry out formal analysis on complex Web services
before publishing them, and thus to improve the quality of
the design process.

We plan to continue our work along several directions.
Firstly, we can improve the connection between WSMod
and Cadp by producing implicit dtLtss according to the
interface defined by Open/Cæsar [9]. This would enable
on-the-fly verification, which allows to detect errors in large
systems without constructing the complete dtLts model
beforehand but exploring it in a demand-driven way. Sec-
ondly, using discrete-time models allows to directly reuse

10

Table 2: Safety and liveness properties of the Gps Web service (timeout of 50 sec.)

Prop. Mcl formula

S1 [(¬!LoginOk)∗.?setPosition ∨ ?setDestination] false

S2

[(true
∗.

((!getPosition.(¬?setPosition)∗) | (!getDestination.(¬?setDestination)∗)) .
!GoodJourney)] false

S3

[true
∗.?getItinerary.(¬(!Itinerary ∨ !Destination))∗.

(?getP icture ∨ ?getRoadMap ∨ ?configMode ∨
?setPosition ∨ ?setDestination ∨ ?getItinerary)] false

S4

[true
∗.?getItinerary.(¬(!Itinerary ∨ !Destination))∗.

(time.(¬(!Itinerary ∨ !Destination))∗){51} .

(!Itinerary ∨ !Destination)] false

L1 [true
∗.!LoginOk] AF 〈!getPosition ∨ !getDestination∨ !GoodJourney〉 true

L2 [true
∗.!GoodJourney.(τ ∨ time)∗] 〈(τ ∨ time)∗. !Ready ∨ !bye〉 true)

L3
[true

∗.!Ready. time{ 0 ... 50 }]

〈true
∗.!Picture ∨ !RoadMap ∨ !Itinerary ∨ !Destination〉 true

L4

[true
∗.!Ready.

((¬(!Itinerary ∨ !Destination ∨ !Picture ∨ !RoadMap))∗.time){51}]

AF 〈!ConnectionError〉 true

the tools available for data-based temporal logics, such as
Evaluator 4.0; however, this may lead to state explosion
in the presence of numerous timeouts. An alternative so-
lution would be to use continuous time models; this can
be achieved by connecting the time automata produced by
WSMod with the Uppaal [20] tool dedicated to the veri-
fication of continuous time models. Finally, we will extend
the methodology to handle compositions of multiple Web
services, following our previous work on automated client
synthesis [25], but focusing on the verification of composi-
tion. For this purpose, the compositional verification tech-
niques available in tools such as Exp.Open [19] will be
certainly useful.

REFERENCES

[1] R. Alur and D. L. Dill. A theory of timed automata.
Th. Comp. Sci., 126(2):183–235, 1994.

[2] A. Chirichiello and G. Salaün. Encoding abstract de-
scriptions into executable web services: Towards a
formal development. In WI ’05: Proc. of the 2005
IEEE/WIC/ACM International Conference on Web
Intelligence, pages 457–463, Washington, DC, USA,
2005. IEEE Computer Society.

[3] E. Clarke, O. Grumberg, and D. Peled. Model Check-
ing. MIT Press, 2000.

[4] R. De Nicola and F. W. Vaandrager. Action versus
State Based Logics for Transition Systems In Lec-
ture Notes in Computer Science vol. 469, pp. 407–419,
Springer Verlag, 1990

[5] E. A. Emerson and C-L. Lei. Efficient Model Checking
for Fragments of the Propositional Mu-Calculus. In
Proc. of the 1st International Symposium on Logic in
Computer Science LICS’86, 1986.

[6] A. Ferrara. Web services: a process algebra approach.
In ICSOC, pages 242–251, 2004.

[7] X. Fu, T. Bultan, and J. Su. Analysis of interacting
BPEL web services. In Proc. of the 13th International
World Wide Web Conference (WWW’04), USA, 2004.
ACM Press.

[8] X. Fu, T. Bultan, and J. Su. WSAT: A tool for formal
analysis of web services. In Proc. of the 16th Inter-
national Conference on Computer Aided Verification
(CAV’04), 2004.

[9] H. Garavel. OPEN/CÆSAR: An open software archi-
tecture for verification, simulation, and testing. Proc.
of TACAS’98, LNCS vol. 1384, pp. 68–84, March
1998. Springer Verlag. Full version available as IN-
RIA Research Report RR-3352.

[10] H. Garavel and F. Lang. SVL: a scripting language
for compositional verification. In M. Kim, B. Chin, S.
Kang, and D. Lee, editors, Proc. of the 21st IFIP WG
6.1 International Conference on Formal Techniques
for Networked and Distributed Systems FORTE’2001
(Cheju Island, Korea), pages 377–392. IFIP, Kluwer
Academic Publishers, August 2001. Full version avail-
able as INRIA Research Report RR-4223.

[11] H. Garavel, F. Lang, R. Mateescu, and W. Serwe.
CADP 2006: A toolbox for the construction and anal-

11

ysis of distributed processes. In W. Damm and H. Her-
manns, editors, Proc. of the 19th International Con-
ference on Computer Aided Verification CAV’2007
(Berlin, Germany), volume 4590 of Lecture Notes in
Computer Science, pages 158–163. Springer Verlag,
July 2007.

[12] Object Management Group. Business process model-
ing notation (BPMN) specification, may 2006.

[13] S. Haddad, T. Melliti, P. Moreaux, and S. Rampacek.
Modelling web services interoperability. In Proc. of
the 6th Int. Conf. on Enterprise Information Systems
(ICEIS04), Porto, Portugal, April 14–17 2004.

[14] S. Haddad, P. Moreaux, and S. Rampacek. A formal
semantics and a client synthesis for a BPEL service.
In Lecture Notes in Business Information Processing,
ICEIS06 Revised Selected Paper, volume 3. Springer,
2008.

[15] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic.
MIT Press, 2000.

[16] ISO/IEC. LOTOS — a formal description technique
based on the temporal ordering of observational be-
haviour. International Standard 8807, International
Organization for Standardization — Information Pro-
cessing Systems — Open Systems Interconnection,
Genève, September 1989.

[17] D. Jordan and J. Evdemon. Web Services Business
Process Execution Language Version 2.0 - Oasis Stan-
dard, 11 april 2007.

[18] N. Josuttis. SOA in Practice – The Art of Distributed
System Design. O’Reilly Media, City, 2007.

[19] F. Lang. EXP.OPEN 2.0: A flexible tool integrating
partial order, compositional, and on-the-fly verifica-
tion methods. In J. van de Pol, J. Romijn, and G.
Smith, editors, Proc. of the 5th International Confer-
ence on Integrated Formal Methods IFM’2005 (Eind-
hoven, The Netherlands), volume 3771 of Lecture
Notes in Computer Science. Springer Verlag, 2005.

[20] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in
a Nutshell. Int. Journal on Software Tools for Tech-
nology Transfer, 1(1–2):134–152, October 1997.

[21] J. Magee and J. Kramer. Concurrency: State Models
and Java Programs. Wiley, 1999.

[22] A. J. Martin. Compiling communicating processes
into delay-insensitive VLSI circuits. Distributed Com-
puting, 1(4):226–234, 1986.

[23] R. Mateescu and M. Sighireanu. Efficient on-
the-fly model-checking for regular alternation-free
mu-calculus. Science of Computer Programming,
46(3):255–281, March 2003.

[24] R. Mateescu and D. Thivolle. A model checking lan-
guage for concurrent value-passing systems. In J.
Cuellar and T. Maibaum, editors, Proc. of the 15th In-
ternational Symposium on Formal Methods FM’2008
(Turku, Finland), volume 5014 of Lecture Notes in
Computer Science. Springer Verlag, 2008.

[25] T. Melliti, C. Boutrous-Saab, and S. Rampacek. Ver-
ifying correctness of web services choreography. In
Proc. Forth IEEE European Conference on Web Ser-
vices (ECOWS06), Zurich, Switzerland, December 4–
6 2006. IEEE Computer Society Press.

[26] M. J. Morley. Safety-level communication in rail-
way interlockings. Science of Computer Programming,
29(1-2):147–170, 1997.

[27] X. Nicollin and J. Sifakis. The algebra of timed pro-
cesses ATP: Theory and application, 1994.

[28] G. Salaün, A. Ferrara, and A. Chirichiello. Negoti-
ation among web services using LOTOS/CADP. In
L.-J. Zhang, editor, ECOWS, volume 3250 of Lecture
Notes in Computer Science, pages 198–212. Springer,
2004.

[29] G. Salaün, J. Kramer, F. Lang, and J. Magee. Trans-
lating FSP into LOTOS and networks of automata.
In J. Davies, W. Schulte, and J. Song Dong, edi-
tors, Proc. of the 6th International Conference on In-
tegrated Formal Methods IFM’2007 (Oxford, United
Kingdom), volume 4591 of Lecture Notes in Computer
Science, pages 558–578. Springer Verlag, July 2007.

[30] G. Salaün and W. Serwe. Translating hardware pro-
cess algebras into standard process algebras — illus-
tration with CHP and LOTOS. In J. van de Pol,
J. Romijn, and G. Smith, editors, Proc. of the 5th
International Conference on Integrated Formal Meth-
ods IFM’2005 (Eindhoven, The Netherlands), Lecture
Notes in Computer Science. Springer Verlag, 2005.

[31] C. Stirling. Modal and Temporal Properties of Pro-
cesses. Springer Verlag, 2001

[32] K. J. Turner. Representing and analysing composed
web services using CRESS. J. Netw. Comput. Appl.,
30(2):541–562, 2007.

12

