
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Towards Formal Methods Diversity in Railways:
an Experience with Six Formal Tools

Franco Mazzanti, Alessio Ferrari and Giorgio O. Spagnolo

ISTI-CNR, Via G. Moruzzi 1, Pisa, ITALY,
e-mail: {firstname}.{lastname}@isti.cnr.it,
WWW home page: http://fmt.isti.cnr.it

Received: date / Revised version: date

Abstract. Several formal tools exist that can be exploited
to validate early system designs, and that are applica-
ble to problems of the railway domain. In this paper,
we present an experience in formal modelling and veri-
fication using six di↵erent formal environments, namely
UMC, Promela/SPIN, NuSMV, mCRL2, CPN Tools and
FDR4. In particular, we model and verify an algorithm
that addresses a typical railway problem, namely dead-
lock avoidance in train scheduling. The algorithm is de-
signed according to a prototypical architecture, the so-
called blackboard pattern, in which a a set of global data
is concurrently and atomically updated by a set of con-
current guarded agents. Our experience shows that the
design of the algorithm can be translated into the dif-
ferent formalisms with limited e↵ort, while deep profi-
ciency with the tools is required to optimise the per-
formance. The current paper establishes the preliminary
foundations for the concept of formal methods diversity

in the development of railway systems. The concept is
based on the idea that, if di↵erent non-certified formal
environments are used to verify the same design, this
increases the confidence on the verification results. The
industrial application of this promising concept requires
further research, and appropriate guidelines shall be es-
tablished to identify the proper formal environments to
use for a specific railway problem, and to define an indus-
trial process in which formal methods diversity can be
exploited at its full benefits. The paper presents the dif-
ferent models developed, compares the tools employed in
terms of ease-of-use and performance, and discusses the
industrial implications of the concept of formal methods
diversity in the railway domain.

Send o↵print requests to:

Key words: Formal Methods Diversity, Model Checking,
Deadlock Avoidance, Train Scheduling, Railways, Auto-
matic Train Protection, CBTC.

1 Introduction

The CENELEC EN 50128 norm [8], for the develop-
ment of railway safety-critical software, recommends the
usage of formal methods during the design and imple-
mentation of railway products. Several industrial expe-
riences have been documented in the literature concern-
ing the formal development of railway software [18,32,
60]. The usage of the B method [2] for the develop-
ment of the SACEM system, a control platform for a
line of Paris RER [13], and the iterative formal verifica-
tion of the Paris automatic metro line 14, also based on
the B method [5], are successful, early experiences that
have shown the practicability and e↵ectiveness of formal
methods to railway companies. With the advent of model
checking techniques and tools [12], experiences on the
application of these approaches were performed in rail-
ways, especially for what concerns the validation of inter-
locking systems [59,58,37,23,7,42]. More recently, for-
mal model-based approaches, involving graphical mod-
elling and code generation, were also used for the de-
velopment and verification of railway systems, with a
main focus on automatic train control (ATC) and protec-
tion (ATP) systems [22,40,54,10,20]. Some experiences
were also performed on the usage of Coloured Petri Nets
(CPN) for modelling and simulation of railway signalling
systems [57,43].

Although formal tools exist that are certified accord-
ing to the EN 50128 norm, as, e.g., SCADE [16] from
Esterel Technologies, the majority of the formal environ-
ments available are not certified. Hence, notwithstand-
ing the usefulness of formal methods for discovering de-
sign flaws early in the development, the result of a for-

���
��
��

2 F. Mazzanti et al.: Formal Methods Diversity in Railways

mal modelling and verification process in which a non-
certified tool is used cannot be considered as a final proof
of the correctness of a certain design with respect to
the verified properties. On the other hand, the existence
of di↵erent, non-validated, tools producing the same re-
sults might increase the overall confidence of the verifi-
cation outcomes. This principle was previously applied
in the avionic domain by Rockwell Collins [51], which, in
collaboration with other partners, developed translators
from semi-formal models expressed in Simulink/Stateflow
towards the Lustre formal language [34], and then to-
wards formal environments, such as PVS [52] and Nu-
SMV [11], in which design properties and system require-
ments can be verified. However, to our knowledge, no
equivalent experience exists in the railway domain. We
hypothesise that this might be due to the perceived diffi-
culty of formal methods for railway practitioners, and to
the common idea that, if mastering a single formal tool
is a problem, mastering more than one might be hardly
feasible.

In this paper, we show that a representative rail-
way problem can be modelled and verified with lim-
ited e↵ort using six di↵erent tools, namely: UMC [55],
Promela/SPIN [39], NuSMV [11], mCRL2 [31], FDR4 [28]
and Coloured Petri Nets (CPN) Tools [44]. In particu-
lar, we modelled an algorithm for deadlock avoidance
in train scheduling. The algorithm was previously im-
plemented as part of an Automatic Train Supervision
(ATS) system [49,50] of a Communications-based Train
Control System (CBTC) [24]. Such system controls the
movements of driverless trains inside a given yard. The
deadlock avoidance algorithm takes care of avoiding sit-
uations in which a train cannot move because its route is
blocked by another train. Equipped with this algorithm,
the ATS is able to dispatch the trains without ever caus-
ing situations of deadlock, even in presence of arbitrary
delays with respect to the planned timetable. This kind
of problem is a rather typical one – not only for the rail-
way domain [15] – which can be modelled as a set of
global data that is concurrently and atomically updated
by a set of concurrent guarded agents – i.e., agents that,
when certain global conditions are met, are allowed to
atomically change the global status. This design strat-
egy is normally referred as the blackboard architectural
pattern [15]. In this paper, we show the design of the
algorithm, the di↵erent models produced with the six
formal tools, and the results of the verification activi-
ties, observing di↵erences and hurdles in the usage of
the six environments.

This paper establishes a preliminary basis for the po-
tential usage of formal methods diversity in the design
and verification of railway software. In particular, our ex-
perience tells that, given a system design, limited e↵ort
and adjustments are required to translate the design into
di↵erent formalisms. However, from our experience, we
saw that small choices in the specification of the models,
or in the verification options, can greatly impact on the

verification time. With some di↵erences, this observa-
tion holds for all the modelling frameworks considered.
Hence, we argue that a deep proficiency with each one
of the frameworks is required to e↵ectively exploit their
verification capabilities.

The paper extends a previous contribution to the
ISoLA 2016 conference [48]. With respect to this previ-
ous work, the current one describes the experience with
two additional environments, namely CPN and FDR4
(Sect. 8 and 7), provides a more in-depth discussion and
comparison among the six tools (Sect. 9), and discusses
the potential of formal methods diversity in the railway
domain (Sect. 10).

The rest of the paper is structured as follows. In
Sect. 2 we describe the deadlock avoidance algorithm
that we modelled. In Sect. 3–7, we show our models and
the verification results for UMC, NuSMV, Promela/SPIN,
mCRL2, FDR4 and CPN Tools, respectively1, and, within
the descriptions of the models, we highlight the peculiari-
ties of the di↵erent languages and environments. Finally,
Sect. 11 concludes the paper and provides general obser-
vations on the experience.

2 The Deadlock Avoidance Algorithm

This section describes basic elements of the modelled al-
gorithm, which was defined in our previous works [49,
50]. Fig. 1 shows the structure of the railway layout con-
sidered in this study. Nodes in the yard correspond to
itinerary endpoints, and the connecting lines correspond
to the entry/exit itineraries to/from those endpoints.
Eight trains are placed in the layout. Each train has its
own mission to execute, defined as a sequence of itinerary
endpoints. For example, the mission of train0, which
traverses the layout from left to right along top side of
the yard, is defined by the mission vector: T0 = [1, 9, 10,
13, 15, 20, 23]. The mission of train7, which instead
traverses the layout from right to left, is defined by the
vector: T7 = [26, 22, 17, 18, 12, 27, 8]. The progress status
of each train is represented by the index, in the mission
vector, which allows to identify the endpoint in which the
train is at a certain moment. We will have 8 variables
P0, . . . , P7, one for each train, which store the current
index for the train. For example, at the beginning, we
have P0 = 0, . . . , P7 = 0, since all the trains occupy the
initial endpoints of their missions – at index 0 in the
vector.

If the 8 trains are allowed to move freely, i.e., if their
next endpoint is free, there is the possibility of creating
deadlocks, i.e., a situation in which the 8 trains block

1 All the verification experiments have been conducted on a Mac
Pro (late 2013) workstation with Quad-core 3,7Ghz Intel Xeon E5,

64 GB RAM running OS X 10.11 (El Capitan).
All the models referred in this paper can be retrieved from the
URL http://fmt.isti.cnr.it/WEBPAPER/STTT2017data.

zip

F. Mazzanti et al.: Formal Methods Diversity in Railways 3

[!htp]

�

�

�

�

�

����� ������������
�

��

���
�����

��������������
��������

������������������

��������������������

�

��

��� �

��

���

��

�
�

��

��

��

��

��

����

��

��

��

��

��

��

��

�
�

�

��

������

������

������

������

������

������

������

������

Fig. 1: A fragment of the yard layout and the 8 missions of the trains

each other in their expected progression. To solve this
problem the scheduling algorithm of the ATS must take
into consideration two critical sections A and B – i.e.,
zones of the layout in which a deadlock might occur, –
which have the form of a ring of length 8 (see Fig. 2),
and guarantee that these rings are never saturated with
8 trains – further information on how critical sections are
identified can be found in our previous work [49,50]. This
can be modelled by using two global counters RA and
RB, which record the current number of trains inside
these critical sections, and by updating them whenever
a train enters or exits these sections. For this purpose,
each train mission Ti, with i = 0 . . . 7, is associated with:
a vector of increments/decrements Ai to be applied to
counter RA at each step of progression; a vector Bi of
increments/decrements to be applied to counter RB.

For example, given T0 = [1, 9, 10, 13, 15, 20, 23], and
A0 = [0, 0, 0, 1, 0,−1, 0], when train0 moves from end-
point 10 to endpoint 13 (P0 = 3) we must check that
the +1 increment of RA does not saturate the critical
section A, i.e., RA + A0[P0] 7; if the check passes
then the train can proceed and safely update the counter
RA := RA+A0[P0]. The maximum number of trains al-
lowed in each critical section (i.e., 7), will be expressed
as LA and LB in the rest of the paper.

The models presented in the following sections, which
implement the algorithm described above, are deadlock-
free, since the verification is being carried on as a fi-
nal validation of a correct design. The actual possibility
of having deadlocks, if the critical sections management
were not supported or incorrectly implemented, can eas-
ily be observed by raising from 7 to 8 the values of the
variables LA and LB.

The current design, in which each train movement
logically corresponds to an atomic system evolution step,
leads to a state-space of 1,636,537 configurations.

3 The UMC Model

UMC [55] is a model checker that belongs to the Kan-
dISTI2 [56] family. Its development started at ISTI in
2003 and has been since then used in several research
projects. So far UMC is not really an industrial scale
project but more an (open source) experimental research
framework. It is actively maintained and is publicly us-
able through its web interface3.

The KandISTI family comprises four model checkers,
each of which is oriented to a particular system design
approach, but all of which share the same underlying
abstract model and verification engine. The basic un-
derlying idea behind KandISTI is that the evolution in
time of the system behaviour can be seen as a graph
where both edges and states are associated with sets of
(composite) labels [30]. Labels on the states represent
basic state properties, and labels on the edges represent
properties of system transitions. The logic supported by
the KandISTI framework uses the evolution graph as se-
mantic model and allows to specify abstract properties
in a way that is rather independent from the internal
implementation details of the system [19].

The di↵erent flavours of the various KandISTI tools
have to do with the choice of one of the supported spec-
ifications languages, which range from process algebras
to sets of UML-like statecharts. In our case, we will use
the UMC tool, since we considered it the most adequate
to model our algorithm. In UMC, a system is described
as a set of communicating UML-like state machines. In
our particular case, the system is composed of a unique
state machine, in which we have a Vars part – including
the global state – and a Behavior part – specifying the
state machine behavior.

The Vars part contains the vectors describing the
train missions (Ti), the indexes recording the train pro-
gresses (Pi) – i.e., the indexes in the previous vectors
–, the occupancy counters RA and RB of the two crit-

2 http://fmt.isti.cnr.it/kandisti
3 http://fmt.isti.cnr.it/umc

4 F. Mazzanti et al.: Formal Methods Diversity in Railways

[!htp]

����� ������������
�

��

���
�����

��������������
��������

������������������

��������������������

�

��

��� �

��

���

��

��

��

��

��

��

����

��

��

��

��

��

��

��

� ��

�

�

Fig. 2: The critical section A and B which must not be saturated by 8 trains

ical sections, and the vectors Ai, Bi including the in-
crements/decrements that should be performed by the
trains at each step of their progress for the critical sec-
tions A and B, respectively. In addition, we have the
two constants indicating the maximum number of trains
allowed in the critical sections (LA,LB).

Vars:

-- mission steps for train0

T0: int[] := [1, 9,10,13,15,20,23];

. . .

-- mission steps for train7

T7: int[] := [26,22,17,18,12,27, 8];

-- limit value for region RA

LA: int :=7;

-- RA updates steps for train0

A0: int[] := [0, 0, 0, 1, 0,-1, 0];

. . .

-- RA updates steps for train7

A7: int[] := [1, 0, 0, 0,-1, 0, 0];

-- occupancy of region RA

RA: int :=1;

-- limit value for region RB

LB: int :=7;

-- RB updates steps for train0

B0: int[] := [0, 0, 0, 1, 0,-1, 0];

. . .

-- RB updates steps for train7

B7: int[] := [1, 0, 0, 0,-1, 0, 0];

-- occupancy of region RB

RB: int :=1;

-- train progresses

P0,P1,P2,...,P7:int :=0;

In this particular case the size of a state is fixed and
static. However, this is not a requirement for UMC, since
we can have variables representing unbounded vectors,
queues, unbounded integers, which together with the
(potentially unbounded) events queues can contribute
to make the actual size of a state highly dynamic. This
dynamism might lead to potentially infinite state sys-
tems.

In the Behavior part of our class definition we will
have one transition rule for each train, which describes
the conditions and the e↵ects of the advancement of the
train. A generic transition rule is expressed as follows:

<SourceState> -> <TargetState>{
<EventTrigger>[<Guard>]/<Actions>

}

A transition rule expressed as above intuitively states
that when the system is in the state SourceState,
the specified EventTrigger is available, and all the
Guards are satisfied, then all the Actions of the tran-
sition are executed and the system state passes from
SourceState to TargetState.

The interleaving of the progress of the various trains
is therefore modelled by the internal non-determinism
of the possible applications of state machine transitions.
In our case there is no external event that triggers the
system transitions, therefore the transitions will be con-
trolled only by their guards.

In the case of train0, for example, we will have the
transition rule:

s1 -> s1

{- [-- train0 has not yet completed its mission

P0 <6 &

-- next position not occupied by train1

T0[P0+1] != T1[P0] &

. . . -- next position not occupied by ...

-- next position not occupied by train7

T0[P0+1] != T7[P7] &

-- A is not saturated by arrival of train0

RA + A0[P0+1] <= LA &

-- B is not saturated by arrival of train0

RB + B0[P0+1] <= LB

] /

-- update occupancy of critical section A

RA = RA + A0[P0+1];

-- update occupancy of critical section B

RB = RB + B0[P0+1];

-- update train progress

P0 := P0 +1;

}

As a last step we have to define what we want to
see on the abstract L2TS associated to the system evo-
lutions. Indeed, the overall behaviour of a system is for-
malised as an abstract doubly labelled transition system
(L2TS), and abstraction rules allow to define what we
want to see as labels of the states and edges of the L2TS.

F. Mazzanti et al.: Formal Methods Diversity in Railways 5

The abstraction rules are expressed in the Abstrac-

tion part of the specification, in which we define which
labels should appear on the edges and states of the ab-
stract evolution graph. In our case, we are interested to
observe the existence of a certain state where all trains
have completed all their missions. This can be done as-
signing a state label, e.g. ARRIVED, to all the system
configurations in which each train is in its final position.

Abstractions {
State SYS.P0=6 and

SYS.P1=6 and

. . .

SYS.P7=6 -> ARRIVED

-- abstract label on final node

}

At this point, the L2TS associated to our model will
be a directed graph that will converge to a final state la-
belled ARRIVED in the case that no deadlock occurs in
the system. The branching-time, state/event based tem-
poral logic supported by UMC has the power of full µ-
calculus but also supports the more high level operators
of Computation Tree Logic (CTL). The property that
for all executions all the trains eventually reach their
destinations be easily checked by verifying the CTL-like
formula:

AF ARRIVED

The AF operator inside the above CTL formula specifies
that for all execution paths (A) of the system, eventually
in the future (F), we should reach a state in which the
state predicate ARRIVED holds.

If this property does not hold, UMC allows to inter-
actively explore the set of system evolution steps that led
to a failure (which in this case do have the shape of a
single path but which in general may have the shape of a
graph), and view all the internal details of the traversed
states. One of the design goals of UMC is indeed the one
of helping the user to easily understand the defects in its
early designs, by exploiting an interactive explanation of
the obtained evaluation results – not just a state-space
fragment acting as counter-example.

In our case the formula is true and UMC completes
the evaluation in a time which ranges from 28 seconds
to 106 seconds depending on how the tool is used. The
fastest results of 28 seconds is obtained by exploiting a
prototypal parallel version of UMC [47], by adopting a
depth-first exploration strategy, and letting the evalua-
tion to proceed in a non-interactive way which does not
collect the data necessary for a subsequent explanation
of the results.

As an alternative modelling approach, we might have
modelled the successful completion of all the train mis-
sions as an observable event on the graph. To achieve
this we should introduce an additional evolution to the
state machine, which generates the Arrived signal after
all trains have completed their missions.
s1 -> s2 {- [P0=6 & P1=6 & ... & P7=6] / Arrived}

Furthermore, in this case we should associate an ob-
servable label in the abstract evolution graph, corre-
sponding to the internal event of signal generation.

Abstractions {
Action : Arrived -> arrived

-- abstract label on final edge

}

At this point the property to be verified becomes:

AF {arrived} true

The AF { } operator inside the above CTL formula
specifies that for all execution paths (A) of the system,
eventually in the future (F), we should reach a transition
whose labels satisfy the action predicate arrived, and
whose target state satisfies the formula true.

4 The NuSMV Model

NuSMV4 [11] is a software tool for the formal verification
of finite state systems. NuSMV was jointly developed by
FBK-IRST and by Carnegie Mellon University. NuSMV
allows to check finite state systems against specifications
in the Computation Tree Logic (CTL), Linear Temporal
Logic (LTL) and in the Property Specification Language
(PSL)[1].

Since NuSMV is intended to describe finite state ma-
chines, the only data types in the language are finite
ones, i.e. boolean, scalar, bit vectors and fixed arrays of
basic data types. A state of the system is represented by
a set of variables. Assignment rules in the language allow
to specify total functions, which define all the possible
values that a state variable can assume in the next state.

NuSMV distinguishes between system constants (DE-

FINE construct), and variables (VAR construct). The
system constants are represented by the Ti, Ai, Bi and
LA, LB data values:

DEFINE

T0 := [1, 9,10,13,15,20,23];

. . .

T7 := [26,22,17,18,12,27, 8];

LA := 7;

A0 := [0, 0, 0, 1, 0,-1, 0];

. . .

A7 := [0, 1, 0, 0,-1, 0, 0];

LB := 7;

B0 := [0, 0, 0, 1, 0,-1, 0];

. . .

B7 := [1, 0, 0, 0,-1, 0, 0];

The state variables consist of the di↵erent Pi of the
various train progresses, and of the occupancy status of
RA and RB of the two critical sections. Furthermore,
we will need an additional RUNNING state variable for
modelling the non-determinism in the choice of the po-
tentially moving train and consistently synchronise the
updates of the Pi, RA, and RB variables.

4 http://nusmv.fbk.eu/

6 F. Mazzanti et al.: Formal Methods Diversity in Railways

VAR

RUNNING: 0..7;

P0: 0..6;

. . .

P7: 0..6;

RA: 0..8;

RB: 0..8;

The initial state, and the state transitions specifying
the behaviour are expressed under the ASSIGN construct
of a NuSMV mudule. The definition of the initial state
is specified making use of the init operator:

ASSIGN

init(P0) := 0;

. . .

init(P7) := 0;

init(RA) := 1;

init(RB) := 1;

The evolutions corresponding to the train movements,
i.e., the system transitions, are specified making use of
the next operator. For example, the evolution of train0

is now described by the following rule:

next(P0) :=

case

-- train0 selected for possible movement

RUNNING =0 &

-- train0 has not yet completed its mission

P0 < 6 &

T0[P0+1] != T1[P1] &

. . . -- next place not occupied by other trains

T0[P0+1] != T7[P7] &

-- critical section constraints satisfied

RA + A0[P0+1] <= LA &

RB + B0[P0+1] <= LB &

RA + A0[P0+1] >= 0 &

RB + B0[P0+1] >= 0

-- train0 advances one step

: P0+1;

TRUE

-- train0 not selected/not allowed to move

: P0;

esac;

We must observe that the definition of the next value
for the P0 variable is now total. If the train can move,
the value of P0 is incremented, while if the train is not
allowed to move, the value of P0 in the next state remains
the same. Notice that in this way we are introducing
loops, in each node of the graph, corresponding to the
dummy evolutions of trains which cannot actually move.

The definition of the next values of the RA variable
should take into consideration again which train is se-
lected for possible movements, and whether or not the
train is actually allowed to move. Therefore, the transi-
tion definition for the RA variable now becomes:

next(RA):=

case

-- train0 selected for possible evolution

RUNNING =0 &

-- train0 actually allowed to move

P0 < 6 &

T0[P0+1] != T1[P1] &

...-- next place not occupied by other trains

T0[P0+1] != T7[P7] & --

-- critical section constraints satisfied

RA + A0[P0+1] <= LA &

RB + B0[P0+1] <= LB & --

RA + A0[P0+1] >= 0 & --

RB + B0[P0+1] >= 0 --

-- RA updated according to movement of train0

: RA + A0[P0+1];

-- train1 selected for possible evolution

RUNNING =1 &

... -- train1 actually allowed to move

-- RA updated according to movement of train1

: RA + A1[P1+1];

...

-- no train can move

(deadlock or all trains arrived)

TRUE

-- RA remains the same

: RA;

esac;

The description of the properties to be verified is ex-
pressed within the CTLSPEC/ LTLSPEC constructs of a
NuSMV module. The property that all trains eventually
complete their mission is encoded in the following way:

CTLSPEC -- all trains eventually complete their mission

AF ((P0=6) & (P1=6) & (P2=6) & (P3=6) &

(P4=6) & (P5=6) & (P6=6) & (P7=6))

LTLSPEC -- all trains eventually complete their mission

F ((P0=6) & (P1=6) & (P2=6) & (P3=6) &

(P4=6) & (P5=6) & (P6=6) & (P7=6))

The NuSMV version of the above CTL formula makes
use of the same AF operator already seen in the previous
Section. The only di↵erence with respect to the UMC
version is that now the state predicate to be verified is
directly expressed in terms of values on internal variables
of the model. The LTL version of the formula contains
only the F operator applied to the same state predicate,
because LTL formulas by definition must be satisfied by
all the execution paths of the system (and cannot there-
fore contain further existential or universal quantifiers
over the branches outgoing from the states). In this sim-
ple case it is quite immediate to understand that the two
CTL and LTL formulas describe the same behavioural
property.

Unfortunately, unless we introduce appropriate fair-
ness constraints the above formulas would result to be
false. Indeed, since the next(P0) function is total, a
possible, infinite system evolution is the one in which
only train0 is selected for possible movement, i.e., dur-
ing this evolution path the variable RUNNING is always
equal to 0. In order to discard these uninteresting paths,
and to make insignificant the dummy transitions corre-
sponding to trains that are not moving, we must intro-
duce a set of FAIRNESS constraints of the form:

FAIRNESS RUNNING = 0;

. . .

F. Mazzanti et al.: Formal Methods Diversity in Railways 7

FAIRNESS RUNNING = 7;

In this way, NuSMV limits its evaluations to the fair
paths of the system evolutions, i.e. those infinite paths
for which the fairness constraints are true for an infinite
number of times. With the above constraints, an infi-
nite path in which only train0 is selected is discarded,
because it violates the fairness rules RUNNING=1,..., RUN-

NING=7.
If a logical formula is found to be false, NuSMV au-

tomatically returns a path as counterexample of the for-
mula, and it is possible to check in detail the internal
state of the variables for the states in the path. This ap-
proach works well for counterexamples of LTL formulas,
which are just linear paths, but it does not work very
well for counterexamples of CTL formulas which in gen-
eral might have the form of a sub-graph of the system
evolution graph. The task of understanding why a given
counterexample path does not satisfy the expected prop-
erty is left completely to user, i.e. no help is provided
from the tool in understanding precisely why the evalu-
ation failed. This does not constitute a problem in most
cases, like our case, where the formula is rather simple
and intuitive.

In our case, NuSMV found the formula to be true in
about 413 seconds in the case of the CTL formula, and
in about 166 seconds in the case of the LTL formula.
However if the RUNNNING variable is declared as an Input

Variable (IVAR) instead that as a State Variable (VAR),
the execution times immediately decrease to 140 and
153 seconds respectively, and the CTL version not only
recovers the original penality w.r.t. the LTL case, but
even overtakes it.

Up to version 2.4 of NuSMV, a specific process

construct was allowed to specify asynchronous systems.
From version 2.5, this operator has been deprecated and
it might be no longer supported in future versions of the
tool. We have experimented also a specification of the
model using the deprecated process construct. This
alternative version is very similar the the current one,
and essentially encloses the progression statements of the
trains inside specific process modules. The evaluation
time of this alternative version decreases to about 91
seconds in the CTL case and to about 88 seconds in the
LTL case. This discrepancy in execution times is proba-
bly a sign of our relative inexperience in correctly using
the tool and suggests that a deeper knowledge of the ver-
ification environment is needed for an actual mastering
of the framework.

5 The Promela/SPIN Model

SPIN5 [39] is an advanced and very efficient tool specifi-
cally targeted for the verification of multi-threaded soft-
ware. The tool was developed at Bell Labs in the Unix

5 http://spinroot.com

group of the Computing Sciences Research Center, start-
ing in 1980. In April 2002 the tool was awarded the ACM
System Software Award. The language supported for the
system specification is called Promela (PROcess MEta
LAnguage). Promela is a non-deterministic language,
loosely based on Dijkstra’s guarded command language
notation, and borrowing the notation for I/O operations
from Hoare’s CSP language. Once a model is formalised
in Promela, a corresponding analyser is generated as a
source C program (pan.c). The compilation and exe-
cution of the analyser performs all the needed on-the-fly
state generations and verification steps. The properties
to be verified can be expressed in LTL, and a violation of
a property can be explained by observing the generated
counterexample trail path.

In our case, a Promela model consists of (a) state
variable declarations, (b) property specifications, and (c)
system initialisation/execution code.

The state variables declarations (a) in our case con-
sist in the definition of Ti, Ai, Bi vectors, plus the nu-
meric variables Pi, RA, RB, LA, LB, as shown below.

// mission data for train0

byte T0[7];

. . .

// mission data for train7

byte T7[7];

// progress data for train0,...train7

byte P0,...,P7;

// occupancy of region A

byte RA;

// occupancy of region B

byte RB;

// limit of region A

byte LA;

// limit if region B

byte LB;

// increments/decrements of train 0 for Region A

short A0[7];

. . .

// increments/decrements of train 7 for Region A

short A7[7];

// increments/decrements of train 0 for Region B

short B0[7];

. . .

// increments/decrements of train 7 for Region B

short B7[7];

The property (b) we are interested in is the classical
property that all trains eventually complete their mis-
sions:

ltl p1 { <> ((P0==6) && (P1==6) && (P2==6) &&

(P3==6) && (P4==6) && (P5==6) &&

(P6==6) && (P7==6)) }

The above LTL formula is equivalent to the one al-
ready seen in the NuSMV example. The only di↵erence
is in the syntax of the eventually operator which is in
this case encoded as <> instead of F.

The system initialisation/execution code (c) consists
of: 1) the setting of the initial value for the state vari-
ables; 2) the possible activation of concurrent, commu-
nicating, asynchronous subprocesses (sharing the same

8 F. Mazzanti et al.: Formal Methods Diversity in Railways

global memory); 3) the main execution of a sequence of
statements. In Promela, sequences of statements, when
included inside an atomic {...} construct, are exe-
cuted as part of a single system (or process) transition.

The setting of the initial value for the state variables
(1) has to assign a single numeric value to each vector
component, as shown below:

init {
atomic { // initializations of state variable

// T0:[1,9,10,13,15,20,23]

T0[0]=1; T0[1]=9; T0[2]=10; T0[3]=13;

T0[4]=15; T0[5]=20; T0[6]=23;

. . .

// T7:[26,22,17,18,12,27,8]

T7[0]=26; T7[1]=22; T7[2]=17; T7[3]=18;

T7[4]=12; T7[5]=27; T7[6]=8;

A0[3]= 1; A0[5]= -1; // A0:[0,0,0,1,0,-1,0]

. . .

A7[1]=1; A7[4]=-1; // A7:[0,1,0,0,-1,0,0]

B0[3]=1; B0[5]=-1; // B0:[0,0,0,1,0,-1,0]

. . .

B7[0]=1; B7[4]=-1; // B7:[1,0,0,0,-1,0,0]

RA=1; RB=1; LA=7; LB=7;

} . . .// end of initializations of state variables

. . . // activation of subprocesses

. . . // main sequence of statements

}

In our case, we can avoid the definition and activa-
tion of subprocesses (2) – i.e. not modelling each train
as a subprocess. Indeed, the non-determinism of the sys-
tem can be modelled, as already done in the UMC and
SMV case, by the non-determinism of the main process
evolutions.

The main sequence of statements (3), in our case,
is a loop of atomic guarded transitions, in which each
transition models the progresses of a train.

init {
. . . // initializations of state variables

do // main sequence of statements

:: atomic { // guarded progress of train0

(// train0 has not yet completed its mission

P0 < 6 &&

T0[P0+1] != T1[P1] &&

. . . // next place not occupied by other trains

T0[P0+1] != T7[P7] &&

// critical sections constraints satisfied

RA+A0[P0+1] <= LA &&

RB+B0[P0+1] <= LB

) ->

// update the status of critical section A

RA = RA + A0[P0+1];

// update the status of critical section B

RB = RB + B0[P0+1];

// update the progress of train0

P0++;

};

. . .

:: atomic { // guarded progress of train1

. . .

};

. . .

// successful exit when all missions are completed

:: (P0==6) && (P1==6) && (P2==6) && (P3==6) &&

(P4==6) && (P5==6) && (P6==6) && (P7==6)

-> break;

od;

};

The evaluation of the formula is carried over by the
process analyser (pan.c) in about 25 seconds, which de-
crease to 10 seconds when the process analyser is com-
piled with all gcc optimisations turned on (-O3 flag). We
have also experimented the version of this specification
in which each train was represented by an explicit pro-
cess, whose activity consists in just executing the loop of
its own atomic progress transition. This architecture, in-
deed, is the one which more precisely reflects our logical
system design. In this case, the evaluation time raises to
about 126 seconds (which decrease to about 47 seconds
with gcc optimisations turned on).

Like in the case of NuSMV, when a formula does not
hold it is possible to obtain a counter-example path to
be analysed. Several features are explicitly provided for
this purpose but we have experienced major difficulties
in their use in terms of usability from the point of view
of a non-experienced user.

6 The mCRL2 model

mCRL26[31] is a formal specification language with an
associated toolset. The toolset can be used for mod-
elling, validation and verification of concurrent systems
and protocols. The mCRL2 toolset is developed at the
department of Mathematics and Computer Science of
the Technische Universiteit Eindhoven, in collaboration
with LaQuSo, CWI and the University of Twente. The
mCRL2 language is based on the Algebra of Commu-
nicating Processes (ACP) which is extended to include
data and time. Processes can perform actions and can
be composed to form new processes using algebraic op-
erators. A system usually consists of several processes,
or components, running in parallel. A process can carry
data as its parameters. The state of a process is a specific
combination of parameter values. In our case, we need to
model the existence of a global status shared among the
various trains, and this can be represented in mCRL2 by
a single, recursive, non-deterministic process, whose pa-
rameters precisely model the global system state. Also in
this case, the non-determinism of the system evolutions
is modelled through the non-determinism of the main
process behaviour.

In our case the mCRL2 specification includes (a) a
data types specification; (b) actions specifications; (c)
process definitions; (d) main process specification.

The data types specifications (a) in our case can be
used to define the global constant data of our model. For
example, we can model the vector of a train mission Ti

as a map, i.e., a function from natural numbers (Nat)
to natural numbers. The values returned by the function
are expressed by means of the eqn construct.

6 urlhttp://www.mcrl2.org/

F. Mazzanti et al.: Formal Methods Diversity in Railways 9

map T0: Nat -> Nat;

%% T0 [1, 9,10,13,15,20,23]

eqn T0(0)=1; T0(1)= 9; T0(2)=10;

... ; T0(5)=20; T0(6)=23;

. . .

map T7: Nat -> Nat;

%% T7[26,22,17,18,12,27, 8]

eqn T7(0)=26; T7(1)=22; T7(2)=17;

... ; T7(5)=27; T7(6)= 8;

Similarly, we can use the map construct for the crit-
ical sections limits (LA,LB), and for the vectors of in-
crements Ai, Bi that trains should apply, with respect
to critical sections, during their progress in the mission:

map LA: Nat; %% limit for region A

eqn LA = 7;

map A0: Nat -> Int;

%% A0 [0, 0, 0, 1, 0,-1, 0]

eqn A0(0)=0; A0(1)= 0; A0(2)=0;

... ; A0(5)=-1; A0(6)=0;

. . .

map B0: Nat -> Int;

%% B0 [0, 0, 0, 1, 0,-1, 0]

eqn B0(0)=0; B0(1)= 0; B0(2)=0;

... ; B0(5)=-1; B0(6)=0;

The actions specification (b) should define the struc-
ture of the possible actions (act) appearing inside pro-
cesses. In our case, we define an action move, to rep-
resent the movement of the train at each progress step,
and a final arrived action, which is performed when
all trains have completed their missions:

act arrived; move: Nat;

The set of process definitions (c) consists in one unique
recursive process, which we name AllTrains, whose
parameters represent: (1) the progress indexes Pi of all
the train missions, and (2) the occupancy counters of
the two critical sections RA and RB.

proc AllTrains(P0:Nat, P1:Nat, P2:Nat, P3:Nat,

P4:Nat, P5:Nat, P6:Nat, P7:Nat,

RA:Int, RB:Int) =

(P0 < 6 && % progress of train0

T0(P0+1) != T1(P1) &&

. . .

T0(P0+1) != T7(P7) &&

RA + A0(P0+1) < LA &&

RB + B0(P0+1) < LB

) -> move(0).

AllTrains(P0+1,P1,P2,P3,P4,P5,P6,P7,

RA+A0(P0+1),RB+B0(P0+1))

+

. . .

+

(P7 < 6 && % progress of train7

T7(P7+1) != T0(P0) &&

. . .

T7(P7+1) != T6(P6) &&

RA + A7(P7+1) < LA &&

RB + B7(P7+1) < LB

) -> move(7).

AllTrains(P0,P1,P2,P3,P4,P5,P6,P7+1,

RA+A7(P7+1),RB+B7(P7+1))

+ % all trains have completed their missions

((P0 ==6) && (P1 ==6) && (P2 ==6) &&

(P3 ==6) && (P4 ==6) && (P5 ==6) &&

(P6 ==6) && (P7 ==6)

) ->

arrived . AllTrains(P0,P1,P2,P3,P4,P5,P6,P7,

RA,RB);

Finally, the main process specification (d) consists in
the call of our AllTrains process with the appropriate
initial data:

init AllTrains(0,0,0,0,0,0,0,0, 1,1);

The mCRL2 toolset allows first to linearise the mCRL2
specification, and then to convert it into a linear process.
Given a linear process and a formula that expresses some
desired behaviour of the process, a PBES (Parametrised
Boolean Equation System) can be generated. The tool
pbes2bool executes the PBES and returns the eval-
uation status of the formula. The formulas supported
by the mCRL2 toolset are based on full µ-calculus with
parametric fix points.

The property that the system will eventually always
reach a state in which all trains have completed their
mission can be expressed as:

mu X.(([arrived] true) &&

([!arrived]X) && (<true> true))

The above formula is just a translation in µ-calculus
of action-based CTL-like formula AF {arrived} true used
with UMC. We refer to [19] and [31] for detailed descrip-
tion of the semantics of these two logics. The evaluation
of this formula takes from 1 to about 19 minutes before
returning the true value, depending on the options se-
lected during the various evaluation steps. The greatest
impact, which reduces the evaluation time from 19 min-
utes to about 1 minute and 40 seconds, is obtained with
the selection of the jittyc data rewriting mode.

The logic supported by mCRL2 permits in many
cases to replace the explicit use of fixpoints with the
use of regular expressions inside box ([...]) and dia-
mond (<...>) operators. Unfortunately that pattern is
not applicable for the verification that the arrived

event is always eventually reached. The simpler absence
of deadlock can instead by checked with the formula
[true*]<true>true.

When an unexpected false value is returned by the
evaluation, the user can request the generation of a coun-
terexample. This counterexample, however, is based on
the structure of the evaluation process, and shows the oc-
curred nested evaluations of the fixpoint formulas, with-
out any link to the actual structure of the model or the
details of its possible evolutions. The tool lpsxsim al-
lows to explore the possible evolutions of the model un-
der analysis. However, it does not seems that this ex-
ploration can be directly connected to a counterexample
generated by a previous unsuccessful evaluation.

10 F. Mazzanti et al.: Formal Methods Diversity in Railways

7 The FDR4 Model

FDR47 [28] is a refinement checker that allows to verify
properties of programs written in CSPM, a language that
combines the operators of Hoare’s CSP with a functional
programming language. Originally developed by Formal
Systems (Europe) Ltd in 2001, since 2008 is supported
by by the Computer Sceince Department of University of
Oxford. Being the specification approach based on a pro-
cess algebra, the overall structure of the system is very
similar to the one of MCRL2, i.e. we will have a single, re-
cursive, non-deterministic, process definition whose pa-
rameters precisely model the global system state. The
global data types and constants of our model are de-
fined in a functional style. While sequences (encoded
as <value,...,value>) are among the predefined data
types, indexing inside them must be explicitly defined
introducing a selector operator:

el(y,x)=

if x==0 then head(y) else el(tail(y),x-1)

The global constants defining the train missions and
region constraints can then be easily introduced as:

---- train missions -----

T0 = < 1, 9,10,13,15,20,23>

T1 = < 3, 9,10,13,15,20,24>

. . .

T7 = <26,22,17,18,12,27, 8>

----- region A: train constraints ------

A0 = <0, 0, 0, 1, 0,-1, 0>

A1 = <0, 0, 0, 1, 0,-1, 0>

. . .

A7 = <0, 1, 0, 0,-1, 0, 0>

LA = 7

----- region B: train constraints ------

B0 = <0, 0, 0, 1, 0,-1, 0>

B1 = <0, 0, 0, 1, 0,-1, 0>

. . .

B7 = <1, 0, 0, 0,-1, 0, 0>

LB = 7

Also in this case we must declare the possible channel
names appearing inside processes:

channel arrived, move

The recursive process definition, which we still name
AllTrains, has as parameters the progress indexes Pi

of all the train missions, and the occupancy counters of
the two critical sections RA and RB.

AllTrains (P0,P1,P2,P3,P4,P5,P6,P7,RA,RB) =

(P0 < 6 and -- progress of train0

el(T0,P0+1) != el(T1,P1) and

. . .

el(T0,P0+1) != el(T7,P7) and

RA + el(A0,P0+1) <= LA and

7 https://www.cs.ox.ac.uk/projects/fdr

RB + el(B0,P0+1) <= LB

) & move ->

AllTrains(P0+1,P1,P2,P3,P4,P5,P6,P7,

RA+el(A0,P0+1),RB+el(B0,P0+1))

[]

. . .

[]

(P7 < 6 and -- progress of train7

el(T7,P7+1) != el(T0,P0) and

. . .

el(T7,P7+1) != el(T6,P6) and

RA + el(A7,P7+1) <= LA and

RB + el(B7,P7+1) <= LB

) & move ->

AllTrains(P0,P1,P2,P3,P4,P5,P6,P7+1,

RA+el(A7,P7+1),RB+el(B7,P7+1)

[]

-- all trains have completed their missions

(P0==6 and P1==6 and P2==6 and P3==6 and

P4==6 and P5==6 and P6==6 and P7==6

) & arrived -> STOP

Finally, the main process specification consists in the
call of our AllTrains process with the appropriate ini-
tial data, and with the hiding of the internal train moves:

SYS = AllTrains(0,0,0,0,0,0,0,0, 1,1)\{move}

The main di↵erence of FDR4 with respect to all the
previous approaches is that the system properties to be
checked are specified not by means of temporal logics
formulas, but by assertions stating adherence to a given
abstract specification. In our case, for example, if we
want to verify that the system always executes the ar-

rived event, we must define an abstract specification like:
SPEC = arrived -> STOP and then state that the system
contains all the behaviours described by the specifica-
tion:

assert SYS [FD= SPEC

and it does not introduce any further behaviour not
described by the specification:

assert SPEC [FD= SYS

The concept of a system that contains all the be-

haviours described by the specification (and vice-versa)
is not a trivial one, and can be adjusted according to sev-
eral refinement notions, expressed by the [T= (Trace),
[F= (Failure) and [FD= (Failure Divergences) refine-
ment constructs. The most useful of these refinement
notions is the [FD= refinement, which is the one used
in the example. We refer to Hoare [38] and De Nicola
et al. [14] for a deeper analysis of their relations and
semantics.

While a case study with 6 trains instead of the usual
8 can be verified by FDR4 in about 15 seconds, the ver-
ification of the complete case with 8 trains took about
one hour and 20 minutes. Probably a deeper knowledge
of the framework and a more expert adjustment of its
settings should allow to observe better performances.

F. Mazzanti et al.: Formal Methods Diversity in Railways 11

Fig. 3: A CPN transition modelling the activity of train 0

Fig. 4: Transition modelling the arrival of all trains Fig. 5: The overall structure of the complete CPN

8 The CPN Tools Model

CPN Tools8 is an environment for editing, simulating,
and analysing Colored Petri Nets (CPN) [44]. It is orig-
inally developed by the CPN Group at Aarhus Univer-
sity from 2000 to 2010. The main architects behind the
tool are Kurt Jensen, Søren Christensen, Lars M. Kris-
tensen, and Michael Westergaard. From the autumn of
2010, CPN Tools is transferred to the AIS group, Eind-
hoven University of Technology, The Netherlands. The
main di↵erence between Coloured Petri Nets and ordi-
nary Petri Nets is that the tokens that move across the
network are allowed to contain some data (which colour

them). Places of the network are typed with respect to
the colour of the token they can contain. Transitions can
be guarded with expressions that constrain that token

8 http://cpntools.org

allowed to pass, and may transform the data inside the
token while moving from the source to the target place.

A direct mapping of our reactive model into a CPN
can be achieved by modelling the system as a CPN with a
single place s1, initially containing a single coloured to-
ken that represents the value of the initial system state.
Outgoing transition from this place model the possible
evolutions of the system: they (conditionally) accept the
token from the source place, transform it according to
the transition activity and return the modified token to
its original place.

CNP Tools is a graphical tool, i.e., the CPN structure
must be graphically drawn using ad hoc graphic tools.
CPN places are represented by ovals, and CPN transi-
tions elements by rectangles. The language used to de-
scribe the datatypes, the functions, and expressions is
Standard ML, a powerful functional language which is
also at the base of the FDR4 tool.

12 F. Mazzanti et al.: Formal Methods Diversity in Railways

Figure 3 shows the CPN transition modelling the ac-
tivity of train0. The label of the edge that exits from
place s1 is labelled with an expression that describes
the structure of the system state: as for all the previous
cases, the data consists of the sequence containing the
various train progress indexes Pi and current occupancy
counters for the two critical regions RA end RB. The in-
scription associated to the guard of transition train0

describes the conditions under which the transition is
allowed to fire, and these are precisely the same condi-
tions already seen in all the previous cases. The label of
the edge returning to the source place s1 describes the
transformation performed by the transition on the cur-
rent system state, and corresponds precisely to the usual
transformation performed by the activity of train0.

Figure 4 shows the CPN transition modelling the
reaching of the final status of the system, when all the
trains have completed their missions. Apart from its
graphical notation, the information is also in this case
the same as in all the previous cases.

The overall structure of the resulting CPN – omitting
all inscriptions and labels – is shown in Figure 5.

The first step of the verification of a CPN network
consists in completely generating its state-space. Once
that is done it is possible to observe a generation report,
which, among other information about pre-defined prop-
erties, states how many deadlock states have been gener-
ated. According to the documentation it should also be
possible to evaluate CTL formulas, expressed as func-
tions written in the ML language, on the overall system
behaviour. Unfortunately, we have not been able to ac-
tually activate this CPN Tools functionality, due to the
difficulty in understanding and putting into practice the
related documentation, which appeared scattered in dif-
ferent documents, and, to the best of our understanding,
incomplete.

The main problem found with this tool is its per-
formance during the state-space generation. While the
state-space of a system with 4 trains can be generated
in about 14 seconds, the state-space of a system with
6 trains requires 9 minutes. We have not been able to
generate the state-space for the complete case with 8
trains.

9 Tool Comparison

The pattern of having a set of global data that is con-
currently and atomically updated by a set of concur-
rent guarded agents [15] is a formalisation pattern often
encountered also in the railway field. In our case, we
met this pattern during the verification of the deadlock
avoidance kernel inside the ground scheduling system
that controls the movements of driverless trains inside a
given yard. This pattern can be rather easily formalised
and verified using di↵erent languages and frameworks.
We have experimented with six possible alternatives,

i.e., UMC, NuSMV, Promela/SPIN, mCRL2, CPN and
FDR4, which di↵er greatly in maturity, support alterna-
tive verification logics, and provide di↵erent degrees of
friendliness and flexibility in the user support during the
formalisation and verification steps.

The activity is still in progress, since, on the one
hand, we plan to extend our experiments to several other
well known toolsets, and, from the other hand, there
are still many aspects of the currently explored frame-
works that need a deeper understanding and evaluation.
Notwithstanding the preliminary nature of our experi-
ments, it is useful to report a comparison of the di↵er-
ent tools, in which we discuss the features o↵ered by the
environments, based on six broad parameters that had
an impact on our experience, namely (1) specification
formalism, (2) property definition language, (3) docu-
mentation, (4) platforms compatibility, (5) user friend-
liness, and (6) performance. The parameters have been
evaluated by the authors in the context of the current
experience, and, although the evaluation is biased by
our background and by the specific context of this work,
we believe that it can o↵er a useful perspective on the
applicability of the tools to the railway context. More
specifically, the evaluation is given by authors who have
experience with the UMC tool, state-machines based for-
malisms, and CTL logic, while they are novice users for
the other tools and languages. In the following para-
graphs, we describe the parameters, and, based on them,
we compare the di↵erent tools, while in Table 1 we sum-
marise our evaluation. Part of the parameters, e.g., spec-
ification language and property definition language, are
rather objective. Instead, part of them, e.g., documen-
tation and user friendliness, are subjective, and are ar-
guably evaluated by the authors according to a 3-point
Likert scale, with three qualitative grades, namely (L)ow,
(M)edium and (H)igh. The justification for the di↵erent
grades are given in the paragraphs associated to each
parameter.

Specification Language The reference family of the lan-
guage supported by a tool to specify the model is a pa-
rameter that a designer should carefully consider when
choosing a formal environment. Indeed, based on (a) the
confidence that the designer has with a certain formal-
ism, and (b) the type of problem at hand, the modelling
activity can be extremely fluid, or particularly cumber-
some. The deadlock avoidance algorithm could be easily
represented with the di↵erent languages, but it is useful
to report the general di↵erences among the tools consid-
ered. Three families of specification languages can be ob-
served, namely state-machine oriented representations,
process algebras, and Petri Nets. Among the three fam-
ilies, the state-machine oriented representation, which
allows an explicit shared data structure, is the most in-
tuitively suitable for the formalisation of our problem,
in which agents atomically read and update a common
data blackboard. Indeed, with process algebras, a sin-

F. Mazzanti et al.: Formal Methods Diversity in Railways 13

Table 1: Comparison between the di↵erent environments in the context of the presented experiments.

Specification
Language

Property
Definition
Language

Doc.
Platform
Compatibility

User
Friendliness

Performance

UMC
State Machines
(Structured Data)

µ-Calculus
CTL/ACTL

L
Online, Unix,
Windows, macOS

H H

NuSMV
State Machines
(Flat Data)

CTL/LTL/PSL H
Unix, Windows,
macOS

H H

Promela/SPIN
State Machines
(Flat Data)

LTL M
Unix, Windows,
macOS

M H

mCRL2
Process Algebra
(Structured Data)

parametric
µ-Calculus

H
Unix, Windows,
macOS

M M

CPN Tools
Petri Nets
(Structured Data)

CTL M Windows L L

FDR4
Process Algebra
(Structured Data)

Refinement
Checking

H
Unix, Windows,
macOS

H L

gle recursive process is used for our purposes, and the
system state is represented as a process parameter (see
Sect. 6 and 7). Process algebras are more oriented to
model designs with communication agents that do not
share a global status. Instead, with Petri Nets, the sys-
tem state was concealed in the colour of a token (Sect. 8).
Also in this case, our model with a single place is not the
intuitive way of modelling with Petri Nets, which are a
more natural choice when one wants to model the flow
of a set of activities. It shall be noticed that, in our con-
text, we were interested in replicating the same design
solution, initially specified in UMC, with the di↵erent
tools. Di↵erent results might be obtained if one starts
from, e.g., a Petri Nets-oriented specification in which
the railway layout is explicitly represented.

Another observation related to the specification lan-
guages concerns the data structures made available by
the di↵erent environments. NuSMV and Promela/SPIN
admits only integer and vector types of fixed size9, and
do not allow for complex or more dynamic data struc-
tures. Instead, UMC admits also dynamically sized vec-
tors, with nested vector data structures. The remaining
tools have the full power of functional languages, allow-
ing for complex data types, including high-order types
(e.g., functions as data).

Property Definition Language The language in which a
property can be expressed a↵ects the type of properties
that can be verified on a certain design. In our case, the
deadlock property is rather simple, and can be easily ex-
pressed with the di↵erent languages supported by the
tools. However, it is useful to briefly summarise the lan-
guages supported, since, in some cases, not all properties
can be verified by all the tools, and this may impact on
the choice of the formal environment to adopt.

The most powerful environment in terms of property
definition language is mCRL2, which supports a para-

9 NuSMV allows solely for constant vectors.

metric version of µ-Calculus. Instead, UMC supports
plain µ-Calculus, which still subsumes both CTL and
LTL. However, most of the properties that one encoun-
ters in practice are more intuitively expressed directly
in CTL and LTL. Therefore, although from theoretical
viewpoints those tools that support solely CTL or LTL
are less powerful, they may be easier to use in practice.
FDR4 is not based on temporal logic, but uses a refine-
ment checking approach, in which the property to be
verified is represented with the same specification lan-
guage of the model. From the pointof view of the user,
this allows to avoid learning temporal logics. On the
other hand, building a correct specification of the in-
tiuitive property that one wishes to verify might not be
straightforward.

Documentation The quality of the documentation, in
terms of amount, readability, and degree of update, are
crucial aspects for the usability of a formal tool, espe-
cially in a context in which the user does not have a tool
expert “on call”, who can support him/her during the us-
age. With some exceptions, the quality of the documen-
tation is generally acceptable for all the tools considered,
except for UMC, which does not have an up-to-date doc-
umentation for the current version10. The quality of the
documentation for Promela/SPIN and CPN Tools has
been indicated as medium (M), due to the complexity
of the documentation content and structure, which is,
however, available and up-to-date. In addition, for CPN
Tools, we were not able to find the necessary instructions
to verify CTL properties.

Platform Compatibility Although not having a direct
impact on the usability of a tool, its compatibility with
multiple platforms gives an indication of the potential
audience of a formal environment. Indeed, while operat-
ing system (OS) emulators exist that can support soft-

10 The update of the documentation is in progress

14 F. Mazzanti et al.: Formal Methods Diversity in Railways

ware developed for di↵erent OSs, a user might not even
start using a tool simply because it is not supported by
his/her preferred OS, or the OS used by the company.
With the exception of CPN Tools, all the considered en-
vironments are available on all the platforms. All our
experiments were performed on macOS, and, in case of
CPN tools, a Windows emulator was used. Therefore,
we do not know whether all the tools o↵er the same fea-
tures in the di↵erent platforms. Strictly connected with
platform compatibility is the complexity of the instal-
lation procedure. Indeed, given the large availability of
diverse formal tools, if the installation procedure is not
perceived as quick, and easy enough by the user, s/he
might decide that the software is not usable even be-
fore starting to use it. In our case, we did not encounter
difficulties in installing the di↵erent tools. Overall, we
can say that the preliminary, and potential, obstacles in
starting to use the tools, are successfully addressed by
all the environments.

User Friendliness After installing and having learned
the basics of a tool by reading its documentation, an as-
pect to consider is how easy it is, for a novice, to learn to
use the platform in a proficient way for the problem at
hand. Almost all platforms seem to be mainly tailored
to the (successful) validation of a (correct) system de-
sign. When it comes to providing the user with an easy-
to-understand description of why a given system design
does not behave as expected, some of the tools show
losses in terms of usability. While with UMC, NuSMV
and FDR4, we did not encounter problems in the us-
age, and in identifying design errors, issues emerged with
the other platforms. Promela/SPIN is intrinsically com-
plex, and given our background, mostly based on CTL,
switching to a tool based on the LTL paradigm requires
more e↵ort. Instead, with mCRL2 we had difficulties in
interpreting the counterexamples, since it appeared par-
ticularly difficult to make sense of the link between the
property evaluation results and the operational system
behaviour. Finally, several usability problems were en-
countered with the GUI of CPN Tools. In particular, the
GUI does not have an intuitive behaviour, e.g., the pro-
cess of selecting/deselecting widgets works with a toggle-
button paradigm, which complicates a fluid interaction.
In addition, the incompleteness of the documentation
did not help in taking out the best from the tool. We
also admit that we are not experts with CPN, and this
might have biased our evaluation.

Performance Fig. 6 summarises the execution time for
each model configuration adopted in our experiments11.
We do not show the performance of CPN Tools, since
we were not able to complete the verification process for
the 8-trains model. Already from the data that we have

11 Each configuration corresponding to a point in Fig. 6, with
associated verification time, is available at http://fmt.isti.

cnr.it/WEBPAPER/STTT2017data.zip.

collected we can observe that apparently small choices
in the construction of the models, or in the selection
of the best options for the evaluations, can greatly af-
fect the performance of the verification. Almost all the
tools show extremely great di↵erences in terms of exe-
cution times depending on the choices done by the user.
In our case, we obtained the best performances from
NuSMV by declaring the RUNNING variable as IVAR.
For SPIN, the usage of the -O3 flag (i.e., all gcc optimi-
sations turned on) was the factor determining the major
decrease in terms of verification time. For mCRL2, the
selection of the jittyc data rewriting mode was cru-
cial in increasing the performance. Finally, with UMC,
the lower verification time was obtained with a paral-
lel version of the tool, and selecting the non-interactive
evaluation mode. It is worth noticing the tools with a
more powerful specification and property definition lan-
guages also su↵er from weaker performance with respect
to simpler tools. More specifically, mCRL2 appear to
have lower performance w.r.t. Promela/SPIN, NuSMV
and UMC, but, still, our design is verified in a reasonable
amount of time (2s). Instead, FDR4 and CPN Tools ap-
pear not to be able to handle intrinsically complex prob-
lems of large size, as the one considered in our study, in
an efficient way.

The di↵erences in terms of verification times obtained,
and the di↵erent solutions adopted for each tool to min-
imise the verification time, indicate that a deep master-
ing of the tools is required to exploit at their best the
capabilities of the various frameworks.

10 Towards Formal Methods Diversity

An interesting consideration that has been stimulated
by our experimentation is that modelling and verifying
a system using di↵erent approaches can really give a plus
in the reliability of the verification results. We have actu-
ally experienced that the e↵ort of modelling and check-
ing a system design in several variants is essential for
identifying the errors introduced in the construction of
the formal specification or in the verification process.
The possibility to model and verify a certain design with
completely di↵erent verification frameworks can be an
interesting solution also from the point of view of the
validation of critical systems. Indeed, while none of the
verification tools considered is designed and validated
at the greatest safety integrity levels by itself, the ex-
istence of di↵erent, non validated, tools producing the
same result might increase the overall confidence on the
verification results. This observation poses the basis for
a novel concept for railways, which is formal methods

diversity. The idea is to apply the concept of diversity,
quite common in safety-critical systems engineering [45,
53], in the application of formal methods. More specifi-
cally, we suggest to use di↵erent non-certified formal en-
vironments for the modelling of verification of a certain

F. Mazzanti et al.: Formal Methods Diversity in Railways 15

10−1 100 101 102

UMC

mCRL2

SPIN

NUSMV

FDR4

Evaluation Time (minutes)

Fig. 6: Summary of evaluation time ranges for the frameworks (logarithmic scale)

railway problem or design, and compare the results. Of
course, this simple concept has possible hurdles in terms
of applicability. Below, we reflect on the potentials and
challenges that the idea opens, based on our experience
and knowledge of the railway industry.

Specification Validation In the experience described in
this paper, we validate the specification12 of an algo-
rithm, by ensuring that di↵erent formal environments
produce the same verification results. The same idea can
be applied whenever one has developed a specification
for a certain system, and wishes to translate it into di↵er-
ent frameworks, to increase the reliability of the verifica-
tion results. The translation can be performed manually,
as in our case, or automatically, as performed by Rock-
well Collins in the avionic domain [51]. Regardless of the
means used for translation, the errors that might raise
in this context are: (a) errors in the specification, which
may be introduced in the design phase by the system
designer; (b) errors in the translation of the specifica-
tion, introduced by the automatic or human translators;
(c) errors concealed in the environments used for for-
mal modelling and verification, since, as observed, being
the environments themselves not certified, some of them
might include errors that can be revealed only when the
results of the verification di↵er from those of other envi-
ronments.

Diversity in Properties One of the potentials o↵ered by
the usage of di↵erent environments is associated to the
diversity of logics that the environments support for the
definition of properties to be verified. In our context, we
used properties that can be equivalently specified with
CTL and LTL logics, but, as well know, the two logics are
not comparable [12], and di↵erent requirements might

12 The concept of specification is intended here in Jackson’s
terms [33], i.e., the model that, given certain environmental as-
sumptions, shall satisfy the requirements.

have forms that can be specified only with one logic.
Therefore, the availability of diverse environments gives
also the possibility of verifying properties that have, e.g.,
an inherent CTL nature, with CTL-oriented environ-
ments, and properties that have an inherent LTL nature
with LTL-oriented ones. In this sense, formal methods
diversity also enlarges the scope of properties that can
be verified for the same specification. A wider analy-
sis on properties that are typical of the railway domain
and that can be verified with the di↵erent tools, as per-
formed, e.g., by Frappier et al.[26] in the context of infor-
mation systems verification, will clarify to which extent
formal methods diversity can facilitate the verification
of railway systems.

Requirements Validation Formal methods diversity can
be applied also if one wishes to pursue requirements val-
idation [9], e.g., to check completeness and consistency,
instead of specification validation as in our experience. In
this case, one should use di↵erent formal environments
to provide alternative specifications for the same require-
ments. In a requirements validation context, we argue
that employing the same formal methods expert for the
modelling tasks is not recommended, since s/he might be
biased towards a certain architecture, and might repli-
cate the same, potentially erroneous, design decisions in
the di↵erent specifications. In addition, di↵erent formal
environments might give di↵erent modelling capabilities,
and one might not use them at their best if s/he is biased
towards the replication of the same specification. This
opens to the possibility of diversifying formal methods
experts, as it happens when di↵erent developers are em-
ployed to implement software variants [3,45]. This choice
of having di↵erent models designed by di↵erent experts
has to be handled with care, since it may trigger compli-
cations in further development stages. Indeed, if only one
specification is chosen for a single implementation, one
might partially loose the benefits of modelling diversity.

16 F. Mazzanti et al.: Formal Methods Diversity in Railways

On the other hand, if also code diversity is employed [3],
with each implementation being derived from di↵erent
specifications, modelling diversity can be exploited at its
full benefits. This observation suggests that, when for-
mal methods diversity is adopted, also the overall railway
development process shall be adapted. This is an issue
that we have previously encountered in railways when
passing from a code-centered development paradigm to
a model-centered development one, in which code gen-
eration was used [21]. Formalising a railway process, ad-
herent to the CENELEC EN 50128 norm [8], and based
on formal methods diversity is beyond the scope of this
paper. However, this formalisation becomes mandatory
when one wishes to apply the approach in the railway
industry.

Knowledge and Experience with Formal Environments

As already emphasised, one of the major hurdles in ap-
plying formal methods diversity is the experience re-
quired to proficiently handle di↵erent formal environ-
ments. In our case, we showed that if a designer is pro-
ficient with a formal tool, in our case UMC, s/he can
use this experience to successfully translate a model into
other formal tools with limited e↵ort. On the other hand,
design decisions a↵ect the performance of the tools, as we
have shown, e.g., for NuSMV (Sect. 4). Therefore, if one
is oriented to exploit the capabilities of di↵erent tools at
their best, higher proficiency is required with di↵erent
tools. This goal is practically hampered by the lack of
documentation of part of the tools considered, an issue
that deeply a↵ects the possibility of e↵ectively learning
di↵erent tools with acceptable e↵ort. This aspect can
be mitigated by employing multiple experts of di↵erent
environments, but we know that, from an industrial per-
spective, this requires a dedicated, or outsourced, formal
methods group, and, more in general, a major uptake of
formal methods by railway practitioners [25].

Appropriateness of a Formal Tool for a Design We have
seen that our algorithm design can be represented with
six di↵erent tools, but this might not be true for all
the railway-specific problems. Hence, particular care and
guidance is required in the choice of the formal frame-
work to adopt in order to model and verify the speci-
fication [61]. For example, in the literature we see that
state-based graphical specifications are used to model
the control logic of ATC/ATP systems [22,40,54,10,20],
while interlocking systems are often modelled with tex-
tual specification, and verified by means of model check-
ing [59,58,37,23,7,42]. A clear definition of guidelines
for the choice of the appropriate formal method, or set
of formal environments, to be used for a specific railway
problem is therefore required to make formal methods
diversity applicable. Further practical and comparative
research, as the one performed, e.g., by Zave [61] in the
context of network protocols, shall be performed in the
railway domain to achieve this goal.

Evolution and Acceptance of Formal Tools The tools
that we used in our experiments are freely available,
and mostly maintained by universities or public organi-
sations. Even within the time span in which this paper
was written, evolution in terms of versions of the tools
was observed (e.g., FDR 4.2.0 was released on December,
2016). Keeping the pace of the evolution of a single tool
is complex, and it requires to rely on a robust framework
of release control, which ensures backward compatibility
of the platforms, and forward compatibility of the arti-
facts created with the platforms. The problem becomes
even more complicated if one company has to follow the
evolution of multiple environments at the same time, as
required if formal methods diversity is applied. The de-
velopment of a railway system can take several years,
continuous updates might be required by the customer,
and one has to rely on stable tools versions. In addition,
in our experience [22], railway companies are keen to
prefer commercial tools, rather than open source ones,
also for the availability of assistance. We are aware that,
in general, the open source world is evolving towards a
business model in which the revenues come through the
assistance services o↵ered for free, or commercial ver-
sions, of the tools. Hence, we foresee that, if this busi-
ness model gets a foot hold for formal environments, also
the mindset of railway companies might be more open
to these tools, and formal methods diversity has some
additional chance to become an established practice in
the railway industry.

11 Conclusion

The world of formal methods o↵ers several options in
terms of automated environments [26,17], which can and
have been used to verify the design of railway systems [18,
29]. In this paper, we show the application of six di↵er-
ent formal tools, namely UMC, Promela/SPIN, NuSMV,
mCRL2, CPN Tools and FDR4, in the modelling and
verification of a deadlock avoidance algorithm for train
scheduling [49]. The algorithm takes care of avoiding sit-
uations in which a train cannot move because its route
is blocked by another train. This is a typical problem,
which can be modelled according to a blackboard archi-
tectural pattern [15], in which concurrent guarded agents
atomically update a global data blackboard. Our expe-
rience shows that limited e↵ort is required to adapt the
same design to di↵erent formal environments. This ob-
servation opens up new possibilities for the establish-
ment of the concept of formal methods diversity in rail-
ways. The idea is that the application of diverse, non-
certified formal tools on the same design allows to in-
crease the confidence on the correctness of the verifica-
tion results. The paper compares the characteristics of
the di↵erent tools, in light of our modelling and verifi-
cation experience, and discusses the industrial potential

F. Mazzanti et al.: Formal Methods Diversity in Railways 17

and challenges associated to the application of formal
methods diversity in the railway context.

Our personal interest is now to further experiment
with additional free and open source tools, such as LTS-
Min [6], LTSA [46], DiVinE [4], JavaPathFinder [36],
Alloy [41], and commercial tools, such as CADP [27],
SCADE [16], and Stateflow with Simulink Design Ver-
ifier [35]. Our idea is to model our prototypical rail-
way problem with these di↵erent tools, to have a more
complete in-field understanding of the practical hurdles
that formal methods practitioners may face when deal-
ing with diverse formal methods.

References

1. Accellera, property specification language - reference
manual - version 1.01, 2003.

2. Jean-Raymond Abrial. The B-book: assigning programs
to meanings. Cambridge University Press, 2005.

3. Algirdas Avizienis. The N-version approach to fault-
tolerant software. IEEE Transactions on software en-
gineering, (12):1491–1501, 1985.

4. Jǐŕı Barnat, Luboš Brim, Vojtěch Havel, Jan Havĺıček,
Jan Kriho, Milan Lenčo, Petr Ročkai, Vladimı́r Štill, and
Jǐŕı Weiser. DiVinE 3.0–an explicit-state model checker
for multithreaded C & C++ programs. In International
Conference on Computer Aided Verification, pages 863–
868. Springer, 2013.

5. Patrick Behm, Paul Benoit, Alain Faivre, and Jean-Marc
Meynadier. Meteor: A successful application of b in a
large project. In International Symposium on Formal
Methods, pages 369–387. Springer, 1999.

6. Stefan Blom, Jaco van de Pol, and Michael Weber.
Ltsmin: Distributed and symbolic reachability. In In-
ternational Conference on Computer Aided Verification,
pages 354–359. Springer, 2010.

7. Andrea Bonacchi, Alessandro Fantechi, Stefano
Bacherini, Matteo Tempestini, and Leonardo Cipriani.
Validation of railway interlocking systems by formal
verification, a case study. In International Conference
on Software Engineering and Formal Methods, pages
237–252. Springer, 2013.

8. CENELEC. EN 50128:2011: Railway applications - Com-
munication, signalling and processing systems - Software
for railway control and protection systems. Technical
report, 2011.

9. Angelo Chiappini, Alessandro Cimatti, Luca Macchi, Os-
car Rebollo, Marco Roveri, Angelo Susi, Stefano Tonetta,
and Berardino Vittorini. Formalization and validation of
a subset of the european train control system. In Soft-
ware Engineering, 2010 ACM/IEEE 32nd International
Conference on, volume 2, pages 109–118. IEEE, 2010.

10. Chan-Ho Cho, Dong-Hyuk Choi, Zhong-Hua Quan, Sun-
Ah Choi, Gie-Soo Park, and Myung-Seon Ryou. Model-
ing of cbtc carborne ato functions using scade. In Con-
trol, Automation and Systems (ICCAS), 2011 11th Inter-
national Conference on, pages 1089–1093. IEEE, 2011.

11. Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia,
Fausto Giunchiglia, Marco Pistore, Marco Roveri,
Roberto Sebastiani, and Armando Tacchella. Nusmv 2:

An opensource tool for symbolic model checking. In In-
ternational Conference on Computer Aided Verification,
pages 359–364. Springer, 2002.

12. Edmund M Clarke, Orna Grumberg, and Doron Peled.
Model checking. MIT press, 1999.

13. Clara DaSilva, Babak Dehbonei, and Fernando Mejia.
Formal specification in the development of industrial ap-
plications: Subway speed control system. In Proceedings
of the IFIP TC6/WG6. 1 Fifth International Conference
on Formal Description Techniques for Distributed Sys-
tems and Communication Protocols: Formal Description
Techniques, V, pages 199–213. North-Holland Publishing
Co., 1992.

14. Rocco De Nicola and Matthew CB Hennessy. Testing
equivalences for processes. Theoretical computer science,
34(1-2):83–133, 1984.

15. Jing Dong, Shanguo Chen, and J-J Jeng. Event-based
blackboard architecture for multi-agent systems. In
Information Technology: Coding and Computing, 2005.
ITCC 2005. International Conference on, volume 2,
pages 379–384. IEEE, 2005.

16. Francois-Xavier Dormoy. Scade 6: a model based solution
for safety critical software development. In Proceedings
of the 4th European Congress on Embedded Real Time
Software (ERTS08), pages 1–9, 2008.

17. Vijay D’silva, Daniel Kroening, and Georg Weis-
senbacher. A survey of automated techniques for
formal software verification. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, 27(7):1165–1178, 2008.

18. Alessandro Fantechi. Twenty-five years of formal meth-
ods and railways: what next? In International Con-
ference on Software Engineering and Formal Methods,
pages 167–183. Springer, 2013.

19. Alessandro Fantechi, Stefania Gnesi, Alessandro La-
padula, Franco Mazzanti, Rosario Pugliese, and
Francesco Tiezzi. A logical verification methodology for
service-oriented computing. ACM Transactions on Soft-
ware Engineering and Methodology (TOSEM), 21(3):16,
2012.

20. Alessio Ferrari, Alessandro Fantechi, Stefania Gnesi, and
Gianluca Magnani. Model-based development and for-
mal methods in the railway industry. IEEE software,
30(3):28–34, 2013.

21. Alessio Ferrari, Alessandro Fantechi, Stefania Gnesi, and
Gianluca Magnani. Model-based development and for-
mal methods in the railway industry. IEEE Software,
30(3):28–34, 2013.

22. Alessio Ferrari, Alessandro Fantechi, Gianluca Magnani,
Daniele Grasso, and Matteo Tempestini. The metrô
rio case study. Science of Computer Programming,
78(7):828–842, 2013.

23. Alessio Ferrari, Gianluca Magnani, Daniele Grasso, and
Alessandro Fantechi. Model checking interlocking con-
trol tables. In FORMS/FORMAT 2010, pages 107–115.
Springer, 2011.

24. Alessio Ferrari, Giorgio O Spagnolo, Giacomo Martelli,
and Simone Menabeni. From commercial documents to
system requirements: an approach for the engineering of
novel cbtc solutions. International Journal on Software
Tools for Technology Transfer, 16(6):647–667, 2014.

18 F. Mazzanti et al.: Formal Methods Diversity in Railways

25. John Fitzgerald and Peter Gorm Larsen. Balancing in-
sight and e↵ort: The industrial uptake of formal meth-
ods. In Formal methods and hybrid real-time systems,
pages 237–254. Springer, 2007.

26. Marc Frappier, Benôıt Fraikin, Romain Chossart,
Raphaël Chane-Yack-Fa, and Mohammed Ouenzar.
Comparison of model checking tools for information sys-
tems. In International Conference on Formal Engineer-
ing Methods, pages 581–596. Springer, 2010.

27. Hubert Garavel, Radu Mateescu, Frédéric Lang, and
Wendelin Serwe. Cadp 2006: A toolbox for the con-
struction and analysis of distributed processes. In In-
ternational Conference on Computer Aided Verification,
pages 158–163. Springer, 2007.

28. Thomas Gibson-Robinson, Philip Armstrong, Alexandre
Boulgakov, and Andrew W Roscoe. Fdr3a modern re-
finement checker for csp. In International Conference on
Tools and Algorithms for the Construction and Analysis
of Systems, pages 187–201. Springer, 2014.

29. Stefania Gnesi and Tiziana Margaria. Formal methods
for industrial critical systems: A survey of applications.
John Wiley & Sons, 2012.

30. Stefania Gnesi and Franco Mazzanti. An abstract, on
the fly framework for the verification of service-oriented
systems. In Rigorous software engineering for service-
oriented systems, volume 6582 of LNCS, pages 390–407.
Springer, 2011.

31. Jan Friso Groote and Mohammad Reza Mousavi. Mod-
eling and analysis of communicating systems. 2014.

32. Stefan Gruner, Apurva Kumar, and Tom Maibaum. To-
wards a body of knowledge in formal methods for the rail-
way domain: Identification of settled knowledge. In In-
ternational Workshop on Formal Techniques for Safety-
Critical Systems, pages 87–102. Springer, 2015.

33. Carl A Gunter, Elsa L Gunter, Michael Jackson, and
Pamela Zave. A reference model for requirements and
specifications. IEEE Software, 17(3):37–43, 2000.

34. Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and
Daniel Pilaud. The synchronous data flow programming
language lustre. Proceedings of the IEEE, 79(9):1305–
1320, 1991.

35. Grégoire Hamon, Bruno Dutertre, Levent Erkok, John
Matthews, Daniel Sheridan, David Cok, John Rushby,
Peter Bokor, Sandeep Shukla, Andras Pataricza, et al.
Simulink design verifier-applying automated formal
methods to simulink and stateflow. In AFM08: Third
Workshop on Automated Formal Methods 14 July 2008
Princeton, New Jersey, 2008.

36. Klaus Havelund and Thomas Pressburger. Model check-
ing java programs using java pathfinder. Interna-
tional Journal on Software Tools for Technology Transfer
(STTT), 2(4):366–381, 2000.

37. Anne E Haxthausen. Automated generation of formal
safety conditions from railway interlocking tables. Inter-
national journal on software tools for technology transfer,
16(6):713–726, 2014.

38. Charles Antony Richard Hoare. Communicating sequen-
tial processes. In The origin of concurrent programming,
pages 413–443. Springer, 1978.

39. Gerard Holzmann. Spin model checker, the: primer and
reference manual. Addison-Wesley Professional, 2003.

40. Simon Hordvik, Kristo↵er Øseth, Jan Olaf Blech, and
Peter Herrmann. A methodology for model-based de-
velopment and safety analysis of transport systems. In
11th International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE), 2016.

41. Daniel Jackson. Software Abstractions: logic, language,
and analysis. MIT press, 2012.

42. Phillip James, Andy Lawrence, Faron Moller, Markus
Roggenbach, Monika Seisenberger, Anton Setzer, Karim
Kanso, and Simon Chadwick. Verification of solid state
interlocking programs. In International Conference on
Software Engineering and Formal Methods, pages 253–
268. Springer, 2013.

43. L. Jansen, M. Meyer Zu Horste, and E. Schnieder. Tech-
nical issues in modelling the European Train Control
System (ETCS) using Coloured Petri Nets and the De-
sign/CPN tools, 1998.

44. Kurt Jensen and Lars M Kristensen. Coloured Petri nets:
modelling and validation of concurrent systems. Springer
Science & Business Media, 2009.

45. G Latif-Shabgahi, Julian M Bass, and Stuart Bennett.
A taxonomy for software voting algorithms used in
safety-critical systems. IEEE Transactions on Reliabil-
ity, 53(3):319–328, 2004.

46. J Magree. Behavioral analysis of software architectures
using ltsa. In Software Engineering, 1999. Proceedings
of the 1999 International Conference on, pages 634–637.
IEEE, 1999.

47. Franco Mazzanti. An experience in Ada multicore pro-
gramming: parallelisation of a model checking engine. In
Ada-Europe International Conference on Reliable Soft-
ware Technologies, volume 9695 of LNCS, pages 94–109.
Springer, 2016.

48. Franco Mazzanti, Alessio Ferrari, and Giorgio O Spag-
nolo. Experiments in formal modelling of a deadlock
avoidance algorithm for a cbtc system. In International
Symposium on Leveraging Applications of Formal Meth-
ods, pages 297–314. Springer, 2016.

49. Franco Mazzanti, Giorgio Oronzo Spagnolo, Simone
Della Longa, and Alessio Ferrari. Deadlock avoidance
in train scheduling: a model checking approach. In In-
ternational Workshop on Formal Methods for Industrial
Critical Systems, volume 8718 of LNCS, pages 109–123.
Springer, 2014.

50. Franco Mazzanti, Giorgio Oronzo Spagnolo, and Alessio
Ferrari. Designing a deadlock-free train scheduler: A
model checking approach. In NASA Formal Meth-
ods Symposium, volume 8430 of LNCS, pages 264–269.
Springer, 2014.

51. Steven P Miller, Michael W Whalen, and Darren D
Cofer. Software model checking takes o↵. Communi-
cations of the ACM, 53(2):58–64, 2010.

52. Sam Owre, John M Rushby, and Natarajan Shankar.
Pvs: A prototype verification system. In International
Conference on Automated Deduction, pages 748–752.
Springer, 1992.

53. David Powell, Jean Arlat, Ljerka Beus-Dukic, An-
drea Bondavalli, Paolo Coppola, Alessandro Fantechi,
Eric Jenn, Christophe Rabéjac, and Andrew Wellings.
Guards: A generic upgradable architecture for real-time
dependable systems. IEEE Transactions on Parallel and
Distributed Systems, 10(6):580–599, 1999.

F. Mazzanti et al.: Formal Methods Diversity in Railways 19

54. Jie Qian, Jing Liu, Xiang Chen, and Junfeng Sun. Mod-
eling and verification of zone controller: the scade ex-
perience in china’s railway systems. In Complex Faults
and Failures in Large Software Systems (COUFLESS),
2015 IEEE/ACM 1st International Workshop on, pages
48–54. IEEE, 2015.

55. Maurice H ter Beek, Alessandro Fantechi, Stefania Gnesi,
and Franco Mazzanti. A state/event-based model-
checking approach for the analysis of abstract sys-
tem properties. Science of Computer Programming,
76(2):119–135, 2011.

56. Maurice H ter Beek, Stefania Gnesi, and Franco Maz-
zanti. From EU projects to a family of model checkers. In
Software, Services, and Systems, volume 8950 of LNCS,
pages 312–328. Springer, 2015.

57. Somsak Vanit-Anunchai. Application of coloured petri
nets in modelling and simulating a railway signalling
system. In International Workshop on Formal Methods
for Industrial Critical Systems, pages 214–230. Springer,
2016.

58. Linh Hong Vu, Anne E Haxthausen, and Jan Peleska.
Formal modelling and verification of interlocking systems
featuring sequential release. Science of Computer Pro-
gramming, 133:91–115, 2017.

59. K Winter, W Johnston, P Robinson, P Strooper, and
L Van Den Berg. Tool support for checking railway in-
terlocking designs. In Proceedings of the 10th Australian
workshop on Safety critical systems and software-Volume
55, pages 101–107. Australian Computer Society, Inc.,
2006.

60. JimWoodcock, Peter Gorm Larsen, Juan Bicarregui, and
John Fitzgerald. Formal methods: Practice and experi-
ence. ACM computing surveys (CSUR), 41(4):19, 2009.

61. Pamela Zave. A practical comparison of alloy and spin.
Formal Aspects of Computing, 27(2):239, 2015.

View publication statsView publication stats

