
Assisting Refinement in System-on-Chip Design

Hocine Mokrani, Rabéa Ameur-Boulifa
Institut Telecom,

Télécom ParisTech, LTCI CNRS,
Sophia-Antipolis, France

Email:firstname.lastname@telecom-paristech.fr

Emmanuelle Encrenaz-Tiphene
Laboratoire d’Informatique de Paris6 (LIP6) CNRS

Université Pierre et Marie Curie, Paris, France
Email:emmanuelle.encrenaz@lip6.fr

Abstract—With the increasing complexity of systems on chip,
designers have adopted layer design methodologies, where the
description of systems is made by steps. Currently, those methods
do not ensure the preservation of properties in the process
of system development. In this paper we present a system on
chip design method in order to guarantee the preservation of
functional correctness along the design flow.

I. INTRODUCTION

The System-on-Chip (SoC) design faces a trade-off be-
tween the manufacturing capabilities and time to market pres-
sures. With the increasing complexity of architectures and the
number of parameters, the difficulty to explore a huge design
space becomes increasingly harder to address.

An approach to overcome this issue is to use abstract
models and to split the design flow into multiple-levels, in
order to guide the designer in the design process, from the
most abstract model down to a synthesizable model. The use of
abstraction levels in the SoC design gives another perspective
to cope with design complexity. Indeed, the design starts
with a functional description of the system, where only the
major function blocks are defined and timing information is
not yet captured. During the SoC design process, the system
description is refined step by step and details are gradually
added. At the end, this process leads to a cycle accurate
fully functional system description in Register Transfer Level
(RTL).

Furthermore, verification of complex SoCs requires new
methodologies and tools, which include the application of
formal analysis technologies throughout the design flow. In-
deed, in contrast to simulation technique, formal verification
can offer strong guarantees because it explores all possible
execution paths of a system (generally in a symbolic way);
in case of Model-Checking, the verification can be automated
but has to face the state explosion problem. This approach
is applicable for the first steps of the design process or on
elementary blocks of the refined components; it can also help
in proving the refinement between two successive steps of the
design process.

This paper proposes a method for assisting the process of
refinement along the design flow. The approach is based on a
set of transformation rules, representing a concretisation step;
the transformation rules are coupled with formal verification
techniques to guarantee the preservation of stuttering linear-
time properties, hence alleviating the verification process on
the last steps of the design and paving the way to a better
design space exploration.

This paper is structured as follows. Section II summarizes
the related techniques in the literature. Section III describes
the major steps of our method for architectural exploration.
Section IV details the transformation rules associated to each
refinement step. Section V presents a case-study illustrating
the use and benefits on can expect from our approach. Section
VI concludes and sketches some perspectives.

II. RELATED WORK

Nowadays many design methodologies incorporate formal
verification to assist the design; generally, verification tools are
plugged into the standard (SystemC or SystemVerilog) design
flow. These tools are adequate to perform formal verification
at a high level of abstraction, or to derive test-benches tested
generally used for assertions checking on lower levels. There
is a lack of design methodologies assisting a designer in refine-
ment tasks and offering guarantees about functional properties
preservation along the design process. Several frameworks
offering design-space exploration facilities have been proposed
[1], [2], [3], [4], but they are mostly simulation-oriented
and do not formally characterizes the relationships between
two successive abstraction levels, and the formal verification
of global functional properties at low level is very hard to
accomplish.

Among design methodologies oriented towards refinement,
the B method [5] is one of the most famous, due to its rigorous
definition, its (partial) mechanization in Atelier-B, and several
success stories for transportation devices. This approach is
very general and could be applied in the context of SoC
design (as in [6]), but the refinement steps are left to the user,
(although a large part of proof obligations can be automatically
discharged). [7] introduces a model algebra that represents SoC
designs at system level. The authors introduce the refinement
as a sequence of model transformations, corresponding to
manipulation of algebra expressions. The correctness proof is
based on the laws of model algebra. Functional equivalence
verification is used to compare the values of input and output
variables within the models at different levels. [8] presents
a framework for computation and communication refinement
for multiprocessor SoC designs. Stochastic automata networks
are used to specify application behaviour which allows perfor-
mance analysis and fast simulations.

Our approach is complementary to these last works since
we provide transformation rules, representing the introduction
of architectural constraints in the design in order to describe
more precisely its functioning. Our rules are tuned to be under-
standable by the designer, who can select which combination

of rules to apply in order to perform its refinement; at each
step, the refinement can be proven by applying automated
verification tools, hence guaranteeing the preservation of a
large class of functional properties from abstract levels to more
concrete ones.

III. OUR METHOD

Our approach for design space exploration of Systems-
on-Chip is based on the Y-chart design scheme [9] (Figure
1). We focus on data-flow applications, modelled as a set of
abstract concurrent tasks. Application tasks and architectural
elements composing the underlying execution support (e.g.
major features of CPU, memory, bus) are first described
independently and are related in a subsequent mapping stage
in which tasks are bound to architectural elements.

Fig. 1. Refinement steps in the design flow

The application is mapped onto the architecture that will
carry out its execution: a first platform is available (cf. Fig.
1). The models derived for both applications and architectures
may come with some low-level information from designers
They are analyzed to determine whether the combination of
application and architecture satisfies the required design con-
straints introduced at the initial stage. If the design constraints
are not met, then the mapping process is reiterated with a
different set of parameters until achieving a satisfactory design
quality. Once the desired platform is obtained, it is possible
to perform communication refinement for optimizing the com-
munication infrastructure, making effective the communication
mechanism, and taking into account constraints imposed by the
available resources. This leads to Platform2 on Fig. 1.

This process is well established in the simulation-based
design exploration tools. However, due to structural constraints
imposed by the boundedness of the execution support and
some synchronization it induces, the initial set of execution
traces of the application is modified along the mapping and
refinement process. This means that functional properties that
were fullfilled by the initial description of the application
may no longer hold once the application has been mapped:
some deadlocks or livelocks may have appeared, or some
good ordering of events may not be respected anymore. These
changes are very difficult to capture with simulation-only
engines, and formal analysis is required.

In order to ensure the preservation of the functionality
of the application being analysed along the mapping and
refinement process, our approach is to split the whole process
in defined steps, whose abstraction level is clearly established
(cf. Fig. 1, left): Level-0 (application without constraint),
Level-1 (Application with a defined granularity of data stored
and exchanged), Level-2 (Application with synchronization
mechanisms for communications) and Level-3 (Application
with synchronization mechanisms for communication tran-
siting through a shared bus). Moreover, we provide formal
transformation rules as guidelines for the derivation of a
concrete model from an abstract one. Then we can prove the
preservation of stuttering linear-time functional properties from
two successive representation levels by comparing the set of
traces of the two descriptions with a formal verification tool.
The remainder of this section gives some precisions on the
initial application and architecture modelings.

A. Application

The functional behaviour of the application is written in
TML language (Task Modelling Language) [3]. The model of
computation of TML is close to the Kahn networks model
[10], however TML supports non-determinism and offers
different kinds of communication. A TML model is a set
of asynchronous tasks, representing the computations of the
application, and communicating through channels, events or
requests. Each task executes forever: first instruction is re-
executed as soon as the last one finishes.

The main feature of TML models is data abstraction. TML
models are built to perform design space exploration from a
very abstraction level; they capture the major parameters of
the application to be mapped, without describing precisely the
computation of the application and data value being involved
in it. Within tasks, precise computation are abstracted by an
action EXEC whose optional parameter represents the amount
of time the computation should take. Channels do not carry
data values, but only the amount of data exchanged between
tasks. Data are expressed in terms of samples. A sample has a
type which defines its size. Communications are expressed by
actions READ or WRITE whose parameters are the channel
being accessed and the amount of (typed) samples to be read or
written. Other constructs are provided to perform conditional
loops, or alternatives (the guarding condition may be non-
determinictic, abstracting a particular computation value).

Channels are used for point-to-point unidirectional buffered
communication of abstract data, while events are used for
control purpose and may contain values, and requests can be
seen as one-to-many events. A channel may have a maximal
capacity or being unbounded, and is accessed through READ
or WRITE actions performed by the emitter and receiver
tasks. Channel’s type describes its access policy and the type
of samples it stores. A channel can be either “Blocking-
Read/Blocking-Write” (BR-BW), mimicking a bounded queue
(its maximal capacity is defined in its declaration), “Non-
Blocking-Read/Non-Blocking-Write” (NBR-NBW) to repre-
sent a memory element or “Blocking-Read/Non-Blocking-
Write” (BR-NBW) to represent an unbounded queue.

A TML application composed of five tasks and five chan-
nels of different sizes is presented on Figure 2; it will be further
detailed in sec. V.

B. Execution Platform

The architecture describes the number, the interconnexion
and the main features of the hardware components on which
the application will be executed. For each processing element
(e.g. processor or co-processor), one provides its number
of cores, number of communication interfaces, size of local
memory. In case of multitask scheduling, the scheduling policy
is specified (fixed-priority, random, round-robin). For each
storage element (e.g. RAM, ROM, buffer), the size of the
storage element and access policy (random access, FIFO) are
given. For each interconnection or interface element, one speci-
fies the type of interconnection (dedicated buffered line, shared
bus, full-crossbar, bridge ...), granularity transfer, arbitration
policy.

An abstract behavioral model is attached to each of these
components; the behavioral model exhibits the synchroniza-
tions and ressources constraints imposed by the corresponding
component; this model is described as a Labeled Transition
System (LTS for short [11]), which is hidden to the designer.

C. Mapping and partitioning

The mapping process distributes application tasks and
channels over hardware elements: it determines over which
processing elements tasks are executed and the memory re-
gions storing data. The allocation is static and described by
the designer. A model of architecture, and the mapping of an
application is sketched in Fig. 3.

The mapping corresponds to the combination of the be-
havioral models of the application elements with those coming
from the architecture according to the allocation chosen. This
combination can be seen as a product of LTS, however in order
to perform such a product, one has to adapt the communication
granularity, the interface protocols and the ressources’ sharing
resolution. This combination process is described in the fol-
lowing section.

IV. TRANSFORMATION RULES

To assist the designer in developing models from Level-
0 to Level-3, we provide guidelines for formally refining the
tasks and communication medium from the simple channels
to concrete infrastructures. After generating the initial model,
the guidelines suggest three steps: (1) Refinement of data
granularity, (2) Refinement of channel management, and (3)
Introduction of an abstract bus. These transformations ma-
nipulates orders and substitutions between elementary actions
labelling the LTS of the initial model. In [12], these transfor-
mations have been formalized with pomset, which is well
adapted to represent partially ordered sets, and transposed into
LTS formalism. For a sake of brievety, we give an informal
presentation of these transformations and refer to [12] for their
complete and formal description.

At Level-0, we build behavioural models of TML applica-
tions in terms of a set of interacting LTS. For each task, we
build an LTS in which the transitions are the atomic actions
executed by the TML task. For each channel we generate an
LTS which models its specific behaviour (maximal capacity
and blocking or non-blocking read/write accesses).

A. Refinement Steps

1) First Step. Refining granularity of data : The first
refinement step considers the capacity (or size) of memory
elements allocated to each communication channel during the
allocation phase. This capacity may be lower than the size of
the TML sample to be transmitted, this imposes a rescaling of
the granularity of data transfer and may impact the granularity
of the computation also. The granularity of data measures
the atomic amount of computations associated to each EXEC
statement and the atomic amount of data associated to each
READ or WRITE statement, hence transiting in each channel.
The refinement of data granularity converts the unit of data
from the coarse-grained unit (e.g. a type Image) into the fined-
grained one (e.g. a type Pixel Block) with a granularity scaling
of n (size of type Image = n× Size of type Pixel Block).

The model of channels is refined by transformation 1
(called T1). This latest associates to each channel a bounded
size (defined in number of samples of the new granularity
it transfers), which has to be compliant with the maximal
memory size of the architecture, allocated for the channel.

Transformation 1. A channel C is transformed into a channel
C ′ with a granularity scaling of n such that:
Type(C ′) = BR-BW if Type(C)= BR-BW or BR-NBW,
NBR-NBW otherwise;
and size(C ′) ≤ min(MEMSIZE(C), n× size(C)).

Models of tasks are impacted also: each initial action is
transformed into an ordered set of micro-actions, according to
its granularity scaling. These ordered sets are incrementally
built and combined, while taking into account parallelism
between actions, data dependency and persistency, leading to
transformations 2 to 6.

a) Maximal parallelism between actions: For each
Level-0 action, the generated order of micro-actions represent-
ing it depends on its associated data granularity, as well as on
the maximal parallelism the architecture offers. As channels
are point-to-point communication media, the generated order
for READ and WRITE actions is total. The EXEC action is
split into micro-actions, whose parallelism is defined by the
maximal parallelism degree p offered by the processing unit
executing it (e.g. number of cores in processors, ...). The initial
order for each action is built by transformation Expansion
of actions (T2). Then, each group of actions being locally
ordered, the order of the task is reinforced by introducing
linear order between the terminal element of each group. This
is performed by transformation Global order of actions (T3).

Transformation 2. Given a task action u ∈
{READ, WRITE, EXEC}, a parameter n (associated
to granularity scaling), and a maximal parallelism p,
transformation expansion of actions consists in replacing
action u of the model by a (n, p)-ordered set of actions u′

with the same label.

Transformation 3. Given a model of a task and for each of its
action, an ordered set of micro-actions; identify the terminal
element of each expansion group, and build an order relating
these terminal actions which respects the order of the initial
model.

b) Data dependency and data persistency: A conse-
quence of data abstraction in TML is the loss of informa-
tion about the data dependency. This information, which can
be expressed as a relation between reading-writing, reading-
execution, execution-writing and execution-execution actions,
is required for an optimal management of the memory space
of the architecture. In fact, this relation can be restored from
the algorithm targeted by the application, or provided by the
designer. Thereby, this relation strenghten the order between
actions by the transformation of Data dependency introduction
(T4). Moreover, the models of tasks have to ensure that the
data in the local space remains available until its use has been
completed. This is taken into account by transformation called
data persistency (T5), which enforces that the execution of all
the actions consuming a data precedes its removal.

Transformation 4. Given the model of a task M and the data
dependency relation between its actions D, transformation
data dependency introduction consists in building the order
resulting from the transitive closure of M ∪ D. One has to
ensure that this transformation produces an order (i.e. no cycle
is introduced).

Transformation 5. Given a model of task, a data dependency
relation and a size of local memory, the data persistency
transformation consists in strenghtening the order of the model
of the task such that for any execution, a sequence of actions
producing data never exceeds the memory size.

c) Shared ressources: Another kind of material con-
straint taken into account is the number of interfaces and the
number cores which are included in the processing unit in
which the task is executed; this is done by transformation 6.

Transformation 6. Given a model of a task and the number
of interface and cores of the processing element associated to
the task, the transformation forces the order between all the
actions of the task so as to guarantee a mutual exclusion of
shared resources.

Transformations 5 and 6 are performed through a symbolic
traversal of the system, constrained by the order of micro-
actions already computed via transformations T2 to T4: at
each execution step compatible with the input order, one has to
ensure that data persistency or ressource exclusion conditions
are satisfied. If these conditions are not met, the order is
strengthened, which corresponds to force the sequentialization
of concurrent actions, up to the satisfaction of these conditions.

At this point, LTS model of each task or channel is
built; the model of Level-1 is a synchronous product of these
elementary LTS. The number of atomic execution steps and
data transfers are fixed and ordered according the maximal
parallelism allowed by the architectural description. However,
transfers are still abstracted as ordered micro-actions WRITE
or READ. The following step produces a detailled view of
these actions.

2) Second Step. Refining channel management: In the
second step, channels are replaced by communication media
equipped with an abstract protocol respecting the blocking-
read/blocking-write semantic. The protocol is inspired from
[13]: the reading and writing primitives are expressed by a serie
of operations that stall a process until data or space (room)

is available, then transfer data in the architecture and finally
signal the availability of room or data. This protocol uses six
actions: CHECK-ROOM and SIGNAL-ROOM to test and inform
a room is available for writing; STORE-DATA and LOAD-DATA
to perform the transfer; and CHECK-DATA and SIGNAL-DATA
to check and inform the availability of a data to read. The
model of channels are replaced by the media, according to
transformation 7 and within each task, READ and WRITE
micro-actions are transposed according to transformations 8
and 9.

Transformation 7. Given a channel of type BR-BW, the
model of channel is replaced by the model describing the above
protocol of communication.

The introduction of a communication protocol impacts
the models of tasks. The transformation is performed in two
phases: the first one replaces all the transfer actions in the
channels of type BR-BW by the details of the protocol:

Transformation 8. Given a model of a task, and the
selected communication protocol, the actions of transfer to
a channel BR-BW are transformed by the following rules:

WRITE ≡ CHECK-ROOM→ STORE-DATA→ SIGNAL-DATA
READ ≡ CHECK-DATA→ LOAD-DATA→ SIGNAL-ROOM

In fact, the actual transfer of data are the operations STORE-
DATA and LOAD-DATA, the other operations are synchroniza-
tion primitives. In the second phase the orders between the
primitive of transfer and the primitive of synchronization are
calculated according to the order established in the abstract
model, in a way to preserve a maximal parallelism.

Transformation 9. Given a model of a task and the selected
communication protocol. The transformation introduction of
the protocol consists in restoring of the orders between actions
according to the rules given in Table I (Each line presents
a replacement pattern. Left : Level-1 ordered actions to be
replaced, Right : Level-2 ordered actions replacement).

(1) READ→ READ
CHECK-DATA→LOAD-DATA→SIGNAL-ROOM

↓ ↓ ↓
CHECK-DATA→LOAD-DATA→SIGNAL-ROOM

(2) WRITE→ WRITE
CHECK-ROOM→STORE-DATA→SIGNAL-DATA

↓ ↓ ↓
CHECK-ROOM→STORE-DATA→SIGNAL-DATA

(3) WRITE→ READ
CHECK-ROOM→STORE-DATA→ SIGNAL-DATA

↓ ↓ ↓
CHECK-DATA→ LOAD-DATA→SIGNAL-ROOM

(4) READ→ WRITE
CHECK-DATA→ LOAD-DATA→SIGNAL-ROOM

↓ ↓ ↓
CHECK-ROOM→STORE-DATA→ SIGNAL-DATA

(5) READ→ EXEC
CHECK-DATA→LOAD-DATA→SIGNAL-ROOM

↓
EXEC

(6) WRITE→ EXEC
CHECK-ROOM→STORE-DATA→SIGNAL-DATA

↓
EXEC

(7) EXEC→ READ
EXEC
↓

CHECK-DATA→LOAD-DATA→SIGNAL-ROOM

(8) EXEC→ WRITE
EXEC
↓

CHECK-ROOM→STORE-DATA→SIGNAL-DATA

(9) EXEC→EXEC EXEC→EXEC

TABLE I. TRANSFORMATION OF THE ACTIONS ORDER

3) Third Step. Introduction of abstract bus: In this step
we introduce information of sharing communication infrastruc-
tures. We define an abstract protocol for bus management. The
selected protocol targets a wide family of centralized buses: it
contains an arbitration component and interface modules to
mimick initiator and target interfaces, and provides a transfer
policy abstracting atomic, burst or split transfers.

B. Generation of models for Level-1, Level-2 and Level-3

From an initial model (Level-0), the elementary refinement
steps are applied to build the intermediate models (Level-1 and
Level-2) up to the most concrete one (Level-3).

Let M0 be the LTS resulting from the synchronized product
of LTS representing the tasks (LTS0

t for each task t) and chan-
nel (LTS0

c for each channel c) at Level-0. In the following, ||
denotes the synchronized product.

M0 = (||t∈Task LTS0
t) || (||c∈Channel LTS0

c)

The LTS of Level-1, M1, is a synchronized product of
the transformed channels (LTS1

c) and tasks (LTS1
t). Each

channel is modified by application of transformation 1: ∀c ∈
Channel: LTS1

c = T1(LTS0
c). Each task is modified by

application of transformations 2 to 6: ∀t ∈ Task: LTS1
t =

T6(T5(T4(T3(T2(LTS0
t))))).

M1 = (||t∈Task LTS1
t)) || (||c∈Channel LTS1

c))

In the same way, the LTS of Level-2, M2, is a syn-
chronized product of the transformed channels (LTS2

c) and
tasks (LTS2

t). Each channel is modified by application of
transformation 7: ∀c ∈ Channel: LTS2

c = T7(LTS1
c). Each

task is modified by application of transformations 8, 9 and 6:
∀t ∈ Task: LTS2

t = T6(T9(T8(LTS1
t)))

M2 = (||t∈Task LTS2
t)) || ((||c∈Channel LTS2

c))

And finally, the LTS of Level-3 is a synchronized product
of the transformed channels and tasks and components intro-
duced in the third step, by applying similar transformations.

V. CASE STUDY

This section illustrates the use of the approach for the
design and functional verification of a digital camera initially
presented in [14]. The functional specification is partitioned
into five modules, namely CCD, CCDPP, CODEC, TRANS,
and CNTRL.

The digital camera captures, processes, and stores pictures
into an internal memory. This task is initiated when the user
presses the shutter button to take a picture. The CCD model
simulates the capture of a picture and the transmission of
pixels. The CCDPP module performs the luminosity adjust-
ment on each pixel received from CCD module. The CODEC
module applies the DCT (Discrete Cosine Transformation)
algorithm to each bloc transmitted from CNTRL before being
retransmitted into the CNTRL. The CNTRL module serves as
the controller of the system, it also executes the quantization
and Huffman compression algorithm after receiving the trans-
formed bloc from CODEC. The camera is able to upload the
stored picture to external permanent memory. The TRANS
module takes care of this task when it receives data from
CNTRL.

Fig. 2. TML code of Digital Camera

Fig. 3. Architecture and Mapping of Digital Camera

Based on the code given in [14], we model this application
in TML (Fig. 2), provide an architecture and a mapping
(Fig. 3). The architecture is made of five processing elements
(PE1 to PE5) equipped with local memory. PE1 and PE2
communicates through a dedicated buffered line SE2; PE2
to PE5 and a share memory SE1 are connected through a
bus, whose access is controlled by an arbiter ARBITER. The
allocation is represented with dashed lines from the task graph
on the upper part of Fig. 3; it associates one TML task
per processing element; channel CI1 will be implemented on
buffered line SE2 while all other channels are implemented
into the shared memory SE1. A maximal capacity is associated
to each memory space.

We specified the models M0, M1, M2 and M3 of the
four levels of refinement from Level-0 upto Level-3 following
the generation scheme described in Sec. IV-B. The code of
the LTSs in each model M0 downto M3 is written in Fiacre
[15], and the property verification and refinement checking
between successive levels are performed using CADP version
2008 [16]. We prove complete and infinite trace inclusion
between lower levels and higher levels by proving the existence
of simulation relations between two successive models (e.g.
∀i : M i+1 v M i); this result ensures the preservation of
stuttering linear-time properties from M0 downto M3.

The properties are the following, expressed in logic MCL,
one of the input format for CADP. In these expressions, square
brakets represent universal quantifier of the internal regular
expression representing a path, and chevron brackets represent
existential quantifier. Atomic propositions are Level-0 action
labels, which are preserved along the refinement process.

• Absence of deadlock state in the system.
P0: [true∗] < true >

• For each data written on a channel CI1 the data must
be read in the future.
P1: [true∗ . write CI1 . true∗ . read CI1]

• The actions sequence for task CCDPP is always
executed.
P2: [true∗ . read CI1 . true∗ . exec 1 . true∗ . write CI2]

• For each data written by task CCD, the data is read
by the task TRANS in the future.
P3: [true∗ . write CI1 . true∗ . read CI3]

• A data written into channel CI2 is never overwritten
before having been read:
P4: [true∗ . write CI2 . (not write CI2)∗ . read CI2]

These properties are preserved from M0 downto M3. We
compared the timed needed for the verification of these prop-
erties in a basic strategy were no formal relation is established
between levels, and in our refinement-based strategy. In the
basic strategy, the properties have to be verified at Level-
3. In the refinement-based strategy, once the validity of the
properties has been established in M0 and the refinement are
checked, the properties are guaranteed to be true in subsequent
levels.

Table II presents quantitative information about the size of
the models M0 downto M3, the time to verify the properties
for each level, and the time to verify the trace inclusion be-
tween two successive models. These results show the benefits
of the refinement-based strategy (compare sum of times of
column LEVEL-0 + sum of times of line “Refinement” with
sum of times of column LEVEL-3).

LEVEL 0 LEVEL 1 LEVEL 2 LEVEL 3
]state Mi 336 123088 437782 173546709
]transition Mi 872 431622 1646712 472413097

verif time P0 0, 4s 12s 7mn 25mn
verif time P1 0, 5s 16s 9mn 32mn
verif time P2 0, 7s 23s 14mn 47mn
verif time P3 0, 6s 17s 10mn 33mn
verif time P4 0, 7s 24s 13mn 45mn

Refinement × 0.14s 3s 17s

TABLE II. TIME OF ANALYSIS

VI. CONCLUSION

We presented a refinement-based methodology for design-
space exploration of SOC. Our approach provides guidelines
to assist the designer in the refinement process, focusing
on communication refinement. We established well-identified
abstraction levels and transformation rules to derive a more
concrete model from a more abstract one. Each abstraction
level can be associated with a verification environment, in
order to prove functional properties or refinement properties

between different abstraction levels. This last point allows us
to establish the validity of functional properties of concrete
descriptions by testing the property on the most abstract level
and proving the refinement, which is less costly than verifying
the property on the concrete model directly; we examplified
this fact on a digital camera case study.

These encouraging results draws several perspectives. A
first direction consists in proving that the transformation algo-
rithm always produces a refinement, for any initial (deadlock-
free) model; up to now, the refinement is established when
the transformations are applied to a particular initial model.
Another perspective concerns the extension of the approach to
task computation refinement.

REFERENCES

[1] V. Zivkovoc, E. Deprettere, P. Van Der Wolf, and E. De Kock, “Design
space exploration of streaming multiprocessor architectures,” in proc of
SIPS’02, San Diego, CA, 2002.

[2] T. Kempf, M. Doerper, R. Leupers, G. Ascheid, H. Meyr, T. Kogel,
and B. Vanthournout, “A modular simulation framework for spatial and
temporal task mapping onto multi-processor soc platforms,” in Proc. of
DATE’05, Munich, Germany, 2005, pp. 876–881.

[3] L. Apvrille, W. Muhammad, R. Ameur-Boulifa, S. Coudert, and
R. Pacalet, “A UML-based environment for system design space ex-
ploration,” 13th IEEE International Conference on Electronics, Circuits
and Systems, 2006. ICECS 06., 2006.

[4] A. D. Pimentel, C. Erbas, and S. Polstra, “A systematic approach to
exploring embedded system architectures at multiple abstraction levels,”
IEEE Trans. Computers, vol. 55, no. 2, pp. 99–112, 2006.

[5] J.-R. Abrial, The B-book: assigning programs to meanings. New York,
NY, USA: Cambridge University Press, 1996.

[6] J. L. Colley, “Guarded atomic actions and refinement in a system-on-
chip development flow: Bridging the specification gap with event-b,” in
Thesis, 2010.

[7] S. Abdi and D. Gajski, “Verification of system level model transforma-
tions,” Int. J. Parallel Program., vol. 34, pp. 29–59, February 2006.

[8] R. Marculescu, Ü. Y. Ogras, and N. H. Zamora, “Computation and
communication refinement for multiprocessor soc design: A system-
level perspective,” ACM Trans. Design Autom. Electr. Syst., vol. 11,
no. 3, pp. 564–592, 2006.

[9] H. Mokrani, R. Ameur-Boulifa, S. Coudert, and E. Encrenaz, “Approche
pour l’intégration du raffinement formel dans le processus de conception
des socs,” in Journal Européen des Systèmes automatisés, MSR’11.
Lavoisier, Hermès, 2011, pp. 221–236.

[10] G. Kahn, “The semantics of a simple language for parallel pro-
gramming,” in Information Processing ’74: Proceedings of the IFIP
Congress, J. L. Rosenfeld, Ed. North-Holland, 1974.

[11] A. Arnold, Finite transition systems - semantics of communicating
systems, ser. Prentice Hall international series in computer science.
Prentice Hall, 1994.

[12] H. Mokrani, “Assistance au raffinement dans la conception de systèmes
embarqués,” PHD Thesis (in French), LTCI / Telecom-ParisTech, to
appear, 2013.

[13] P. Lieverse, P. van der Wolf, and E. Deprettere, “A trace transformation
technique for communication refinement,” in CODES ’01: Proceedings
of the ninth international symposium on Hardware/software codesign,
2001.

[14] F. Vahid and T. Givargis, Embedded system design - a unified hardware
/ software introduction. Wiley-VCH, 2002.

[15] B. Berthomieu, J. Bodeveix, P. Farail, M. Filali, H. Garavel, P. Gaufillet,
F. Lang, and F. Vernadat, “Fiacre: an Intermediate Language for Model
Verification in the Topcased Environment,” in ERTS 2008, Toulouse
France, 2008.

[16] H. Garavel, F. Lang, R. Mateescu, and W. Serve, “Cadp 2010: A
toolbox for the construction and analysis of distributed processes,” in
TACAS’11, ser. LNCS, M. L. P. A. Abdulla, K. Rustan, Ed., vol. 6605.
Saarbrücken, Germany: Springer, Heidelberg, 2011.

