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Abstract With the increasing complexity of systems on chip, designers have
adopted layered design methodologies, where the description of systems is made
by steps. Currently, those methods do not ensure the preservation of properties in the
process of system development. In this paper, we present a system on chip design
method, based on model transformations—or refinements—in order to guarantee the
preservation of functional correctness along the design flow. We also provide exper-
imental results showing the benefits of the approach when property verification is
concerned.
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2.1 Introduction

The System on a Chip (SoC) design faces a trade-off between the manufacturing
capabilities and time to market pressures. With the increasing complexity of archi-
tectures and the growing number of parameters, the difficulty to explore a huge design
space becomes harder to address. An approach to overcome this issue is to use abstract
models and to split the design flow into multiple-levels, in order to guide the designer
in the design process, from the most abstract model down to a synthesizable model.
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The use of abstraction levels in the SoC design gives another perspective to cope
with design complexity. Indeed, the design starts from a functional description of the
system, where only the major function blocks are defined and timing information is
not captured yet. During the SoC design process, the system description is refined
step by step and details are gradually added. At the end, this process leads to a cycle
accurate fully functional system description at Register Transfer Level (RTL).

Furthermore, the verification of complex SoCs requires new methodologies and
tools, which include the application of formal analysis technologies throughout the
design flow. Indeed, in contrast to simulation technique, formal verification can
offer strong guarantees because it explores all possible execution paths of a system
(generally in a symbolic way); in the case of model checking, the verification can be
automated but has to face the state explosion problem. This approach is applicable for
the first steps of the design process or on elementary blocks of the refined components;
it can also help in proving the refinement between two successive steps of the design
process. This paper proposes a method for assisting the process of refinement along
the design flow. The approach is based on a set of transformation rules, representing
a concretisation step; the transformation rules are coupled with formal verification
techniques to guarantee the preservation of stuttering linear-time properties, hence
alleviating the verification process on the last steps of the design and paving the way
to a better design space exploration.

This chapter is structured as follows. Section 2.2 summarizes the related tech-
niques in the literature. Section 2.3 describes the major steps of our method for
architectural exploration. Section 2.4 details the transformation rules associated with
each refinement step. Section 2.5 presents a case-study illustrating the use and bene-
fits one can expect from our approach, concerning behavioral property verification.
Section 2.6 concludes and sketches some perspectives.

2.2 Related Works

Nowadays many design methodologies involve formal verification methods to assist
the design; generally, verification tools are plugged into the standard (SystemC or
SystemVerilog) design flow. These tools are appropriate to perform formal verifi-
cation at a high level of abstraction, or to derive test-benches generally used for
assertions checking on lower design levels. However, there is a lack of design
methodologies to assist a designer in the refinement tasks and that offer guarantees
about functional properties preservation along the design process. Several frame-
works offering design-space exploration facilities have been proposed [3, 9, 15, 18].
However, these frameworks are mostly simulation-oriented and do not formally char-
acterize the relationships between successive abstraction levels. Moreover, formal
verification of global functional properties is hard to accomplish when components
are described at a low level of abstraction, where many implementation details are
provided.
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Among design methodologies oriented towards refinement, the B method [2] is
one of the most famous, due to its rigorous definition, its (partial) mechanization in
Atelier-B, and several success stories for transportation devices. This approach is
general and could be applied in the context of SoC design [6]. Although large part
of proof obligations can be automatically discharged, the refinement steps are left to
the user. Abdi and Gajski [1] defines a model algebra that represents SoC designs
at system level. The authors define the refinement as a sequence of model transfor-
mations, that allow to syntactically transform a Model Algebra expression into a
functionally equivalent expression. The refinement correctness proof is based on the
transformation laws of model algebra. Functional equivalence verification is used
to compare the values of input and output variables within the models at different
levels. Marculescu et al. [11] presents a framework for computation and commu-
nication refinement for multiprocessor SoC designs. Stochastic automata networks
are used to specify application behavior which allows performance analysis and fast
simulations. Our approach is complementary to these last works since we provide
transformation rules, representing the introduction of architectural constraints in the
design in order to describe more precisely its behavior. Our rules are tuned to be
understandable by the designer, who can select which combination of rules to apply
in order to perform its refinement; at each step, the refinement can be proven by
applying automated verification tools, hence guaranteeing the preservation of a large
class of functional properties from abstract levels to more concrete ones.

2.3 Our Method

Our approach for design space exploration of SoCs is based on the Y-chart design
scheme [14] as shown in Fig. 2.1. We focus on dataflow applications, modelled as a
set of abstract concurrent tasks. Application tasks and architectural elements making
up the underlying execution support (e.g., major features of CPU, memory, bus) are
first described independently and are related in a subsequent mapping stage in which
tasks are bound to architectural elements.

The application is mapped onto the architecture that will carry out its execution:
a first platform is available (see Fig. 2.1). The models derived for both applications
and architectures may come with some low-level information from designers.

They are analyzed to determine whether the combination of application and archi-
tecture satisfies the required design constraints introduced at the initial stage. If the
design constraints are not met, then the mapping process is reiterated with a differ-
ent set of parameters until achieving a satisfactory design quality. Once the desired
platform is obtained, it is possible to perform communication refinement for opti-
mizing the communication infrastructure. This makes effective the communication
mechanism, and takes into account constraints imposed by the available resources.
Referring to Fig. 2.1, this process leads to Platform2. This process is well established
in the simulation-based design exploration tools. The boundedness of the execution
support and the synchronizations, which it induces, imposes structural constraints.
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Fig. 2.1 Refinement steps in the design flow

For this reason, the initial set of execution traces of the application is modified along
the mapping and refinement process. This means that functional properties that were
fulfilled by the initial description of the application may no longer hold once the appli-
cation has been mapped. For example, deadlocks or livelocks may have appeared,
or some good ordering of events may not be respected anymore. These changes are
difficult to capture with simulation-only engines, hence formal analysis is required.
In order to ensure the preservation of the functional behavior of the application being
analysed along the mapping and refinement process, our approach consists of splitting
the whole process in defined steps with clearly defined abstraction level (see the left
side of Fig. 2.1): Level-0 (application without constraint), Level-1 (application with
a defined granularity of the stored data and the transferred data), Level-2 (applica-
tion with synchronization mechanisms for communication) and Level-3 (application
with synchronization mechanisms for communication transiting through a shared
bus). Moreover, we provide formal transformation rules as guidelines for the deriva-
tion of a concrete model from an abstract one. Then we can prove the preservation of
stuttering linear-time functional properties from two successive representation levels
by comparing the set of traces of the two descriptions with a formal verification tool.

The remainder of this section gives some precision on the initial application and
architecture modeling.
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2.3.1 Application

The functional behavior of the application is written in Task Modelling Language
(TML) [3]. The model of computation of TML is close to the Kahn networks
model [8], however TML supports non-determinism and offers different commu-
nication styles. A TML model is a set of asynchronous tasks, representing the com-
putations of the application, and communicating through channels, events or requests.
In TML, each task executes forever, i.e., the first instruction is re-executed as soon
as the last one finishes.

The main feature of TML models is data abstraction. TML models are built to
perform design space exploration from a very abstract level; they capture the major
features of the application to be mapped, without describing precisely the compu-
tation of the application and data value being involved on it. Within tasks, precise
computation is abstracted by an action exec whose optional parameter represents
the amount of time the computation should take. Channels do not carry data values,
but only the amount of data exchanged between tasks. Data are expressed in terms of
samples. A sample has a type which defines its size. Communications are expressed
by actions read or write whose parameters are the channel being accessed and
the amount of (typed) samples to be read or written. Other constructs are provided
to perform conditional loops, or alternatives (the guarding condition may be non-
deterministic, abstracting a particular computation value).

Channels are used for point-to-point unidirectional buffered communication of
abstract data, while events are used for control purpose and may contain values.
Requests in their turn can be seen as one-to-many events. A channel may have a max-
imal capacity or may be unbounded, and is accessed through read or write actions
performed by the emitter and receiver tasks. Channel’s type describes its access policy
and the type of samples it stores. A channel can be either “Blocking-Read/Blocking-
Write” (BR-BW), mimicking a bounded queue (its maximal capacity is defined in
its declaration). “Non-Blocking-Read/Non-Blocking-Write” (NBR-NBW) to rep-
resent a memory element or “Blocking-Read/Non-Blocking-Write” (BR-NBW) to
represent an unbounded queue. A simple example of a TML application is depicted
in Fig. 2.2a. It shows two tasks, named Task1 and Task2, communicating by
FIFO channels, named C1 and C2. Task1 performs infinite amount of computa-
tions and writing actions of a single sample on the channel C1. For each component
of the application an abstract model is derived. It captures the component key behav-
ior including both computation and communication aspects. We rely on the Labelled
Transition System (LTS) formalism [4] for encoding the models.

2.3.2 Execution Platform

The architecture consists of a set of interconnected hardware components, on which
the application will be executed. For each processing element (e.g., processor or
co-processor), the designer provides its number of cores, number of communication
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Fig. 2.2 Example of mapping of an application onto an architecture

interfaces, size of local memory. In case of multitask scheduling, the scheduling
policy is specified (fixed-priority, random, round-robin). For each storage element
(e.g., RAM, ROM, buffer), the size of the storage element and access policy
(random access, FIFO) are given. For each interconnection or interface element,
the designer specifies the type of interconnection (e.g., dedicated buffered line,
shared bus, full-crossbar, bridge), transfer granularity, arbitration policy. Referring
to the architecture in Fig. 2.2b, it consists of a CPU and a dedicated coprocessor, both
connected to a bus and a memory.

2.3.3 Mapping and Partitioning

The mapping process distributes application tasks and channels over hardware ele-
ments. The mapping determines over which processing elements the tasks will be
executed and which memory regions will store data. The allocation is static and is
described by the designer. The model of the obtained system represents the com-
bination of the behavioral models of the application components integrating the
constraints imposed by the architecture. Consider the application and the archi-
tecture given in Fig. 2.2, Task1 (resp. Task2) is mapped see dashed arrows over
CPU (resp. co-processor) nodes and the channels C1 and C2 are mapped over
a shared memory and communicate through the bus. A more complex example of
application, architecture, and mapping is presented in Sect. 2.5, Fig. 2.10.

From a formalism’s point of view, this combination can be seen as a product of
Labelled Transition Systems (LTSs). However, in order to perform this product, one
has to adapt the communication granularity, the interface protocols and to manage
the shared resources. This is the purpose of the transformation rules described in the
following section.
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2.4 Transformation Rules

To assist the designer in developing models from Level-0 to Level-3, we provide
guidelines for formally refine the tasks and communication medium from the simple
channels to concrete infrastructures. After generating the initial model, the guidelines
suggest three steps: 1. Refinement of data granularity, 2. Refinement of channel man-
agement, and 3. Introduction of an abstract bus. These transformations manipulate
orders and substitutions between elementary actions labelling the LTS of the initial
model. In Mokrani [13], these transformations have been formalized with partially
ordered multisets referred to in the term pomset [16] and then translated into LTS for-
malism. This section presents an intuitive description of the transformations required
by the three steps. A more formal and complete description of these transformations
is presented in Mokrani [13].

To begin at Level-0, we build behavioral models of TML applications in terms of
a set of interacting LTSs. For each task, we build an LTS, in which the transitions
are the atomic actions executed by the TML task. For each channel, we generate
an LTS, which encodes its specific behavior and captures the parameters of interest
such as maximal capacity and access policy. For instance, the behavior of task2 and
channels may be modeled by the LTSs presented in Fig. 2.3a, b, respectively.

2.4.1 Refinement Steps

2.4.1.1 First Step: Refining Granularity of Data

The first refinement step considers the capacity (or size) of memory elements allo-
cated to each communication channel during the allocation phase. This capacity may
be lower than the size of the TML sample to be transmitted, which imposes a rescal-
ing of the granularity of data transfer and may also impact the granularity of the
computation. The granularity of data measures, both, the atomic amount of compu-
tations associated to each exec statement and the atomic amount of data associated
to each read or write statement (i.e., the amount of data carried away by a channel).
The refinement of data granularity converts the unit of data from the coarse-grained
unit into the finer-grained one (e.g., from Image into Pixel) with a given granularity
scaling factor of n (so that total size of Image = n × size of Pixel). The models of
channels are refined by the transformation 1 (denoted by [T1]). The latter associates

exec

write

read

write

read

(a) (b)

Fig. 2.3 Initial LTSs for Task2 and channels
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to each channel a size bounded by the number of samples of the new granularity,
which it can transfer, and the maximal memory size of the architecture allocated for
the channel given by the MEMSIZE function.

Transformation 1 A channel C is transformed into a channel C′ with a granularity
scaling factor n such that:

Type(C′) =
{

BR-BW if Type(C) = BR-BW ∨ BR-NBW
NBR-NBW otherwise

and
size(C′) ≤ min(MEMSIZE(C), n × size(C))

Models of tasks are also impacted by the rescaling of the data granularity. Each
initial action is transformed into an ordered set of micro-actions, according to the
granularity of a scaling factor. These ordered sets are gradually built and combined
by taking into account the parallelism between actions, data dependency and data
persistency. The result of this transformation leads to the transformations [T2]–[T6],
which are described in the subsequent paragraphs.

Maximal Parallelism Between Actions

For each action of the models derived at Level-0, the order of the corresponding
micro-actions depends on the associated data granularity, as well as on the maximal
parallelism that the architecture offers. As channels are point-to-point communica-
tion media, the generated order for the micro-actions of communication (read and
write) should be total. Whereas for the micro-actions of computation (exec), it is
defined by the maximal parallelism degree p offered by the processing unit executing
it (e.g., number of cores within processors). Initially, for each action, an order is built
by applying transformation 2 Expansion of actions (denoted by [T2]).

Transformation 2 Consider the model of a task characterised by the set of asso-
ciated actions S. Given a parameter n (granularity scaling factor), and a parame-
ter p (maximal parallelism degree), the transformation expansion of actions consists
in replacing each action of S by a (n, p)-ordered group of actions with the same
label.

In the case of TML model S = {read, write, exec}, it contains primitives of
TML model. Once each group of (micro-)actions being locally ordered, the order
of the tasks is reinforced by introducing linear order between the terminal ele-
ments of each group. This is performed by the transformation 3 Global order of
actions (denoted by [T3]).

Transformation 3 Consider the model of a task and the associated set of the groups
of ordered micro-actions. This transformation consists of identifying the terminal
element of each group of micro-actions, and building an order relating these terminal
actions which respects the order of the initial model.
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Data Dependency and Data Persistency

A consequence of data abstraction in TML is the loss of information about the
data dependency. This information, which can be expressed as a relation between
reading-writing, reading-execution, execution-writing, and execution-execution
actions, is required for an optimal management of the memory space of the archi-
tecture. In fact, this relation can be restored from the algorithm targeted by the
application, or provided by the designer. Thereby, this relation strengthens the order
between actions by the transformation 4 Data dependency introduction (denoted
by [T4]).

Transformation 4 Consider the model of a task and the relation R between all its
actions. Given a data dependency relation D between its actions, the data dependency
introduction transformation consists in building the order resulting from the transitive
closure of R ∪ D, so that it produces an order (i.e., no cycle is introduced).

Moreover, the models of tasks have to ensure that the data in the local space
remains available until its use has been completed. This is taken into account by
transformation 5 Data persistency (denoted by [T5]). It enforces that the actions
consuming data are executed before the ones removing it.

Transformation 5 Consider the model of a task. Given a data dependency relation
and a size of local memory, the data persistency transformation consists in strength-
ening the order of the model of the task such that for any execution, a sequence of
actions producing data never exceeds the memory size.

Shared Resources

Another kind of material constraint taken into account along the refinement process is
the number of interfaces and the number of cores which are included in the processing
unit onto which the task is executed; this is done by transformation 6 (denoted
by [T6]).

Transformation 6 Consider the model of a task. Given the number of interface and
cores of the processing element associated to the task, the transformation forces the
order between the actions of the task so as to guarantee a mutual exclusion of shared
resources.

Actually, transformations [T5] and [T6] are performed through a symbolic tra-
versal of the model of a task. They are constrained by the order of micro-actions
already computed by way of transformations [T2]–[T4]. At each transformation step
compatible with the input order, one has to ensure that both data persistency and
resource exclusion conditions are satisfied. If these conditions are not met, the order
is strengthened, which forces some sequentialization of concurrent actions, up to the
satisfaction of persistence and exclusion conditions.
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(a) (b)

Fig. 2.4 Behavioral models of Task2 and channels resulting from the first refinement step

The result obtained after applying these transformations is a set of possible execu-
tion traces of the considered application, which satisfies imposed design constraints.
Referring to the example in Fig. 2.2, we suppose that the written data (resp. read)
are refined with a scaling factor equal to 2 (resp. 3). Suppose also that the space
allocated to each channel does not exceed two storage compartments. The models
of the Task2 and the channels obtained at the end of this refinement step are shown
in Fig. 2.4.

At this stage, the number of atomic execution steps and data transfers are fixed
at the granularity offered by the size of memories storing channels, and ordered
according the maximal parallelism allowed by the architectural description. However,
the communication have to be refined to reflect the access policy of the TML channels.
The following step produces a detailed view of these actions.

2.4.1.2 Second Step: Refining Channel Management

In the second step, channels are replaced by communication media equipped with an
abstract protocol respecting the blocking-read/blocking-write semantic. The selected
protocol is inspired from [10]. The reading and writing primitives are expressed by
a series of operations that 1. stall a process until data or memory space (named
room) in the shared memory is available, 2. transfer data, and then 3. signal the
availability of data or room. This protocol uses six primitives: check-room and
signal-room to test and inform a room is available for writing; store-data and
load-data to perform the transfer; and check-data and signal-data to check
and inform the availability of a data to read. The actual transfer of data are the
primitives store-data and load-data, the other operations are synchronization
primitives. Transformation 7 (denoted by [T7]) replaces the models of channels by
the ones depicting this protocol.

Transformation 7 The model of channel of type BR-BW is replaced by the model
encoding the selected protocol of communication.

Furthermore, the introduction of a communication protocol impacts as well the
models of tasks. The communication primitives within each task (read and write)
are changed to support the protocol. The transformation is performed in two
phases (transformations [T8] and [T9]): the first replaces all the communication
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(transfer) actions to a channel of type BR-BW by a communication scheme, which
respects the protocol.

Transformation 8 Consider the model of a task and the selected communication
protocol, the actions of transfer to a channel of type BR-BW are transformed by the
following rules:

write ≡ check-room → store-data → signal-data

read ≡ check-data → load-data → signal-room

exec ≡ exec

In the second phase, the orders between the primitive of transfer and the primitive
of synchronization are calculated according to the order established in the abstract
model, in a way to preserve a maximal parallelism.

Transformation 9 Consider the model of a task and the selected communication
protocol. The transformation introduction of the protocol consists in restoring the
orders between actions according to the rules given in Table 2.1.

The patterns in Table 2.1 are modeled with pomsets. The pomset formalism is a
compact representation of concurrent actions without expliciting interleavings. The
ordering of the operations on each pattern reflects the happens-before relationship
between the actions. For instance, the first pattern specifies that the system tests the
availability of data before its loading and then issues the room-release after the load
operation; all operations of the first instance of reading precede the corresponding
ones of the second instance:

check-data →load-data →signal-room

↓ ↓ ↓
check-data →load-data →signal-room

This representation leads to the interleaving interpretation, so that a system exe-
cuting actions concurrently is no different from one that executes them in arbitrary
sequential order. With this interleaving interpretation, the system modeled by the
pomset above represents five linear traces:

1. check-data load-data signal-room check-data load-data

signal-room

2. check-data load-data check-data signal-room load-data

signal-room

3. check-data load-data check-data load-data signal-room

signal-room

4. check-data check-data load-data signal-room load-data

signal-room

5. check-data check-data load-data load-data signal-room

signal-room
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Table 2.1 Patterns of transformation of the actions orders. Each line of the table presents a replace-
ment pattern: the left pattern is replaced by the one on the right

No Action pattern Replacement pattern

(1) Read → Read

check-data → load-data → signal-room

↓ ↓ ↓
check-data → load-data → signal-room

(2) Write → Write

check-room → store-data → signal-data

↓ ↓ ↓
check-room → store-data → signal-data

(3) Write → Read

check-room → store-data → signal-data

↓ ↓ ↓
check-data → load-data → signal-room

(4) Read → Write

check-data → load-data → signal-room

↓ ↓ ↓
check-room → store-data → signal-data

(5) Read → Exec

check-data → load-data → signal-room

↓
Exec

(6) Write → Exec

check-room → store-data → signal-data

↓
Exec

(7) Exec → Read

Exec

↓
check-data → load-data → signal-room

(8) Exec→ Write

Exec

↓
check-room → store-data → signal-data

(9) Exec→ Exec Exec → Exec

Back to our example, the abstract channel is transformed into a shared buffer,
which separates data-transfer and synchronisation (see Fig. 2.5).

Because of the interleaving of actions of different operations, the resulting LTS
for the Task2 is large. This makes it highly unreadable. We shall give then its pomset
representation (see Fig. 2.6).

2.4.1.3 Third Step: Introduction of Abstract Bus

Once the Level-2 models are available, we introduce information of sharing com-
munication infrastructures. We define an abstract protocol for bus management. The
proposed protocol targets a wide family of centralized buses, it contains an arbitration
component, interface modules (to depict initiator and target interfaces). It provides a
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Fig. 2.5 Behavioral model of a two-element channel resulting from the second refinement step

Fig. 2.6 Pomset representation of Task2 resulting from the second refinement step

transfer policy abstraction which does not distinguish between atomic, burst or split
transfers. At this stage, the models of channels remain unchanged, whereas, those
of tasks are transformed to incorporate the interface modules. Moreover, a generic
model of bus arbiter is introduced. This is performed by transformations [T10] and
[T11], which we shall not detail here.
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2.4.2 Generation of Models for Level-1, Level-2, and Level-3

As usual in the setting of distributed and concurrent systems, we give behavioral
model of the application and the application-architecture combination in terms of a
set of interacting finite state machines, called Labelled Transition Systems (LTSs).
An LTS is a structure consisting of states with transitions, labelled with actions,
between them. The states model the system states; the labelled transitions model the
actions that a system can perform.

At each level i, we build an LTS for each component (LTS
i
t and LTS

i
c for resp. task

and channel) of the system obtained at this level and by synchronous product (denoted
by ||) of elementary LTSs we build the global model of the overall system (Mi):

∀i ∈ {0, 1, 2}. M
i = ((||t∈Task LTS

i
t) || (||c∈Channel LTS

i
c))

The LTS models of the highest level (Level-0) are generated automatically from
the source code TML application. The intermediate models (of Level-1 and Level-2)
up to the most concrete one (Level-3) are generated by applying the transformations
of the channel models and the task models. The models of Level-1 are built by
applying transformation [T1] to each channel and transformations from [T2]–[T6]
to each task:

∀c ∈ Channel : LTS
1
c = T1(LTS

0
c) and ∀t ∈ Task : LTS

1
t = T6(T5(T4(T3(T2(LTS

0
t )))))

The models of Level-2 are built by applying transformation [T7] to each channel and
transformations from [T6]–[T9] to each task:

∀c ∈ Channel : LTS
2
c = T7(LTS

1
c) and ∀t ∈ Task : LTS

2
t = T6(T9(T8(LTS

1
t )))

Notice that the transformation [T6] is reused at this level. Indeed, it consists in
guaranteeing the exclusive access to resources.

Finally, the global LTS of the Level-3 (M3) is obtained by the synchronized product
of the models of channels and of tasks, plus the models of components introduced
in the third step:

M
3 = ((||t∈Task LTS

3
t ) || (||c∈Channel LTS

2
c) || (||i∈Interface LTSi) || (||a∈Arbiter LTSa))

In the same way as previous steps, LTS
3
t is obtained by applying transformations

[T10] and [T11] to the models of tasks.

2.4.3 Proof of Property Preservation

Once the behavioral models have been generated, we prove complete and infinite
trace inclusion between lower levels and higher levels by proving the existence of
a simulation relation between two successive models (e.g., ∀i : M

i+1 � M
i); this
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Fig. 2.7 Verification process with the first strategy of hiding operation

result ensures the preservation of stuttering linear-time properties from M
0 down

to M
3. Actually, the refinement process introduces new actions, so that the set of

actions of abstract level is included in the set of concrete level, Ai ⊆ Ai+1. Refinement
checking between successive levels requires the hiding of the additional details about
its behavior. To perform this, we used two strategies:

1. we kept the transitions of M
i (for i > 0) labelled over Ai−1 but the new ones (from

Ai\Ai−1), introduced by the refinement, were considered as non observable
τ actions. In terms of traces, we can find the trace of the path σi−1 by removing
the transitions labelled by new actions from the path σi (see Fig. 2.7).

2. We kept the transitions of M
i (for i > 0) labelled over A0. So we can find the

trace of the path σ0 embedded into the trace of the transitions in σi (see Fig. 2.8).

The second-solution is more scalable. Indeed, the full system size obtained with
the second strategy is much smaller than the one obtained with the first strategy since
we hide more actions. However, the first solution appears more interesting. It allows
us to prove a large set of properties: properties related to the different levels not only
those related to application level. In our methodology, first, we try the experiment
with the first strategy. If it fails, we apply the second one.

2.5 Case Study

This section illustrates the use of the proposed methodology for the design and func-
tional verification of a digital camera initially presented in Vahid and Givargis [17].
The functional specification is partitioned into five modules, namely Charge-Coupled
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Fig. 2.8 Verification process with the second strategy of hiding operation

Device (CCD), CCD PreProcessing (CCDPP), Discrete Cosine Transformation +
quantization (CODEC), transmitter (TRANS), and controller (CNTRL).

The digital camera captures, processes, and stores pictures into an internal mem-
ory. This task is initiated when the user presses the shutter button to take a picture.
The CCD model simulates the capture of a picture and the transmission of pixels.
The CCDPP module performs the luminosity adjustment on each pixel received
from CCD module. The CODEC module applies the Discrete Cosine Transformation
(DCT) algorithm to each bloc transmitted from CNTRL before being retransmitted
into the CNTRL. The CNTRL module serves as the controller of the system. It also
executes the quantization and Huffman compression algorithm after receiving the
transformed bloc from CODEC. The camera is able to upload the stored picture to
external permanent memory. The TRANS module takes care of this task, when it
receives data from CNTRL.

Based on the SystemC code of the application given in Vahid and Givargis [17],
we encoded it into TML language (the code is shown in Fig. 2.9), we provide a target
architecture, which can support the application and a mapping relationship between
them (Fig. 2.10). The architecture consists of five Processing Elements (PE1 to PE5)
equipped with their own local memory. PE1 and PE2 communicate through a dedi-
cated buffered line SE2; PE2 to PE5 as well as a shared memory SE1 are connected
through a bus, which access is controlled by an arbiter. The allocation is represented
with dashed lines from the task graph given on the upper part of Fig. 2.10; it asso-
ciates one TML task per processing element; channel CI1 will be implemented on
buffered line SE2 while all other channels are implemented into the shared mem-
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Fig. 2.9 TML code of digital camera

Fig. 2.10 Architecture and mapping of digital camera

ory SE1. We consider that a maximal capacity is associated to each memory space.
We built the global models M

0, M
1, M

2, and M
3 of the platform corresponding to

the different levels of refinement from Level-0 up-to Level-3 by following the gener-
ation scheme described in Sect. 2.4.2. In the current state of our research, we encode
manually the models (LTSs) into Fiacre language [5].

We ran the use case with different architectural parameters summarized in
Table 2.2: each PE has 1 core, each PE except PE2 has 1 interface, PE2 has 2 inter-
faces, and each local memory size equals to 2 units. The size of shared memories
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are defined by the required size for all the channels, which are mapped onto it. So,
for SE2, the required size is defined as

∑
c∈C

size(c) such that C = {CB1, CB2, CI3}.
We experimented the use case with different sets and different sizes of data, which
are expressed by the number of units.

2.5.1 Refinement Checking

At each refinement step, we built the corresponding models. By using the equiva-
lence checker BISIMULATOR of the CADP toolbox [7], we compared the models
at successive levels of abstraction. The refinement preorder relation, which we used,
takes finite stuttering into account. It verifies the non-introduction of new traces.
Moreover, for verifying the inclusion of complete and infinite traces, we also verify
at each level the non-introduction of new blocking state (deadlock freedom) and the
non-introduction of τ -cycles (livelock freedom).

The full state generation fails with the two last test cases. We chose the second
solution for the hiding operation to further reduce and to generate the state space
of the system. Then, we verified the trace inclusion between successive models,
so M

0 � M
1 � M

2 � M
3. Table 2.3 summarizes quantitative results obtained

from the experiment with the first and the last test case: they show the system sizes
(states/transitions, after minimization) as well as the time consumption for the refine-
ment verification.

2.5.2 Properties Verification

We also verified several properties that express various facets of the system correct-
ness. They are expressed using the Model Checking Language (MCL) logic [12],
which is an extension of the alternation-free regular μ-calculus and supported by
CADP toolset. The MCL formulae are logical formulae built over regular expressions
using boolean operators, modalities operators (necessity operator denoted by “[]” and
the possibility operator denoted by “<>”) and maximal fixed point operator (denoted
by “mu”). Notice that atomic propositions are the actions labels of the Level-0, which
should be preserved under the refinement process.

• Deadlock freedom: Absence of states without successors.

P0:[true*] <true> true

• Initially, no reading action on channel CB1 can be reached before the correspond-
ing writing:

P1:[true*.(not write_CB1)*.read_CB1] false
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Table 2.3 Computation times of refinement and verification analysis

Test case 1 Test case 3

Level-0 Level-1 Level-2 Level-3 Level-0 Level-1 Level-2 Level-3

� States 336 123088 437782 173546709 2542 141302 516326 2369408

� Transitions 872 431622 1646712 472413097 7212 419758 1038037 6593033

Verif time P0 0.8 s 13 s 9 min 26 min 3 s 3 min 11 min 40 min

Verif time P1 0.5 s 8 s 5 min 16 min 2 s 2 min 5 min 25 min

Verif time P2 0.7 s 9 s 5 min 15 min 2 s 2 min 6 min 25 min

Verif time P3 0.9 s 21 s 13 min 41 min 5 s 4 min 16 min 66 min

Verif time P4 0.8 s 14 s 11 min 39 min 5 s 3 min 16 min 64 min

Refine time n/a 8 s 3 min 13 min n/a 3 min 25 min 75 min

• No more than two actions of writing on channel CB1 is possible before the corre-
sponding reading:

P2:[true*.write_CB1.(not read_CB1)*.write_CB1.
(not read_CB1)*.write_CB1] false

• A writing action on channel CI1 will be eventually reached:

P3:mu X.[true*] (<true> true and [not write_CI1] X)

• After a writing action onto channel CI1, the corresponding reading is eventually
reachable:

P4:[true*.write_CI1] mu X.(<true> true
and [not (read_CI1)] X)

The properties are verified at each level hence preserved from M
0 down-to M

3.
Table 2.3 shows the time consumption for the properties verification at each level
from the experiment (and for each test case). Furthermore, we compare the time
required for the verification of these properties at each level of refinement with the
time required by the refinement-based strategy. We observe that without using the
strategy of checked refinement, the properties have to be verified at each level until
Level-3. In the refinement-based strategy, once the validity of the properties has been
established on M

0 and the refinement relation satisfied, the properties are guaranteed
to be true in subsequent levels.

The Table 2.3 shows the benefits of the refinement-based strategy by comparing
verif time of any property at Level-0 + Refine time of any Level-i (for i > 0) with
verif time of the property at Level-i. When multiple properties have to be satisfied
(which is generally the case), it is worth using our refinement strategies instead of
a direct verification of properties on the Level-3 models. On small models (see left
part of Table 2.3), the refinement verification is always much smaller than any single
property verification time. For more complex models, the refinement time becomes
similar to single property verification time, and this approach remains interesting
when multiple behavioral properties have to be checked.
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2.6 Conclusion

We presented a refinement-based methodology for design-space exploration of
system on chip. Our approach provides guidelines to assist the designer in the refine-
ment process, focusing on communication refinement. We established well-identified
abstraction levels and transformation rules to derive a more concrete model from a
more abstract one. Each abstraction level can be associated with a verification envi-
ronment, in order to prove functional properties or refinement properties between
different abstraction levels. This last point allows us to establish the validity of func-
tional properties of concrete descriptions by testing the property on the most abstract
level and proving the refinement, which is less costly than verifying the property on
the concrete model directly; we exemplified this fact on a digital camera case study.

These encouraging results draws several perspectives. A first direction consists
in proving that the transformation algorithm always produces a refinement, for any
initial (deadlock-free) model; up to now, the refinement is established when the
transformations are applied to a particular initial model. We saw in the experimen-
tal section that with more complex systems, this application-dependent refinement
verification becomes as costly as the verification of a single property (and remains
interesting in case of the verification of multiple properties). A generic proof, based
on the formal definitions of our transformations is under study and would simplify
the overall verification process. Another perspective concerns the extension of the
approach to task computation refinement. For instance, we shall add computation
details as computation scheduling.
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