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Abstract

Lotos is the ISO formal specification language for de-
scribing and verifying concurrent and distributed systems.
The simulation or execution of complex Lotos specifications
is, however, not always efficient due to the space explosion
problem of their corresponding transition systems. To over-
come this difficulty in practice, we propose in this paper
the integration of constraint propagation techniques into
the Lotos simulation. Indeed, constraint propagation tech-
niques are very powerful for solving hard discrete combina-
torial problems. Experimental tests, we have conducted on
the simulation of several specified combinatorial problems,
demonstrate the efficiency of integrating constraint propa-
gation into Lotos simulation.

1 Introduction

A Constraint Satisfaction Problem (CSP) involves a list
of variables defined on finite domains of values and a list
of relations restricting the values that the variables can si-
multaneously take [8, 11, 12, 13]. A solution to a CSP is a
set of assigned values to variables that satisfy all the con-
straints. CSPs are very powerful for solving discrete combi-
natorial problems including frequency assignment, config-
uration and conceptual design, molecular biology, chemical
hypothetical reasoning and scene analysis. Since a CSP is
known to be an NP-Hard problem in general1, a backtrack
search algorithm of exponential time cost is needed to find
a complete solution. In order to overcome this difficulty in
practice, constraint propagation techniques have been pro-
posed [14, 11, 8, 12, 13]. Our goal in this paper is to use
constraint propagation techniques in order to improve the
simulation phase running time of Lotos [4] specifications.
This will enable us to simulate complex specified combina-

1There are special cases where CSPs are solved in polynomial time,
for instance, the case where a CSP network is a tree [13].

torial problems in very efficient running time.
Lotos is the ISO formal specification language [4] for de-

scribing and verifying concurrent and distributed systems.
Lotos is composed of two complementary parts: (i) a pro-
cess algebra that expresses temporal constraints of system
actions or events, and (ii) algebraic data types that represent
data structures and value expressions. Lotos provides the
ability to describe complex data structures by composition
and extension, and the equations can concisely specify very
complex constraints. We use here the CADP toolbox [7] to
compile, simulate and verify with model-checking the Lo-
tos CSP specifications. The compilation generates a labeled
transition system (LTS) which encodes all the possible exe-
cution sequences of a specification. To efficiently handle
value expressions, variables, sorts and operations, CADP
applies concrete implementation of data types rather than
rewriting or symbolic evaluation. Indeed, CADP translates
the data part of Lotos specifications into libraries of C types
and functions.

In practice, for complex systems, the simulation are not
always efficient due to the space explosion problem of the
LTS [19]. Many methods [9, 19, 5, 10] have been proposed
to cope with this difficulty. In this paper, we address this
problem in a new way: first by expressing, in Lotos, CSP
constraints and then by using efficient CSP techniques to
improve the simulation time cost. The challenge is how to
integrate CSP techniques into Lotos specifications in order
to provide a more flexible and efficient way for describing
and solving large complex systems such as combinatorial
problems. In this paper, we define a generic Lotos-based
CSP framework including :

• A generic template that can be customized to represent
and solve a given CSP. This template reuses “as-is” a
library of data types where the provided operations and
equations are expressive enough to clearly and con-
cisely specify complex constraints of CSPs. Besides,
we use the simulators of CADP to find solutions for
Lotos CSP specifications.



• The constraint propagation algorithms [8, 12, 13, 11]
used to significantly improve the performance of prob-
lem solving. These algorithms are integrated into Lo-
tos specifications through the external implementation
of data types.

Our approach makes a clear separation between CSP
specifications (customized template and its reusable library)
and CSP algorithms (that we have implemented here in C)
in order to freely apply any combination of CSP algorithms
for any new problem and to include any new techniques in
the future.

The paper is organized as follows. Section 2 introduces
CSPs and Temporal CSPs. Through examples, Section 3
presents the integration of constraint propagation into Lo-
tos simulation. Section 4 describes the experimentation we
have conducted in order to evaluate the efficiency of our
method. Concluding remarks and some perspectives are fi-
nally covered in Section 5.

2 Constraint Propagation for CSPs

The basic way to solve a CSP is the systematic
search (called also search by enumeration) which explores
the search space, such as standard Backtracking (BT). BT
incrementally attempts to extend a partial solution towards
a complete one, by repeatedly choosing a value for another
variable [8, 12]. The late detection of inconsistency is the
disadvantage of BT. Constraint propagation approach uses
BT with local consistency algorithms. This allows the early
detection of inconsistencies. Local consistency is used be-
fore and during BT phase to prune earlier later failure. In
binary CSPs (CSPs where constraints are unary or binary
relations), various local consistency techniques have been
proposed [2, 11, 12] among which the most important and
widely used is arc consistency. Arc consistency converts
a CSP into an equivalent and simpler one by removing all
inconsistencies involving all subsets of 2 variables.

AC-3 is one of the simplest arc consistency algorithms
and is known to be practically efficient [12]. The time com-
plexity of AC-3 is majored by O(ed3), where d denotes the
size of the largest domain, and e the number of constraints.
AC3.1 [20, 3] improves AC3 by using additional space to
remember the resumption point of any value with respect
to a constraint. The worst case time complexity of AC-3.1
can be achieved in O(ed2). AC3-FC (forward-checking),
and AC3-LA (look-ahead) are two backtrack search algo-
rithms using constraint propagation via arc consistency [8].
Forward-checking is the easiest way to prevent future con-
flicts. It performs a restricted form of arc consistency be-
tween the current variable (the variable that is being as-
signed a value) and the future ones (the variables that will
be assigned a value). Look-ahead does more than forward-
checking by further detecting the conflicts between future

variables and therefore allows more branches of the search
tree that will lead to failure to be pruned earlier than with
forward checking.

A particular case of CSPs called Temporal CSPs or TC-
SPs2[16, 15] is used to represent combinatorial problems in-
volving numeric and symbolic temporal information. This
include many application areas such as scheduling, plan-
ning, natural language processing, molecular biology and
temporal databases. Using the model TemPro [16] a given
problem under qualitative and quantitative temporal con-
straints is converted into a TCSP using a discrete representa-
tion of time and Allen interval Algebra[1]. More precisely,
in TemPro temporal objects are called events. The domain
of an event is the finite set of numeric intervals with con-
stant duration. This domain is represented by the fourfold
[begintime, endtime, duration, step] where begintime and
endtime are respectively the earliest start time and the latest
end time of the event, duration is how long the event lasts,
and step is the distance (number of time units) between the
starting time of two adjacent intervals within the domain.
The qualitative relation between two events is represented
by the disjunction of Allen primitives [1] (see Figure 1 for
the definition of the thirteen Allen primitives).

Relation Symbol Inverse Meaning

X before Y b bi

X meets Y m mi

X overlaps Y o oi

X during Y d di

X starts Y s si

X finishes Y fif

X equals Y eq eq

X: Y:

Figure 1. Allen Primitives.

The following example illustrates the transformation of
a problem including numeric and symbolic temporal con-
straints into a TCSP using the model TemPro.

Example 1 : the scheduling problem

The production of five items A, B, C, D and E re-
quires three mono processor machines M1, M2

and M3. Each item can be produced using two
different ways depending on the order in which
the machines are used. The process time of each

2Note that this name and the corresponding acronym was used in [6].
The TCSP, as defined by Dechter et al, is a quantitative temporal network
used to represent only numeric temporal information. Nodes represent
time points while arcs are labeled by a set of disjoint intervals denoting
a disjunction of bounded differences between each pair of time points.



machine is variable and depends on the task to be
processed. The following lists the different ways
to produce each of the five items (the process time
for each machine is mentioned in brackets) :

item A: M2(3), M1(3), M3(6) or
M2(3), M3(6), M1(3)

item B: M2(2), M1(5), M2(2), M3(7) or
M2(2), M3(7), M2(2), M1(5)

item C: M1(7), M3(5), M2(3) or
M3(5), M1(7), M2(3)

item D: M2(4), M3(6), M1(7), M2(4) or
M2(4), M3(6), M2(4), M1(7)

item E: M2(6), M3(2) or
M3(2), M2(6)

The goal here is to find a possible schedule of the
different machines to produce the five items and respecting
all the constraints of the problem. In the following, we
will describe how is the above problem transformed into
a TCSP using our model TemPro. Figure 2 illustrates
the graph representation of the TCSP corresponding the
constraints needed to produce items A and B. We assume
that items A and B should be produced within 25 and 30
units of time respectively. A temporal event corresponds
here to the contribution of a given machine to produce a
certain item. For example, AM1 corresponds to the use
of machine M1 to produce the item A, . . . etc. In the
particular case of item B, machine M2 is used twice. Thus
there are two corresponding events : BM21 and BM22. 16
events are needed in total to produce the five items. Most
of the qualitative information can easily be represented
by the disjunction of Allen primitives. For example, the
constraint (disjunction of two sequences) needed to produce
item A is represented by the following three relations :

AM2 B ∨ M AM1

AM2 B ∨ M AM3

AM1 B ∨ M ∨ Bi ∨ Mi AM3

However the translation to Allen relations of the disjunc-
tion of the two sequences required to produce item B needs
a 3-ary relation involving BM1, BM22 and BM3. This
relation states that BM22 should occur between BM1 and
BM3. Since our temporal network handles only binary re-
lations, the way we use to represent this kind of 3-ary rela-
tion is as follows : we create an additional event (Evt1) and
represent the constraints for producing item B as shown in
figure 2. The duration X of Evt1 is greater (or equal) than
the sum of the durations of BM1, BM22 and BM3.

AM2 AM1 AM3

BM22 BM21 BM1 BM3

EVT1

B M

PM

B Bi M Mi

B M

S F

B M

   [0,25,3,1]=
{(0 3)..(22 25)}

   [0,25,3,1]=
{(0 3)..(22 25)}

   [0,25,6,1]=
{(0 6)..(19 25)}

   [0,30,2,1]=
{(0 2)..(28 30)}

[0,30,2,1]=
{(0 2)..(28 30)}

   [0,30,5,1]=
{(0 5)..(25 30)}

[0,30,7,1]=
{(0 7)..(23 30)}

[0,30,X,1]

B Bi M Mi B Bi M Mi

B Bi M Mi

B Bi M Mi

B Bi M Mi

S F

B M

D

Figure 2. TCSP corresponding to a subset of
the problem presented in example 1.

3 Integrating Constraint Propagation into
Lotos Simulation

In [17] we have proposed a first framework to describe
and solve CSPs using Lotos. The data part of Lotos is used
to specify the different constraints of a CSP and the tempo-
ral constraints of a TCSP, their corresponding variables and
domains. In addition, the process part of Lotos corresponds
to the resolution process in CSPs, such as constraint prop-
agation and backtracking algorithms. In Lotos, a CSP (or
TCSP) is solved as fellows:

• Checking the Consistency. This consists of checking
whether a solution to a CSP problem exists. A problem
is consistent if its corresponding Lotos specification is
deadlock free i.e., a progress is always possible.

• Finding Possible Solutions. In Lotos, the simulation
of a specified CSP can generate one or all the possible
solutions.

• Checking if a Path is a Solution. In Lotos, with the
model checking we can verify whether a solution,
specified as a sequence of actions, is valid. More pre-
cisely, this consists of checking whether the LTS of a
solution is a sequence of the LTS of the specified CSP.

• Completing a Partial Solution. First, a partial sequence
(or partial assignment of variables) is created, then the
model checker completes it in an incremental way if it
is possible. If the model checking leads to a deadlock,
the partial sequence cannot belong to a solution.

However, the framework above is not general enough to
specify any CSP. On the second hand, the problem specifi-
cation and solving are really time consuming. For instance,



it takes almost 80 seconds to find a solution for the 4-Queen
problem. Consequently we have developed a reusable data-
type library which is expressive enough to represent any
CSP. This library consists of 17 data types (500 lines in
total) describing, for instance all the Allen primitives and
SOPO. In order to facilitate specifying CSPs, we extend the
CSP library with a generic template that can be customized
to solve any new problem. As shown in the particular tem-
plate of Table 1, the variables, domains and (temporal) con-
straints of CSPs are mapped to sorts, operations and equa-
tions of Lotos by defining the:

• Number of Variables. The sort FixVar is used to model
the variables of CSPs. Variables are enumerable. Each
variable can be given a meaningful name along with
an ID of natural number. We can also directly use nat-
ural numbers to represent the variables when they are
many. This later requires to give the number of vari-
ables through the operation varNum.

• Domain Size of Each Variable. The domain is given
through the operation dSize which defines the size of
the variable domain and the range of value ID. The ele-
ments in a domain are in a total ordering. For instance,
if a domain size is 4, the value ID of the domain will
be 0, 1, 2, and 3. We have also considered the follow-
ing fact: variables may have different types of domain.
For instance, one variable may have a domain of string
while another one has a domain of natural number. If
variables have the same type of domain, they may have
different set of values. For instance, one variable may
have the domain of natural number from 5 to 10 while
another one is ranged from 15 to 25. It is more conve-
nient to use a value ID rather than a meaningful value.

• Relations and Satisfaction. Constraints between vari-
ables are given through the two operations rel and sat
where rel defines which two variables have a constraint
between them, and sat defines how constraints are sat-
isfied given the value ID and variable ID. These con-
siderations ease the definition of constraints because
constraint type may be limited but relationships are
various. We have defined a data type called Allen to
describe any disjunction of Allen primitives. It should
be noted that Lotos equations can define more com-
plex temporal satisfaction than Allen primitives. For
example, we can use equations to specify the relation
“event A should finish within two hours after event B
finishes”. This cannot be handled by disjunction of the
thirteen basic primitives.

Example 2: N-Queen

Given any integer N, the problem is to place N queens on N
distinct squares in an N×N chessboard satisfying the con-

straints that no two queens should threaten each other, that
is no two queens can be placed on the same row, same col-
umn, and same diagonal. The specification of N-Queen
(for instance for N = 25 see Table 1) is highly reusable be-
cause we can change the number of queens by changing
only the equations of varNum and dSize. The simulation of
25-Queen takes 80 seconds. In the next section, we propose
to integrate several CSP algorithms into CSP specifications
to increase the performance of simulation.

Table 1. 25-Queen Specification
type Template is CSPLibrary
sorts FixVar
...
eqns
varNum = tens(2, 5); (*There are 25 queens*)
dSize(x) = tens(2, 5); (*Each queen takes one of 25 positions*)
rel(x, x) = false; (*A queen cannot attack itself*)
rel(x, y) = true; (*Any two queens may attack each other*)
sat(x, m, y, n) = (abs(id(x), id(y)) ne abs(m, n)) and (m ne n);
(*operation abs, absolute value*)
...

4 Experimentation

 Lotos CSP Specification

Efficient CSP Data 
Structure in C

Temporal CSP General CSP

Implemented CSP
Algorithms in C

Solutions

Formalizing

Compiling

Simulating

Integrating

Figure 3. Lotos-based CSP Framework

The CADP tool gives us the opportunity to use external
implementation of data types where both sorts and opera-
tions can use external operations. For our work, first we
automatically translate Lotos CSP description (customized
template and its library) into an efficient data structure in
C. Then we incorporate to this description the implemented
CSP algorithms through external implementation. This



Table 2. Integration of CSP Algorithms
type Algorithms is Template
opns

BT (*!implementedby ALG BT*):→ Nat (*backtrack*)
AC3 (*!implementedby ALG AC3*) : → Nat (*use AC-3*)
AC31 (*!implementedby ALG AC31*) : → Nat (*use AC-3.1*)
FC (*!implementedby ALG FC*) :→ Nat (*forward checking*)
LA (*!implementedby ALG LA*) :→ Nat (*lookahead*)
ARC (*!implementedby ALG ARC*) : → Nat (*check AC first*)

eqns ofsort Nat
BT = 1; AC3 = 2; AC31 = 4; FC = 8;LA = tens(1, 6);
ARC = tens(3, 2);

endtype

later is totally independent of any simulation and model-
checking tools. In the following we present the evaluation
of our framework for solving the scheduling problem pre-
sented in example 1. A part of the specification of this prob-
lem is given in Table 3. The simulation of the specification
of this example is illustrated in the left chart of Figure 4.
Arc consistency is very helpful to solve CSPs. From the
benchmarks, we can see that AC3.1 is a little faster than
AC3. AC3.1 requires more memory space than AC3, but
this does not affect the running time in practice. The im-
provement of AC3.1 is not beneficial in this particular ex-
ample. The experiments also show that some Lotos data
types operations are really fast as all the SOPOs operations
use only pure Lotos data types without external implemen-
tation.

Table 3. Specification of a Scheduling Prob-
lem

Type Template is ConstraintProblem, SOPO, Allen
AM1, AM2, AM3, ..., DM3, EVT17 :→FixVar (*17 events*)

dSopo(AM1) = sp(0, tens(2, 6), 3, 1);
dSopo(AM2) = sp(0, tens(2, 6), 3, 1);
dSopo(AM3)= sp(0, tens(2, 6), 6, 1);
dSopo(BM1)= sp(0, tens(2, 6), 5, 1); ...
(*There are 56 constraints, Cij and Cji are considered

as one constraint*)
tRel(AM2, AM3) = a b + a m;
tRel(AM2, AM1) = a b + a m;
tRel(AM1, AM3) = a b + a m + a bi + a mi; ...

We have also tested our framework on the N-Queen
problem as shown in the right chart of Figure 4 to exam-
ine its performance. The result of using only abstract Lo-
tos specifications and standard simulation is not shown in
the figure because its performance is too slow. In order
to thoroughly evaluate the performance, statistically sig-
nificant means and variances, of different algorithms, we
also need to test our framework via the Random Uniform

CSP Generators [18]. The testing result using ARC + AC3
algorithm is shown in Table 4. Time (N*N) refers to the
time needed to find the solution of CSPs having N vari-
ables, each defined on a domain of size N. The time unit
in the table is 0.1 seconds and its precision is 0.1 seconds
too, where 0 denotes that the time is less than 0.1 second
and symbol “...” denotes that the program runs too long
time. As we can see, the hardest problems are those with
50% incompatible pairs (that we call middle-constrained
problems). Indeed, under-constrained and over-constrained
problems (corresponding respectively to 20% and 80% in-
compatible pairs) are easy to solve. In the case of under-
constrained problems, there are many solutions satisfying
all the constraints and in the case of over-constrained prob-
lems the arc consistency at the preprocessing stage reduces
considerably the size of the search space before the back-
track search.

Table 4. Benchmarks on random CSPs
% of % of Time Time Time Time
const incomp pairs 20*20 30*30 50*50 100*100
100 20 0 0.2 0.7 12.1
100 50 0.6 1.8 32.5 ...
100 80 0 0 0.2 8.3
75 20 0 0 0.6 7.8
75 50 0.5 12.3 144.3 ...
75 80 0 0 0.3 11.4
50 20 0 0 0.8 45.12
50 50 2.2 7.8 27.3 125
50 80 0 0.3 0.3 30.9
25 20 0 0 0 2.1
25 50 0 0 17.12 28.1
25 80 0 0.2 0 0

5 Conclusion and Perspectives

The integration of constraint propagation algorithms into
Lotos allows this latter to handle large combinatorial prob-
lems in a very efficient way, in practice. Indeed, we have
significantly improved the simulation process through CSP
constraint propagation techniques as demonstrated by the
benchmarks we presented in this paper. In the future, we
are interested in building a GUI user friendly tool that can
assist in the specification of complex systems in an incre-
mental manner. This requires handling the addition and re-
traction of constraints in a dynamic way using dynamic CSP
techniques and the Lotos behavior part to describe dynamic
actions.

References

[1] J. F. Allen. Maintaining knowledge about temporal intervals.
Communications of the ACM, 26(11):832–843, 1983.



Time (second)

5 1510 20

AC3+FC

AC3+ARC+FC

AC31+FC

AC31+ARC+FC

AC3+LA

AC3+ARC+LA

AC31+LA

AC31+ARC+LA

(14.3)

(14.2)

(1.4)

(18.8)

(18.7)

(2.3)

(1.4)

(2.0)

Algorithms

(very long)BT

19 21 23 25 27 29 31

100

75

25

50

Time (sec)

Queens (odd number only)

AC3+FC

BT

8.6

22.2 30.8

84.6

Figure 4. Benchmarks of the Scheduling and the N-Queen Problems

[2] R. Barták. On-line guide to constraint programming. http://
kti.ms.mff.cuni.cz/ b̃artak/ constraints/, 1998.
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