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Abstract 

This report explores the possible use of the formal language 

LOTOS to describe data security standards. It presents a LOTOS 
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Summary 

The data security group at NPL has studied. a number of formal languages, to evaluate their 

possible use for describing international data security standards. A formal language is one with 
mathematically defined rules and meaning. It is hoped that this work will lead to more rigorous 
methods for testing implementations of the standards. 

This report studies one of the formal languages, called LOTOS. LOTOS was designed for 

specifying communication standards, and some data security standards are concerned with 
communication. However, the main purpose of this report is to examine whether LOTOS can 

describe the key non-communication aspect of data security standards, namely mathematical 
operations on data. This is important because this aspect can always be expected to arise in data 

security. Even for standards not concerned with communication, if one could use the same formal 

language as for communication standards, this might support a consistent approach to testing. 

This report presents and explains a LOTOS description of the MAA (message authenticator 

algorithm) standard. This standard is concerned exclusively with mathematical operations, and so 

this exercise establishes that LOTOS does have potential for describing these. 

However, the MAA standard has characteristics which make it easier to describe than other 

standards. This report explains these characteristics, and indicates how data security standards 
without them create serious problems for LOTOS. This leads to the conclusion that LOTOS is 

unsuitable for describing most data security standards, although there may currently be nothing 
better when communication is involved. The problems stem from the method of defining data 
types in LOTOS, and may be addressed in a future version of the language. 

This report assumes familiarity with basic programming concepts, but no knowledge of either 
LOTOS, the MAA standard, or special mathematical topics. 
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1 Overview of the problem: data security standards and formal 

languages 

1.1 The nature of data security standards 

This section gives a feel for the nature of standards which the data security group at NPL has 

begun to investigate. These are international (ISO) standards, particularly those related to 

techniques which achieve security, such as encipherment. Two important classes of standards are 

of interest: those related to algorithms, and those related to protocols. 

The term "algorithm" has a modified meaning in data security. Its ordinary meaning is a method 

for achieving some result, eg sorting a list of numbers; this method specifies the detailed steps and 
the order in which they should be followed. In data security, one often performs transformations, 
such as enciphering a message, whose results are intuitively meaningless; this can mean that the 

easiest way to explain what the result is, is to specify how it is worked out. So a transformation (ie 

the overall task) is often defined using an (ordinary) algorithm, although it is the final result that 

matters rather than the route to it. This has led to the transformations themselves being called 

"algorithms". In this sense, if the same result can be achieved by a different method, eg by using 
look-up tables, this is not a different algorithm, but a different implementation of the algorithm. 

Existing and prospective algorithm-related standards include those for message authentication, 

cipher operation modes, hash functions, and digital signatures. 

A protocol gives procedures for interaction between separate entities. Protocol-related standards 

in data security are of two varieties: symbolic protocols, and OSI enhancements. 

The symbolic protocol standards define procedures for achieving particular purposes, in general 

and abstract terms. Prospective standards include those for entity authentication and key 

management. 

OSI (open systems interconnection) is a comprehensive system of standards for computer 

communication (not initially concerned with data security). These standards specify in detail the 

procedures for interaction, between various entities in a conceptual seven-layer structure, catering 

for all kinds of requirements and events. The OSI enhancements, referred to above, are extensions 
of these procedures which introduce the option of data security; this work began recently. 

1.2 The MAA standard 

This report studies the MAA (message authenticator algorithm) standard, ISO 8731 part 2. This is 

one of the algorithm-related standards mentioned in section 1.1. I explain, in this report, all the 

relevant material contained in the standard, according to its intended interpretation; for the actual 

text, see the standard itself [ 1]. 

The purpose of "authentication" here is to allow the receiver of a message to check that it is 

genuine. This is done by calculating a message authentication code (MAC) using a secret key, and 

sending it with the message. If any change is made to the message, the MAC should be different, 
but no-one can calculate the new MAC without knowing the secret key. The receiver knows the 
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secret key, and uses this to determine the correct MAC; this will match the MAC received only if 
the message is the original one. 

The purpose of the standard is to define the correct MAC value for any given message and secret 
key. In effect, it defines afunction, in the mathematical sense, ie a relationship which connects 
every possible combination of message and key with a specific MAC value. This function is 
offered, by its publication in the standard, as one possible basis of a message authentication 
scheme; so any communicating parties can agree, if they so desire, to send, with their messages, 
the MAC values determined by this function and some choice of key. (I have chosen to regard 
this function as the essence of the standard; certain complicating issues are considered in section 

3.1.) 

The standard uses "32-bit unsigned integers" as the basic units of information; these are called 
blocks in this report. Of the "inputs" to the above function, the key consists of a pair of blocks 
denoted by J and K, while the message consists of a sequence of one or more blocks; the standard 
states that the MAA must not be used to authenticate a message with more than 1 000 000 blocks. 
The "output" from the function is the MAC, which is a single block. 

The standard actually defines two functions (a lower-level and a higher-level one), each taking a 
key and "message", and yielding a "MAC". The lower-level function is called "the algorithm"; 
using the key (J and K), it acts on a sequence of blocks and produces a "MAC". The higher-level 
function is "the mode of operation" of that algorithm; this is the function described above, acting 
on the "actual" message and producing the "actual" MAC. The mode of operation works by 
dividing the message into groups of 256 blocks, which are called segments in this report, and 
applying "the algorithm" to each segment; the "MAC" for each segment is prefixed to the next 
segment (for calculation purposes), the last "MAC" being the "actual" MAC. 

The lower-level function in turn is defined as a three-part calculation: the prelude pre-processes 
the key, the main loop is repeated for each message block, and the coda yields the "MAC" for the 
segment. The standard first defines a collection of "very" low-level functions, called "the 
functions used in the algorithm", and then defines the prelude, main loop and coda by giving the 
steps to be followed (an algorithm in the ordinary sense); these steps use the "very" low-level 
functions. 

1.3 Using formal languages 

The standards described above are written in English, referred to as a "natural language". 
Examination of the MAA standard has highlighted a variety of areas in which it is not as explicit 
as it should be, and sometimes is misleading. It is very difficult to devise a natural-language 
definition whose meaning is clear to all readers, especially without becoming long-winded, 
because individuals vary in their background and in their ways of viewing and expressing things. 

A formal language is based on a mathematical theory. It involves a set of symbols, to be 
combined according to precise rules, with a rigorously defined meaning. A suitable formal 
language makes it possible to write a definition (eg of an algorithm) whose meaning cannot be 
misunderstood, provided the reader understands the formal language. The mathematical basis of 
the language also enables such a definition to be analysed, so that its consequences can be 
established and errors discovered. 
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The data security group at NPL has been investigating the possible use of formal languages to 

express data security standards. This work has been motivated by the hope that it will lead to 
more rigorous methods for testing implementations. 

Two formal languages, VDM and Z, have been used at NPL to write descriptions of the MAA 

standard [2, 3]. Both languages are well-suited to defining mathematical functions of the kind 

found in the MAA standard, and, presumably, other data security standards in the algorithm

related class. However, they do not provide a "ready-made" framework for describing concurrent 

processes, which arise in protocol-related standards. I 

A special class of formal languages has been developed for describing OSI standards, in which 
concurrent processes are the central feature. ISO has adopted the term FDT (formal description 
technique) for languages in this class. There are three FDTs recognized by ISO: Estelle, LOTOS 

and SDL. Of these, LOTOS allows more abstract, implementation-independent descriptions to be 
written, and may therefore be better for definitive purposes. It is also currently the only one with a 

completely formal basis. It is defined in an international standard [4]. 

"LOTOS" stands for "language of temporal ordering specification". The essence of a LOTOS 
specification is to define the behaviour of a system. It does this by defining the order, in time, of 

observable events (interactions between the system and its environment), usually involving 
choices and concurrency. But it can also define an algebra of data values, because the observable 
events may involve data. This suggests the possibility of describing data security algorithms as 

well as protocols. 

There could be considerable benefits in expressing algorithms and protocols in the same 

language. One might expect a data security protocol to involve some algorithmic element; and a 

single language for different standards might support a consistent approach to testing. It is of 

interest, therefore, to examine whether LOTOS is suitable for this. That is one purpose of this 

report. 

I have used LOTOS to write a third formal description of the MAA standard. This demonstrates 

that a fairly complex algorithm can be expressed in LOTOS, even though there is no element of 

"temporal ordering" or behaviour. However, the MAA standard has certain characteristics which 
make it especially suitable for formal specification, as discussed in chapter 5. The second purpose 

of this report is to present this MAA description, explaining the technical issues. 

I This may not always be a serious problem. Initial studies of symbolic protocol standards in data security suggest 

that the interactions follow a fixed sequence; so processes are "concurrent" only in a limited sense, and 
concurrency features in the formal language may not be important. 

National Physical Laboratory, UK 



- 5 -

2 A tutorial on the parts of LOTOS used in describing the MAA 

2.1 Concepts involved in an abstract data type in LOTOS 

2.1.1 Sorts and operations 

A typical programming language provides several basic data types, such as "integer", as well as 
methods of building more complex data types out of basic ones. An example of a more complex 
data type is a "bit string", ie a string of one or more bits with no maximum length; this will be 

used to illustrate various concepts in this chapter. 

To use bit strings in a programming language, one might have to design a mechanism for 

constructing them, eg using pointers. Then one might write short routines to manipulate bit 

strings, eg to append a new bit to an existing bit string. This is an example of a concrete data type, 

which involves implementation-specific features. 

An abstract data type is concerned with the essential principles of objects like bit strings. For 

example, a bit string must be one of the distinct objects "0", "1", "00", "01" etc; but one is not 
concerned with any machine representation of these objects. Similarly, one is concerned with the 

relationship between the bit string "11010", the bit 1, and the bit string "110101" (namely, that 

"110 10" with 1 appended gives "11 0101 "); but not with how to accomplish this operation in 
practice. It is these abstract properties that matter as far as specification (rather than 
implementation) is concerned. 

Two concepts have just been illustrated: 

(a) There is the concept of a class of objects, such as the set of all possible bit strings. In 

programming languages, this is usually called a "type", but in LOTOS it is called a sort. 
(A "type" means something else in LOTOS.) 

(b) There is the concept of an operation, such as appending a bit to a bit string. In a 

programming language, this involves an action using "physical" objects, but in LOTOS it 

is simply a relationship between objects (like "11010", 1 and " 110101 "). 

Each sort and operation in LOTOS is given an identifier. One may write, for example: 

sorts Bit, BitString 

opns 

Append: BitString, Bit -> BitString 

This introduces two sorts, Bit and BitString, and one operation, Append. These are 

intended to be as follows: 

(a) Bit consists of all possible bits; that is, Bit is the class containing the two objects 0 and 

1. 

(b) BitString consists of all possible bit strings. 

National Physical Laboratory, UK 
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(c) If bs denotes any possible bit string while b denotes any possible bit, then 
Append (bs 1 b) denotes the bit string consisting of bs with b appended to it. 

(These intended meanings will be fulfilled only when further definitions are given.) 

In the above definition of Append, the phrase 

BitString, Bit -> BitString 

is called the functionality of the operation. It means that this operation "accepts" two arguments, 
or "input" parameters, which belong to the sorts Bi tStr ing and Bit respectively; and that it 

yields a single result, which belongs to the sort BitString. This explains the form of the 

expression Append (bs 1 b) above. Note, here, that bs and b can be any expressions denoting 
objects of the right sorts. Note, too, that Append (bs 1 b) itself is just another expression of 
sort Bit String - an extra symbol to denote that particular bit string; it does not imply that an 

action occurs to produce that bit string from "physical" objects called bs and b. For example, if 

bs denotes "11010" while b denotes 1, then Append (bs1 b) is simply one way of denoting 
"110101". 

An operation in LOTOS can have any number of arguments, but must have exactly one result. It 

is always, in mathematical terms, a total function; this means it is a pairing, which connects every 
possible string of "input" objects (matching the argument sorts listed in the functionality) with a 
specific "output" object (matching the result sort). With Append, for example, bs and b can be 

any Bi tString object and any Bit object, respectively; this "input" combination always 
corresponds to a specific "output" object, Append (bs 1 b) , selected from the sort 

BitString. This contrasts with a partial function, where some "input" combinations may 

correspond to an "output" object, but other combinations may be invalid (even though matching 
the argument sorts). 

The notation Append (bs 1 b) is like that used in many programming languages for a function, 

especially one written by the programmer; it is called "prefix" notation (operation before the 
arguments). An alternative format, eg bs + b, is also common in programming languages, 

especially for built-in operations; this is "binary infix" notation (operation between two 
arguments). LOTOS allows binary infix notation to be used for an operation, provided it has 
exactly two arguments. To use such a + operation instead of Append, one would write: 

opns 

_+_ : BitString, Bit -> BitString 

Here, + is the identifier given to the operation (the rules for choosing identifiers are relatively 

flexible for operations). It is introduced between two underscores to indicate its binary infix 
usage. 

The Append example shows that the arguments and result of an operation can involve a mixture 
of sorts, Bi tStr ing and Bit in this case. In general, one builds a "package" containing several 
sorts, and uses these as the argument and result sorts for several operations. This whole package 

of sorts and operations is called a type in LOTOS. The mathematical structure so defined is called 
a many-sorted algebra. 
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2.1.2 Establishing data values 

Each sort is a set of values - the complete set of distinct objects of that sort, eg 0 and 1 in the case 
of Bit. 

When one introduces an operation such as 

Append: BitString, Bit -> BitString 

the effect is actually to create Bi tString values: for every value bs already present in the sort 
BitString and every value b present in the sort Bit, this operation creates another value, 
Append (bs, b), and this is added to the range of values in BitString. (This value may not 
be strictly "created" by Append, because one may define it to be a value already existing in 

Bit String.) Note that bs here may be a value itself created by Append. 

Indeed, operations are the only means of creating values: a value exists only if some operation 
produces it for some combination of argument values. If Append is the only operation present, 
then there are actually no BitString values at all. This is because Append is the only 
available means of creating BitString values, but it, in turn, needs a BitString value as 

one of its arguments before it can produce any result. The intuitive interpretation, of course, is 
that Append should begin with a bit string, and use it to create a longer one; so it is clear that one 
should first provide the shortest bit strings, those with only one bit. 

To create one-bit strings, one needs a second operation: 

String: Bit -> BitString 

For every Bit value b, String creates a Bit String value, String (b). This is intended to 
denote the bit string consisting of the single bit b. 

If the only operations are Append and String, then there are still no Bit String values. This 
is because both operations, to produce a result, need a Bit value as one argument, and there are 

no operations for creating Bit values. One therefore needs a third operation, whose result sort is 
Bit. Since one has not yet succeeded in creating values of any sort at all, there are no values 
which this third operation, in turn, can use as its arguments. To create the very "first" values, one 

must have an operation with no arguments. 

Consider the definition: 

1: -> Bit 

This introduces an operation with the identifier 1. The functionality states that 1 "accepts" no 

arguments, and yields a result of sort Bit. Recall, now, that the operation (a total function) 
connects every possible string of argument values with a specific result value. Here, there is only 
one possible string of argument values, namely nothing; and this corresponds to a specific result 

value. Recall that the result of Append, with arguments bs and b, is denoted by 
Append (bs, b) - the operation name, followed by two arguments enclosed in brackets. 
Likewise, the result of 1, with no arguments, is denoted by 1 - the operation name, followed by 

no arguments and therefore, in LOTOS syntax, no enclosing brackets. The operation creates this 
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value, an object of sort Bit. An operation with no arguments is called a constant, since its result 

is always the same; it is like a constant in a programming language - a fixed value. 

With a similar constant 0, the collection of sorts and operations becomes: 

sorts Bit, BitString 

opns 
0, 1: -> Bit 
String: Bit -> BitString 
Append: BitString, Bit -> BitString 

0 and 1 can be introduced together because they have the same functionality. 

Now consider what values are created by these four operations. 

The operation 1 ,  as explained above, creates a value 1, but since it has no arguments, it can never 
produce any other value; its use is exhausted. Likewise, the only value ever produced by 0 is 0. 

These two values are of sort Bit. Since 0 and 1 are the only operations which produce Bit 

values, and both are exhausted, there cannot be any other Bit values. So the contents of Bit 

have been completely determined. 

The argument to string is of sort Bit, and must therefore be 0 or 1. Hence the result of 
String is either String ( 0) or String ( 1) ; String creates these two values, which are of 
sort BitString. This exhausts the use of String. BitString now contains String (0) 

and String ( 1 )  (but nothing else so far). These represent the two strings consisting of one bit, 
"0" and "1". 

With three operations exhausted, only Append can create further values. Append needs one 

BitString value and one Bit value as its arguments. So far, there are two possible values in 

each case, making four combinations, and so Append creates four corresponding results: 

Append(String(O), 0) 
Append(String(O), 1) 
Append(String(1), 0) 
Append(String(1), 1) 

These are new values of sort BitString. They represent the bit strings "00", "01", "10" and 

"11", respectively, ie all possible strings of 2 bits. 
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This does not exhaust the use of Append: Append uses a Bi tString value as its first 

argument, and can therefore use the four new values. Since Bit has not changed, the second 
argument must still be 0 or 1. So the only new uses of Append combine one of the four new 
BitString values with 0 or 1, creating eight results: 

Append(Append(String(O), 0) ' 0) 
Append(Append(String(O), 0) ' 1) 
Append(Append(String(O), 1) ' 0) 
Append(Append(String(O), 1) ' 1) 
Append(Append(String(1), 0) ' 0) 
Append(Append(String(1), 0) ' 1) 
Append(Append(String(1), 1) ' 0) 
Append(Append(String(1), 1) ' 1) 

These, in turn, belong to BitString, representing all possible strings of 3 bits. They form 

further options for the first argument to Append; each can be combined with 0 or 1, creating 16 
more BitString values, which represent the strings of 4 bits. There is a cycle here: Append 
will next create all 5-bit strings from the 4-bit strings, then all 6-bit strings from the 5-bit strings, 
and so on. 

Throughout this cycle, Append is the only operation still active. The key condition at each stage 

is that the only Bit String values not already used represent all bit strings of some fixed length 
n. Therefore, the new uses of Append combine ann-bit string with 0 or 1, creating all (n+1)-bit 
strings. After this step, all then-bit strings have been used, but the (n+1)-bit strings have not, and 
thus the key condition is met once again. The cycle continues "for ever", and so all bit strings of 
any length are created in due course; but it never produces anything but bit strings ( ie values 
clearly understood to represent bit strings). 

The outcome of this process is that Bit String contains one value representing every possible 
bit string. So both Bit and BitString contain the intended values. This outcome follows from 
the list of sorts and operations: the functionalities of the four operations dictate the contents of the 
two sorts, in the way just explained. 

This definition of bit strings is abstract. For example, while it establishes the existence of a value 
Append (String ( 0) , 1) , and while this represents the string "01 ", there is nothing to 

actually specify that Append (String (0), 1) denotes "01". The symbols "0", "1", "00", "01" 
etc are really a notation; the LOTOS definition introduces a different notation for the same 

objects, ie String(O), String(l), Append(String(O), 0), 

Append (String ( 0) , 1) etc. Append (String ( 0) , 1) is the name of a string; its 

intuitive meaning is clear. This name is made up of the successive operations used to create that 
string (0, 1, String and Append). 

2.1.3 Equations 

Consider a fifth operation: 

Prefix: Bit, BitString -> BitString 
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If b denotes any bit while bs denotes any bit string, then Pre fix (b, bs) is intended to 
denote the bit string consisting of b prefixed to bs. But Prefix actually creates a Bi tString 

value for every possible argument combination; for example, since 1 is a Bit value and 
String (0) is a BitString value, Prefix creates a new BitString value named 

Prefix(1, String(O)). Moreover, the values created by Prefix can be used as 
arguments to both Append and Prefix, creating further Bi tStr ing values; and these, in 
tum, can be used as arguments to create yet more values, and so on. 

This avalanche of new values is unwanted. The first four operations created the complete set of 
bit strings. When one introduces Prefix, one does not want it to create any new bit strings; 
instead, the result of Prefix is always intended to be one of the bit strings already existing. For 
example, Prefix ( 1, String ( 0) ) is not intended to be a new bit string, but is intended to 

denote the string "10", which already exists with the name Append (String (1), 0). 

One now wants more than one expression to denote the same object. Each individual expression, 

or "name" for an object, such as Prefix (1, String (0)), made up of operation identifiers, 

is called a ground term. The object denoted by that expression is a value of some sort. So one now 

wants to allow different ground terms to denote the same value. 

For this purpose, LOTOS allows one to write equations. An example is: 

Prefix(l, String(O)) = Append(String(l), 0); 

This equation contains, on the left and right, two ground terms formed using the available 
operations, both of sort Bi tString. It means that these denote the same value (the same bit 
string). One may view this value as being created either by Append or by Prefix; if one views 

it as being created by Append (as in section 2.1.2), for example, then one may think of Prefix 

as "reaching it by an alternative route", or "creating it" (loosely speaking) "a second time". This is 
why I qualified the statement, early in section 2.1.2, that an operation creates its result values: 

some of the values "created" by operations can be "duplicates" of one another. 

A more comprehensive form of equation is illustrated by: 

forall x, y: Bit, s: BitString 

Prefix(x, Append(s, y)) = Append(Prefix(x, s), y); 

This uses variables, called x, y and s. The meaning is that x and y each can denote any Bit 

value, whiles can denote any BitString value, and the equation always holds. The intuitive 
interpretation is that if one starts with any bit string s, appends any bit y, and then prefixes any 
bit x, one finishes with the same bit string as if one starts with s, prefixes x, and then appends y. 

The left and right sides are no longer ground terms (made up of operation identifiers only), but 

templates: in any instance of the equation, each variable could be replaced by a ground term 
denoting the same value as that variable, and the left and right sides would then become ground 

terms. 
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One may also write a conditional equation, eg: 

forall x, y: Bit, s, xs, sy: BitString 

xs = Prefix(x, s), sy = Append(s, y) = > Prefix(x, sy) = Append(xs, y); 

This means that the variables (x, y, s, xs and sy) can each denote any value of the.right sort, and 

if the conditions on the left 

xs Prefix(x, s) 
sy Append(s, y) 

are ever all met, then the equation on the right 

Prefix(x, sy) = Append(xs, y) 

also holds. In practice, one can choose any values (of the right sorts) for x, y and s, and this fixes 

the sole values for xs and sy which meet the conditions; so the final equation holds for any x, y 
and s, with xs and sy as defined by the conditions. This example is equivalent to the previous 

one: in effect, it defines abbreviations, xs and sy, for intermediate expressions, and uses these to 
simplify the main equation. 

In general, there will be a collection of equations accompanying the sorts and operations of a 
type. The equations form a vital part of the definition of the many-sorted algebra, since they affect 

the results of operations and the contents of sorts. How to devise an effective collection of 

equations, eg so that Prefix always yields the correct bit string, is shown in section 2.2.1. 

2.1.4 Translating a data type into a many-sorted algebra 

The many-sorted algebra is a conceptual mathematical structure, consisting of sorts, the values 
contained in those sorts, and operations relating those values. A type, or data type, can be 

regarded as a body of information which determines the many-sorted algebra: the names of the 

sorts, the names of the operations, the functionalities of the operations, and the equations. This 
section outlines how a data type determines a many-sorted algebra, according to the LOTOS 
semantics. This process underlies what is said in section 2.1.2 about the manner in which values 

are created. 

First, the operation names and functionalities, together with the sort names, completely determine 

the set of possible ground terms, and the sort of each ground term. Section 2.1.2 examined the 

process of creating values, using the operations 0, 1, String and Append; this can be viewed, 

more precisely, as the process of generating the ground terms that denote those values. 
Introducing Prefix, as in section 2.1.3, generates additional ground terms on the same 

principles, even if they do not denote additional values. The principles are: 

(a) If an operation has no arguments, then its name by itself forms a ground term. The sort of 
this term is the result sort of the operation. 

(b) If an operation has one or more arguments, then for any list of ground terms already 

formed, whose sorts match the argument sorts of the operation, one can form a new 
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ground term by enclosing that list in brackets and prefixing the operation name to it. The 
sort of this new term is the result sort of the operation. (The alternative notation, binary 
infix, is unimportant here; in fact, binary infix terms are formally reconstructed in a prefix 
format.) 

In effect, each operation provides a syntax rule for forming ground terms of a particular sort. In 
(b), where a ground term is built from other ground terms, these in turn are formed by using the 
syntax rules recursively; in this way, all possible ground terms can be generated. 

Next, the equations determine which ground terms are equivalent. If A and B represent ground 

terms, then the statement that A is equivalent to B (which may be true or false) is called an 
assertion. A derivation is a sequence of assertions, constructed in a way which ensures that these 
assertions are true. To be specific, the assertion that A is equivalent to B can be included in a 
derivation only if one of the following applies: 

(a) One of the equations in the data type (or an instance of it, obtained by replacing each 
variable by a ground term of the right sort) states, without conditions, that A equals B. 

(b) One of the equations in the data type (or an instance of it, obtained as in (a)) states, with 
one or more conditions, that A equals B; and all the conditions appear as earlier assertions 
in the derivation. 

(c) A and B are the same ground term. 

(d) An earlier assertion in the derivation states that B is equivalent to A. 

(e) Earlier assertions in the derivation state that A is equivalent to C, and that C is equivalent 
to B. 

(f) A consists of an operation name with one or more arguments; B consists of the same 
operation name with the same number of arguments; and earlier assertions in the 
derivation state that each argument in A is equivalent to the corresponding argument in B. 

A derivation forms a proof of its final assertion. Rules (a) to (f) enable one to derive both direct 
and indirect consequences of the equations in the data type; these rules provide enough flexibility 
to prove every assertion one can infer intuitively from the equations. If it can be proved, using a 
derivation, that A is equivalent to B, then A and B are interderivable. If no such derivation is 
possible, then A and B are not interderivable; they can denote different values, in complete 
consistency with the equations. 

Then, the complete set of ground terms can be split into classes, where two ground terms are put 
in the same class if they are interderivable, and in different classes if they are not interderivable. 
(There cannot be any conflicts, because of derivation rules (c), (d) and (e).) Thus the terms in a 
given class will all be equivalent, or, in the language of section 2.1.3, denote the same value; they 

will all have the same sort, because it is illegal to equate expressions of different sorts. Now, a 
value is formally defined as one of these classes; the values of any sort are those classes 
containing terms of that sort. A value is not formally given any "real" significance; it exists 
abstractly, and is identified by a collection of ground terms which denote it. In practice, a value 
will have some intuitive meaning, which may be obvious or may need informal explanation; and 
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mong the ground terms denoting it, there will typically be a "basic" one which is its natural 
representation. 

lbe definition of a value as one of these classes of ground terms has an important consequence. If 
two ground terms are not interderivable, they are put in different classes, and therefore denote 
different values; that is, whenever ground terms can denote different values (the language used 
two paragraphs ago), they do. This is important because it establishes the range of distinct values 

in each sort. It is just as important to recognize differing values as to recognize identical values; 
but whereas one can write an equation to state that two expressions denote the same value, one 
does not write an inequality to state that two expressions denote different values; instead, different 
ground terms always denote different values unless otherwise stated (or implied). So the 
equations in the data type have a "hidden" meaning besides their obvious meaning: they are not 
only true, but, in a sense, the whole truth. 

Finally, operations really act on values rather than ground terms. An operation was seen earlier as 
providing a syntax rule: for every list (empty in some cases) of "argument" ground terms, of the 
right sorts, it generates a "result" ground term. But the intention is that, for every list of argument 
values, of the right sorts, it should yield a result value. This presents no problem. Given a list of 
argument values, each value can be represented by any of the ground terms which denote it, and 
so the list of values can be represented by a list of ground terms, in one or more different ways; 
for each of these alternative lists of ground terms, the operation generates a different "result" 
ground term, but these "result" ground terms are all interderivable (because of derivation rule (f)), 
and so denote the same result value. 

2.2 Defining data types in practice 

2.2.1 Setting up a data type definition 

This section develops a data type for bit strings, containing the two sorts and four operations of 
section 2.1.2, the operation Prefix of section 2.1.3, and an operation Concatenate which 
concatenates two bit strings. 

To develop a data type, one begins with an intuitive idea of the sorts wanted. One gives each sort 
a name, and has in mind the range of values it should contain. For example, Bit should contain 0 

and 1, while Bit String should contain all strings of one or more bits. 

The first task is to devise a minimum set of operations that create all the values wanted. These key 
operations, each needed to help build a sort, are called the constructor operations. This is not a 
formal designation: the constructors are simply the operations introduced first, which are enough 
to establish all the values. As shown in section 2.1.2, 0 and 1 serve to establish all Bit values, 
while String and Append then establish all BitString values. So these four operations are 
the constructors for Bit and Bi tString. 

In general, there are three things to check: 

(a) One must have an intuitive idea of what the constructors do. For each operation, one 
chooses its functionality. This enables one to consider what the argument values can be, 
using the intuitive range of values one has in mind for each sort. For any possible 
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combination of argument values, one must satisfy oneself what the result is, within the 
intuitive range of values in mind for the result sort. 

Thus, 0, with no arguments, is meant to be the bit 0, while 1 is likewise meant to be the 
bit 1; String (b) is meant to be the bit string consisting of just b; and 
Append (bs, b) is meant to be the bit string consisting of bs with b appended to it. 

(b) One must ensure that every value wanted can be obtained somehow using the chosen 
constructors. 

The intended Bit values 0 and 1 can be obtained using the operations 0 and 1. Then, any 
intended BitString value can be obtained by introducing the first bit using String, 

and successively appending any remaining bits using Append. 

(c) One must check whether any of the intended values can be obtained in more than one way, 
using the chosen constructors. If so, equations will be needed. 

The bit 0 can be obtained only by using the operation 0, with no arguments, while the bit 1 

can be obtained only by using the operation 1, with no arguments. Any one-bit string can 
be obtained only by using String, with the required bit. Any string of more than one bit 
can be obtained only by using Append, with bs consisting of all required bits except the 
last, and b being the last bit required. So no equations are needed for these constructors; 
each intended value is denoted by only one ground term. 

Sometimes one cannot avoid "duplicating" values, even with this minimum set of operations. For 
example, to create sets, one needs an operation which yields the empty set, and an operation 
which adds one element to an existing set; then any set can obtained by starting with the empty 
set and adding the required elements, one at a time; but these elements can be added in any order, 
and with any number of repetitions, leading to many ground terms for the same set. 

In such cases, one must devise a set of equations to accompany the constructor operations. These 
equations must meet two requirements: 

(a) The equations must be intuitively valid. That is, given the intuitive meaning of the 
expressions involved, the left and right sides of each equation must truly represent the 
same value (given any conditions stated). 

(b) All ground terms which intuitively represent the same value must be actually 
interderivable. Typically, one needs to classify the possible representations of a generic 
object (eg a set of n elements), and systematically trace their equivalence through the 
equations chosen. 

After these steps, one has a preliminary data type. In the corresponding many-sorted algebra, the 
sorts, and the values they contain, are "final": the above principles ensure that they match the 
original intuitive intentions. Likewise, the operations introduced so far are completely and 
correctly defined; that is, they always yield the right result. This is what was achieved in section 
2.1.2. 
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It remains to add (to the many-sorted algebra) any further operations wanted. These will not 
create any new values, but will form extra relationships between the values already existing. They 
can be introduced one by one; in each case, one decides the name and functionality of the new 
operation, and adds one or more equations at the same time. These new equations must simply 
define the result of the new operation, for all possible argument combinations; this result must be 
one of the values created by the constructor operations. 

The next operation is: 

Prefix: Bit, BitString -> BitString 

To define the result, it is necessary to know more about the second argument, the "input" bit 

string. If this consists of just one bit, it can be denoted by String (x), for some bit x; and 

prefixing a bit, which can be denoted by y, is meant to yield the bit string consisting of y 

followed by x. The existing notation for this result is Append (String (y) 1 x); this enables 
the result of Prefix to be spelt out in an equation: 

forall x, y: Bit 

Prefix(y, String(x)) = Append(String(y), x); 

If the "input" string consists of more than one bit, it can be denoted by Append ( s 1 x) , for 
some bit string s and some bit x. In order to prefix y, one first takes s by itself and prefixes y to 
that; then the extra bit x, at the end of the original string, is kept at the end of the new string: 

forall x, y: Bit, s: BitString 

Prefix(y, Append(s, x)) = Append(Prefix(y, s), x); 

This is a recursive definition: the result of Prefix is defined in terms of another Prefix result. 
This is acceptable because the second Prefix expression is simpler: the "input" bit string is 
shorter. Applying the definition repeatedly will eventually lead to a one-bit "input" string, 

whereupon the result is defined without another Prefix. 

The last operation is: 

Concatenate: BitString, BitString -> BitString 

As it happens, one need only consider the same two possibilities for the second argument. The 

first argument can be simply a bit string denoted by t: 

forall x: Bit, s, t: BitString 

Concatenate(t, String(x)) 
Concatenate(t, Append(s, x)) 

Append (t, x); 
Append(Concatenate(t, s), x); 

These two equations work in a similar way to those for Prefix. 

The complete material for the data type must be arranged in the correct format. The whole type is 

given an identifier. The example type is called Bit String, which is also the name of one of the 
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sorts; type, sort and operation names are used in different contexts, and so the same identifier can 

be used for more than one of them without confusion. 

type BitString is 

sorts Bit, BitString 

opns 

eqns 

end type 

0, 1: 

String: 
Append: 
Prefix: 
Concatenate: 

-> Bit 
Bit -> BitString 
BitString, Bit -> BitString 
Bit, BitString -> BitString 
BitString, BitString -> BitString 

forall x, y: Bit, s, t: BitString 

ofsort BitString 

Prefix(y, String(x)) 
Prefix(y, Append(s, x)) 

Append(String(y), x); 
Append(Prefix(y, s), x); 

Concatenate(t, String(x)) 
Concatenate(t, Append(s, x)) 

Append (t, x) ; 
Append(Concatenate(t, s), x); 

Sorts, operations and equations must be given in that order. The line 

ofsort BitString 

states that the left and right sides of each subsequent equation are of sort Bi tStr in g. There can 
be any number of "of sort" statements, each introducing a group of equations. Variables 
defined before the first "of sort" statement, like those here, are available to all the equations 
that follow. It is also possible to define variables immediately after an "o fsort" statement; these 
are available only to the equations in that group. 

2.2.2 Importing simpler types into more complex ones 

It is often useful to build a many-sorted algebra in stages. For example, imagine a system of data 
structures in which bit strings form just one component; for this, one could use the sorts Bit and 

BitString, with the operations defined in section 2.2.1, together with other sorts and 
operations. Yet Bit and BitString, with their own operations, by themselves form a natural 
collection of ideas, with a wider range of uses; it would therefore be helpful to introduce them in a 
separate module, and then include this in a larger system. 

LOTOS therefore allows a data type to import the contents of one or more other data types. In 

effect, the new type then contains all the sort names, operation names, functionalities, and 
equations belonging to the imported types, besides any further sorts etc defined in the new type. 
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As an illustration, although somewhat meagre, the type Bits t ring of section 2.2.1 could be 

developed in three stages: one to establish bits; one to establish bit strings, with a minimum of 
operations; and one to provide further operations. These are defined by three separate types, each 

importing the one before, where the last one is equivalent to Bit String in section 2.2.1: 

type Bit is 

sorts Bit 

opns 

0' 1: 

end type 

type BasicBitString is 

Bit 

sorts BitString 

opns 

String: 

Append: 

end type 

type RicherBitString is 

BasicBitString 

opns 

Prefix: 

Concatenate: 

eqns 

-> Bit 

Bit -> BitString 

BitString, Bit -> BitString 

Bit, BitString -> BitString 

BitString, BitString -> BitString 

forall x, y: Bit, s, t: BitString 

end type 

ofsort BitString 

Prefix(y, String(x)) 

Prefix(y, Append(s, x)) 

Append(String(y), x); 

Append(Prefix(y, s), x); 

Concatenate(t, String(x)) 

Concatenate(t, Append(s, x)) 

Append (t, x) ; 

Append(Concatenate(t, s), x); 
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Note the format of each type definition: after the "type ... is" heading, any imported types are 

first listed by name, and then any new sorts, operations or equations are given. 

In this example, the three data types define three different many-sorted algebras. The third algebra 

is identical to that of type Bi tString in section 2.2.1, since RicherBi tStr ing includes the 
material of Bit and BasicBitString, and thus contains the same information as 
Bi tString. The first two algebras consist of part of the final one, with some sorts and 

operations stripped away. 

A well-written collection of type definitions will normally meet the following requirements. In 

each intermediate many-sorted algebra, those sorts introduced so far should already be completely 
constructed. That is, any type which imports them should not alter the range of values contained 

in those sorts; it should only add completely new sorts or define new operations. In practice, this 

means two things: 

(a) There should be no equation which relates two results of imported operations. Such an 

equation would either be redundant (because the two results are already equal), or make 
equal two values which are not equal in the earlier many-sorted algebra; in the latter case, 

it would reduce the range of values in one of the imported sorts. 

All new equations should be concerned with defining the result of a new operation. 

(b) Whenever a new operation uses an imported sort for its result, the result should be defined 
as an existing value: for every possible combination of argument values, the new 
equations should define the result as one and only one of the values previously existing. If 

they do not define it as any existing value, the result becomes a new value, and the 
imported sort is extended; while if they define it (directly or indirectly) as more than one 
existing value, those values become interderivable (all equal to the new result, and hence 

equal to one another), and the imported sort is reduced. 

If these principles are not followed, some sort will be established with a certain apparent range of 
values, and then, on being imported to another type, will emerge with a modified range of values. 

This will form an obscure definition; if an operation used that sort for an argument, then the range 
of possible argument values, and hence the range of results, will be misunderstood. 

2.3 Parameterized data types 

One can work with other kinds of strings besides bit strings, eg character strings. Concepts like 

appending and concatenating apply to all kinds of strings, and so there would be many similarities 

between the data types defining these strings. To save duplicating such aspects, it is possible to 
define a parameterized data type, which defines strings of any kind. This can be "invoked", or 

actualized, as often as needed, to define strings of a specific kind. 

The parameters of a type are either sorts or operations. 

A sort parameter represents a set of values which are not specified. In the case of strings, the 
unspecified values are the individual elements from which a string is built. These elements will be 

bits in the case of a bit string, characters in the case of a character string, etc; but, for a string in 
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general, they can be anything. For any given kind of string, there will be a sort consisting of all 
possible elements. For bit strings, this could be Bit; Bit is an example of an actual parameter, 

ie the actual sort used in a specific case. But within the "string" type, this sort may be called 
Element, since it can contain any kind of elements; Element is an example of a formal 

parameter, ie a name used to represent any sort. 

An operation parameter is an operation whose argument and result sorts are all parameters. That 
is, it represents some unspecified operation, relating the unspecified values contained in the sort 
parameters. Again, the parameterized type uses a formal parameter to name the operation, while 
an actual parameter will be specified when a specific instance is defined. An example with 
operation parameters is described in section 2.4 (type NonEmptyString). 

The formal parameters are called formal sorts and formal operations. It is also possible to write 
formal equations. Unlike ordinary equations, these are not used in determining a many-sorted 
algebra. Instead, they are requirements: they must already hold, once the actual parameters are 
specified, by virtue of the equations associated with those actual parameters. In the parameterized 
type definition, formal sorts, formal operations and formal equations must appear in that order, 
after any imported types, and before any non-formal sorts, operations and equations. 

In essence, a parameterized type provides part of the information needed to determine the many
sorted algebra, namely that part which is common to different instances of the type. For example, 
a parameterized "string" type provides the sorts, operations and equations which all kinds of 
string have in common: 

type String is 

formalsorts Element 

sorts String 

opns 

eqns 

end type 

String: 
Append: 
Prefix: 
Concatenate: 

Element - > String 
String, Element -> String 
Element, String -> String 
String, String -> String 

forall x, y: Element, s, t: String 

ofsort String 

Prefix(y, String(x)) 
Prefix(y, Append(s, x)) 

Append(String(y), x); 
Append(Prefix(y, s), x); 

Concatenate(t, String(x)) 
Concatenate(t, Append(s, x)) 

Append (t, x) ; 
Append(Concatenate(t, s), x); 

Compare this type definition with type Bit String in section 2.2.1. The important difference is 
that "elements" are now unspecified, rather than being bits; therefore no constructor operations 
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are given for the sort Element. When the actual elements come to be specified, the sort 
String will contain all possible strings of such elements, just as the sort Bi tStr ing contained 
all possible strings of bits; while the operations String, Append, Prefix and 
Concatenate will correspond to those that had the same names before, performing analogous 
tasks but using the chosen elements rather than bits. 

Strings of a specific kind can be defined by actualizing the type String. Actualization does two 
things: 

(a) 

(b) 

Any of the sorts and operations (including formal sorts and operations) of the 
parameterized type can be renamed, to reflect the specific instance being defined. 

One or more types are imported, which must, between them, contain all the actual 
pa;ameters. That is, for every formal sort, one of the imported types must contain an 
actual sort with the right name (taking account of renaming); and for every formal 
operation, one of the imported types must contain an actual operation with the right name 
and functionality (again, taking account of renaming). 

The effect of importing the types in (b) is to provide the rest of the information needed to 
determine the many-sorted algebra, eg constructor operations and equations for the actual 
parameters. 

For example, this is how type String can be used to define bit strings: 

type Bit is 

sorts Bit 

opns 

0' 1: -> Bit 

endtype 

type BitString is 

String actualizedby Bit using 

end type 

sortnames 

Bit for Element 

BitString for String 

This defines two types, Bit and BitString. The first type appeared in section 2.2.2; it simply 
defines the sort Bit, with its constructor operations 0 and 1. In the second type, the phrase 

String actualizedby Bit 
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means that this type is an instance of type String, where type Bit is imported to provide the 

actual parameters. It is stated next that the type uses the new sort names listed, ie Bit and 

Bit String instead of Element and String. New operation names can be listed in the same 

way (after any sort names), under the word "opnnames". Since the only formal parameter, 

Element, is renamed Bit, the actual parameter is the sort Bit imported from type Bit. 

The effect of actualization is to create a new data type, like BitS t ring above. The new type 
combines two lots of information: 

(a) all the sorts, operations and equations of the imported types (like Bit); 

(b) the renamed version of the non-formal sorts, operations and equations of the 
parameterized type that has been actualized (like String). 

The formal sorts, operations and equations are superseded by the imported material, which 

includes the actual sorts and operations. By examining the contents of type Bit, and the non

formal part of type String, one can see that type BitString acquires the same sorts, 

operations and equations as type BitString in section 2.2.1; so it defines the same many
sorted algebra. 

A parameterized type is not an "abstract data type" of the kind considered in section 2.1. It cannot 
be translated into any meaningful many-sorted algebra, because it contains only part of the 

information needed. It is simply a tool for building on other data types; the formal part places 
some requirements on those other types, while the non-formal part supplements their contents. It 

is the new type created by actualization that is a true "abstract data type" (assuming the imported 
types are not themselves parameterized). 

2.4 Standard library types 

LOTOS defines a standard library of data types, consisting of definitions of commonly needed 
types. One or more of these can be used in a LOTOS specification by writing a library 
declaration. For example, the library contains two types called NaturalNumber and String; 
the declaration 

library 

NaturalNumber, String 

endlib 

makes these available, as if their definitions were written directly in the specification text. 

This section covers the standard library types used in describing the MAA. It explains the sorts 

defined by these types, in terms of the values they contain and what these represent. It also 

explains those operations used in the MAA description, indicating what result they yield. To find 
out what equations are used for these definitions, what other operations are defined by these 

types, and what other types are available, see Annex A of [ 4]. 
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The sort Bool consists of the values "true" and "false", generated by constructor 
operations: 

true, false: -> Bool 

Other operations include: 

not: Bool -> Bool 
and , or : Bool, Bool -> Bool 

not (x), x and y, and x or y give the conventional results of logical NOT, AND 

and OR functions. 

(b) Type NaturalNumber 

The contents of type Boolean are imported. 

The sort Nat consists of the natural numbers, in the inclusive sense of 0, 1, 2 etc, 
generated by constructor operations: 

0: -> Nat 
Succ: Nat -> Nat 

Succ (n) represents the next number after n. The natural numbers are thus denoted by 0, 
Succ ( 0), Succ ( Succ ( 0) ) etc. Other operations include: 

_+_, _*_: Nat, Nat -> Nat 
_eq_, _le_, _gt_: Nat, Nat -> Bool 

m + n and m * n give the conventional results of addition and multiplication. m eq n, 

m le n and m gt n give the status of the relations "m is equal to n", "m is less than or 
equal to n" and "m is greater than n ". 

(c) Type NonEmptyString 

This is a parameterized type; it corresponds to type String in section 2.3, with some 
notational differences and extra operations. 

The contents of types Boolean and NaturalNumber are imported. This provides a 
body of non-formal sorts, operations and equations, which will be carried into every 
actualized version of the type. 

The main parameter is a formal sort called Element. This will consist of a range of 
"elements", the basic units making up strings. 

Two formal operations called eq and ne are also used. If x and y are two "elements", 
x eq y will be true if x is equal toy, and false otherwise; while x ne y will be 
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true if x is not equal to y, and false otherwise. The reason why these are formal 

operations is as follows. 

Suppose the "elements" are actually bits. Then the actual sort may be called Bit, and 

contain the values 0 and 1, as in section 2.3. eq and ne can yield a result.of sort Bool, 

from type Boolean: 

_eq_, _ne_: Bit, Bit -> Bool 

Each of the arguments to eq is either 0 or 1, and the result can be defined in all possible 

cases by the equations: 

0 eq 0 true; 

0 eq 1 false; 
1 eq 0 false; 
1 eq 1 true; 

Since ne represents the opposite condition to eq, its result can be defined in all possible 

cases as follows: 

forall x, y: Bit 

x ne y = not(x eq y); 

These equations define eq and ne for bits, but different equations are needed for other 
kinds of "element"; the parameterized type NonEmptyString cannot contain equations 

defining eq and ne, since the "elements" are unspecified. The imported type which 

actualizes NonEmptyString, providing the actual element sort, must provide actual 

equality and inequality operations, with equations written specially for those particular 

"elements". Thus eq and ne, along with Element, are parameters, remaining to be 
specified. NonEmptyString uses them to define other operations. 

These formal operations introduce a technical complication. The argument and result sorts 

of a formal operation must themselves be formal. The formal operations eq and ne cannot 

use result sort Bool; they merely represent actual operations that must be imported from 
some other type, and those actual operations will yield a result of some sort in that 

imported type. NonEmptyString is not allowed to foretell what that actual result sort 

will be. It therefore uses another formal sort called FBool; but in practice the actual sort 

is always meant to be Bool, from type Boolean. 

So NonEmptyString uses: 

formalopns 

_eq_, _ne_: Element, Element -> FBool 

This solution leads to a further complication. While the result sort of eq and ne cannot be 

specified as Bool, NonEmptyString still needs to use the associated operations true 

and not. These are therefore introduced as operations associated with FBool: 

true: -> FBool 

not: FBool -> FBool 
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Since these are not new operations, but represent those associated with Bool, they are 
formal operations. They should not be renamed when NonEmptyString is actualized, 
but should represent the actual true and not of type Boolean. 

So there are six parameters in all: Element, eq, ne, FBool, true and not. 

The sort NonEmptyString will consist of all strings of one or more "elements", 

generated by constructor operations: 

String: Element -> NonEmptyString 
+ : Element, NonEmptyString -> NonEmptyString 

String (x) will represent the string consisting of just x, while x + s will represent the 
string consisting of x prefixed to s. (In section 2.3, Prefix could be the second 
constructor instead of Append, because there is a symmetry between them.) Other 
operations include: 

+ : 

++ : 

Length: 
_eq_, _ne_: 

NonErnptyString, Element -> NonEmptyString 
NonErnptyString, NonEmptyString -> NonEmptyString 
NonErnptyString -> Nat 
NonErnptyString, NonEmptyString -> Bool 

s + x will represent the string consisting of s with x appended. s + +  t will represent 
the concatenation of s and t in that order. Length ( s) will give the number of 
"elements" in s. s eq t and s ne t will give the status of the relations "s is equal to 
t" (ie the same string) and "s is not equal to t ". 

Notice that the names +, eq, ne, true and not have each been used for more than one 

operation. The operations using each name are distinguished by their functionalities. This 
is called "overloading operators". 

(d) Type Bit 

The contents of types Boolean and NaturalNumber are imported. 

The sort Bit consists of the values 0 and I, generated by constructor operations: 

0, 1: -> Bit 

Other operations include: 

NatNum: Bit -> Nat 

NatNum (b) gives the numeric "value" conventionally represented by b, ie 0 or 
Succ (0). 

(e) Type Octet 

The contents of type Bit are imported. 
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The sort Octet consists of the 256 possible octets, ie 8-bit codes or strings, generated by 
a constructor operation: 

Octet: Bit, Bit, Bit, Bit, Bit, Bit, Bit, Bit -> Octet 

Other operations include: 

_eq_: Octet, Octet -> Bool 

x eq y gives the status of the relation "x is equal to y". (Note that the contents of 
Boolean are imported via type Bit.) 

(f) Type Bi tNatRepr 

The contents of types Boolean, Nat uralNumber and Bit are imported. 

The sort BitS t ring consists of all strings of one or more bits, generated by constructor 
operations: 

Bit: Bit -> BitString 
+ : Bit, BitString -> BitString 

Bit ( x) represents the string consisting of just x, while x + s represents the string 

consisting of x prefixed to s. Other operations include: 

+ · BitString, Bit -> BitString 
++ : BitString, BitString -> BitString 

_eq_, ne : BitString, BitString -> Bool 
NatNum: BitString -> Nat 

s + x represents the string consisting of s with x appended. s + +  t represents the 
concatenation of s and t in that order (ie s "prefixed" to t, or t "appended" to s). 

s eq t and s ne t give the status of the relations "s is equal tot" (ie the same string) 

and "s is not equal to t". NatNum (s) gives the numeric "value" conventionally 

represented by s, treating s as a binary numeral. Note that the first bit in the string, ie the 
bit which is prefixed to the rest of the string, is the most significant bit. For example, 

1 + Bit ( 0 ) represents the string "1 0", which is the binary numeral for 2; so 
NatNum (1 + Bit (0)) is equal to Succ (Succ (0)). 

(g) Type DecNatRepr 

The contents of types Boolean and NaturalNumber are imported. 

The sort DecDigi t consists of the ten decimal digits, generated by constructor 
operations: 

0, 1, 2, 3, 4, 5, 6, 7, 8, 9: -> DecDigit 
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The sort DecString consists of all strings of one or more decimal digits, generated by 

constructor operations: 

Dec: DecDigit -> DecString 
+ : DecDigit, DecString -> DecString 

Dec (x) represents the string consisting of just x, while x + s represents the string 
consisting of x prefixed to s. Other operations include: 

+ : DecString, DecDigit -> DecString 
NatNum: DecString -> Nat 

s + x represents the string consisting of s with x appended. NatNurn ( s) gives the 

numeric "value" conventionally represented by s, treating s as a decimal numeral. As 

with a bit string, the first digit is the most significant digit. For example, the following 
expressions represent the same string "1024", with numeric value 1024: 

1 + ( 0 + ( 2 + Dec ( 4) ) ) 
Dec(l) + 0 + 2 + 4 

The first expression uses constructor operations only, prefixing digits, while the second 
appends digits. The second expression uses fewer brackets, because binary infix 

operations are evaluated from left to right. 

3 Describing the MAA- general observations 

3.1 What is being defined 

(a) As explained in section 1.1, an "algorithm" ordinarily means a method for doing a task, 
but in data security it means the task itself; this is because the easiest way to define many 
tasks in data security is by specifying a method. 

The MAA is a good example of this. As outlined in section 1.2, the MAA standard defines 

a long procedure, involving a prelude, a main loop, and a coda. This is an algorithm in the 

ordinary sense, but the important thing actually is not this procedure, but the MAC values 
that come out at the end of it. The real purpose of the standard is to define the mapping, ie 
which MAC should go with any given message and key. But the right MAC is deliberately 
made so obscure, that the only easy way to explain it is by giving a long recipe for 
calculating it. 

It is conceivable that one could find a way of calculating the right MAC without following 
exactly the steps laid down in the MAA standard. This would be a different algorithm in 

the ordinary sense (a different method), but the same algorithm in the data security sense 

(the same task). In my view this would be an acceptable implementation. 

The wording used in the MAA standard could be taken to mean that one must use the 

actual procedure it gives. For example, it says that "The main loop is a calculation which 
shall be repeated for each message block" (my italics). But if there is another way to 
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calculate the MAC - without going through the main loop repeatedly -I think this should 
be allowed. More strikingly, the standard defines a function called MUL2, and states that 
this "shall not be used in the main loop"; this is in spite of the fact that the main loop uses 
a function called MUL2A, under conditions in which MUL2A always yields identical 

results to MUL2. MUL2A is usually a more efficient function in practice, taking 
advantage of the special conditions under which it is used; but MUL2 would still work. 

I believe any such requirements concerning the method to be used are out of place. They 
cannot readily be expressed in a formal language either. I have therefore disregarded 
them: my LOTOS description defines what the right MAC value is in each case, not how 

it should be calculated. However, the LOTOS definitions largely reflect the procedure laid 
down in the MAA standard, and hint at this method of calculation. The VDM and Z 

descriptions [2, 3] take the same approach. 

(b) The MAA standard states: 

Messages to be authenticated may originate as a bit string of any length. They shall be 
input to the algorithm as a sequence of 32 bit numbers, M1, M2 - Mn, of which there are n, 

called message blocks. The detail of how to pad out the last block Mn to 32 bits is not part 
of the algorithm but shall be defined in any application. 

This indicates that the starting-point of the algorithm is a sequence of (32-bit) blocks. I 
argue that whether the message is previously a bit string, whether padding is needed, 

whether it is confined to the last block, and whether the last block is padded to the left or 
right (or otherwise), are matters left to the application, just as much as how to pad out the 
last block. Accordingly, my LOTOS description defines how to get from a block sequence 
to a MAC, but not whether or how to get from a bit string to a block sequence; I use the 
word "message" for a block sequence rather than a bit string. The question of padding can 
be mentioned in an informal commentary, rather than in the formal description. 

In this, my approach differs from that of the VDM and Z descriptions [2, 3]. These include 
an explicit padding function to transform a bit string into a block sequence; the contents of 

the padding field are not specified (though padding is interpreted as being to the right of 
the last block). While I view this as out of place, it highlights an important point: VDM 
and Z can specify such a function, where the result is partly unspecified, whereas LOTOS 

cannot, as discussed in section 5.2.1. 

The consequence of these two decisions is that my LOTOS description simply defines afunction, 
in the strict mathematical sense. That is, it is equivalent to a look-up table, listing every possible 
combination of a message and a key, and giving a specific MAC for each such combination. 

3.2 The choice of style 

The following principles have guided my style: 

(a) I have tried to support the simplest intuitive idea of the functions involved, in the clearest 
possible way. This contrasts with the VDM description [2], which sets out to follow the 
naming, structure etc of the MAA standard as closely as possible. I believe that certain 
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functions can be presented more plainly by deviating from the presentational approach 
adopted in the standard, and I have not hesitated to do this. 

One of the marks of a "simple" intuitive idea, in my view, is that the likely methods of 
implementation are easy to see. 

(b) I have named sorts, operations etc in a style consistent with that of the standard library. 
For example, operations which perform elementary conversions to some sort are often 
given the same name as that sort (as with Octet in section 2.4 (e)). 

(c) I have followed the naming, structure etc of the MAA standard where this did not conflict 
with (a) and (b). 

3.3 The nature and use of the description 

My description of the MAA is not a LOTOS specification, in the technical sense. The LOTOS 
standard names a large number of syntactic constructs, of which "specification" denotes a 
complete LOTOS text, while all the others form components of specifications. The MAA 
description is one such component, called "data-type-definitions". It consists of a set of data 
types, including a library declaration. 

The central element of a true specification is a behaviour specification, defining the behaviour of 
a system. The "main" behaviour specification may invoke a hierarchy of processes, which contain 
their own behaviour specifications, defining sub-units of the overall behaviour. At all levels of the 
hierarchy it is possible to introduce data types; these provide values, and operations to manipulate 
them, which behaviour specifications can use. 

The LOTOS standard defmes the semantics of a specification in two phases: 

(a) For any specification, the static semantics define a canonical LOTOS specification. As 
part of this process, every data type is translated into a data-presentation, which contains 
the sort names, operation names, functionalities and equations in a more abstract form; 
and the individual data-presentations corresponding to all the data types in the 
specification, from all levels, excluding parameterized types, are merged into a single 
data-presentation. This single data-presentation forms part of the canonical LOTOS 
specification. 

(b) For any canonical LOTOS specification, the dynamic semantics · define a choice of 
structured labelled transition systems. As part of this process, the (merged) data
presentation is translated into a many-sorted algebra, in the manner outlined in section 
2.1.4. This many-sorted algebra embodies the entire collection of data values available to 
the system whose behaviour is defined; it forms part of each structured labelled transition 
system. 

As explained in section 3.1, my MAA description defines a mathematical function. This has 
nothing to do with "behaviour" in the LOTOS sense, ie events in time. Instead, it corresponds to a 
LOTOS operation. This is why the description uses data types, but no behaviour specifications. 
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Although the MAA description is not a specification, it can be formally interpreted using part of 
the LOTOS semantics: 

(a) Part of the static semantics will translate a set of data types into a set of data-presentations. 
This translation depends on the context of the data types, but it can be done for an "empty" 
context. In the LOTOS standard, the standard library is translated into a set of data
presentations in exactly this way; the MAA description can be treated similarly. 

(b) Part of the dynamic semantics translates a data-presentation into a many-sorted algebra. 
While the main purpose is to apply this to the single data-presentation that combines all 

types in the specification, it can be applied to the data-presentation for any individual 
unparameterized type. 

The important data type in the MAA description is the last one, called AppliedMAA. The 

preceding types define various concepts involved in the MAA, and are all imported into 
AppliedMAA. The dynamic semantics can be used to define one many-sorted algebra for each 
data-presentation, but the many-sorted algebra for Appl iedMAA incorporates all the others and 
is the vital one. 

This final many-sorted algebra contains a sort called Block, whose values represent all possible 

(32-bit) blocks. It also contains a sort called AcceptableMessage, whose values represent all 
acceptable messages; that is, there is one AcceptableMessage value for every possible string 

of 1 to 1 000 000 blocks. There is also a sort called Pair, whose values represent all possible 
pairs of blocks; these are the possible keys. The mathematical function referred to in section 3.1 is 
the operation: 

Authenticator: Pair, AcceptableMessage -> Block 

For any Pair value Key and any AcceptableMessage value X, 

Authenticator (Key, X) (a Block value) represents the correct MAC for that key and 
message. 

One might have occasion to specify an actual system which performs MAA calculations. In 

natural language, this could be done by referring to the MAA standard, and adding 

implementation-specific details, eg concerning input and output procedures. An alternative would 
be to write a complete LOTOS specification; my MAA description could be a component of this 

text. Any extra data types which build on mine should follow the principles in the last part of 
section 2.2.2; the extra material will find its way into the single data-presentation in the canonical 

LOTOS specification, and influence the final many-sorted algebra; inappropriate operations or 
equations could change the MAA sorts and operations, so that they no longer reflect the MAA 
standard. 

My LOTOS description is not designed to accompany the existing MAA standard; it is a fresh 
sqlrt, setting out to specify the MAA as plainly as LOTOS will allow, as indicated in section 

3.2 (a). If used in earnest, as an alternative definitive text, it would have to be supported by an 

informal explanation. This explanation would describe the intuitive meaning of the sorts and 
operations, elucidate the implications of individual equations, and perhaps indicate methods of 

implementation. It might contain much material similar to that in the present MAA standard, 
though presented in a way better suited to the LOTOS approach. 
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I have not attempted to give the contents and format of an informal commentary. One would have 
to decide how much knowledge should be expected of a reader, and how much help is needed 
with using the LOTOS text. LOTOS allows comments to be inserted, but it may be better to 
provide a separate explanatory text instead; this approach would preserve a clarity of structure in 
the LOTOS text, allow greater freedom of presentation in the commentary, and allow different 
commentaries to be written for different kinds of reader. I have presented the LOTOS description 
without a commentary in the appendix, while the explanations in chapter 4 should serve readers 
of this report. Chapter 4 contains many points appropriate to a commentary. 

Developing an MAA implementation from the LOTOS definition, as I envisage it, is the same as 
developing an implementation from the natural-language standard: one studies the text to find out 
what the implementation should do, and works out a way of doing it. 

3.4 Testing the description 

I have tried to use a LOTOS tool, developed by the ESPRIT project SEDOS [5], to check the 
description. 

The data types first need to be placed in a proper specification. For this, I have specified a system 
that does nothing, though the MAA algebra (the sorts, values and operations) is established. The 
full text is formed by adding the line 

specification MAA: noexit 

at the top, and the following at the bottom: 

behaviour 

stop 

endspec 

The tool reported no syntax errors, but a long list of static semantic errors. However, I have 
established that there are faults in the tool, and these appear to account for all the error reports. 
This has prevented evaluation of sample expressions to test the operations. 

However, I expected insurmountable problems in evaluating expressions in any case. These result 
from the awkward representation of large numbers, and the difficulty of determining when ground 
terms are interderivable. I would expect these problems to arise with any LOTOS tool. 

It might be considered important to have a description which can be thoroughly checked using a 
tool; this could be done for the MAA with considerable rewriting of my description. A new 
definition of natural numbers would have to be written, generating them more efficiently than by 
repeatedly applying Succ to 0; this would have to be used in place of the standard library type 
NaturalNumber. The standard library types NonEmptyString, Bit, Octet, 

BitNatRepr and DecNatRepr, which import NaturalNumber, would also have to be 
"hand rewritten", so that they use the new natural numbers. Interderivability of ground terms can 
be algorithmically determined if the style of equations is restricted. I have made extensive use of 
conditional equations in which some of the conditions define implicit calculations; these would 
have to be rewritten as explicit calculations. This would involve introducing a lot of extra 
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operations, many of which would represent partial functions. (This last point is touched on in 
section 5.1.1, which explains that partial functions present problems.) The resulting description 
would be much longer and intuitively less plain. 

4 Describing the MAA - the specification details 

The MAA description is presented in a very piecemeal fashion in this chapter, with explanations. 
To see how the various pieces of LOTOS are put together, refer to the appendix. 

4.1 Blocks and the basic functions manipulating them 

Fundamental to the MAA are "32-bit unsigned integers", called blocks in this report. Blocks 
undergo a mixture of logical and arithmetic manipulations, to achieve effective "scrambling" of 
information. The basic ideas associated with blocks are described in the first data type for MAA, 
called BlockFunctions. 

The functions defined in the MAA standard and covered by type BlockFunctions are denoted 
by CYC, AND, OR, XOR, ADD, CAR, MULl, MUL2 and MUL2A. I have not defined them all 
explicitly in LOTOS. 

4.1.1 The concept of a block 

There are two ways of viewing a block: 

(a) It can be viewed as a string of 32 bits. The MAA acts, fundamentally, on information 
represented in a binary form; a block can be thought of as a basic unit of such information. 
This view of a block is therefore the primary one. It is the relevant view when blocks are 
subjected to logical and other operations which manipulate individual bits. 

(b) It can be viewed as a number, ranging from 0 to 232_1. This is relevant when blocks are 
subjected to arithmetic operations (addition and multiplication). This is therefore an 
important secondary view of a block. 

These views are captured in the standard library type BitNatRepr: this provides the sort 
BitString, containing bit strings, and the operation NatNurn, which identifies, for any given 
bit string, the corresponding natural number. Type Bi tNatRepr is therefore imported into type 
BlockFunctions; this provides a valuable initial resource. 

National Physical Laboratory, UK 



- 32 -

However, the sort BitString includes bit strings of all sizes. It is essential to have a sort 

containing 32-bit strings only, because many MAA operations are restricted to these. As 
explained in section 2.1.1, an operation in LOTOS is a total function; this means that if one of the 
arguments is of sort BitString, then any bit string can be used. So I have defmed a sort 
Block, which consists of all possible blocks, generated by a constructor operation:. 

Block: 

Bit, Bit, Bit, Bit, Bit, Bit, Bit, Bit, 

Bit, Bit, Bit, Bit, Bit, Bit, Bit, Bit, 

Bit, Bit, Bit, Bit, Bit, Bit, Bit, Bit, 

Bit, Bit, Bit, Bit, Bit, Bit, Bit, Bit 

-> 

Block 

This is analogous to the standard library sort Octet, which consists, in effect, of all 8-bit strings. 

Some of the equations use 32 variables for the individual bits in a block. For compactness, two 
sets of such variables are defined "once and for all" at the outset: 

forall 

xl, x2, x3, x4, xS, x6, x7, x8, 

x9, xlO, xll, x12, x13, x14, xlS, x16, 

x17, x18, x19, x20, x21, x22, x23, x24, 

x25, x26, x27, x28, x29, x30, x31, x32, 

yl, y2, y3, y4, yS, y6, y7, y8, 

y9, ylO, yll, y12, y13, y14, ylS, y16, 

y17, y18, y19, y20, y21, y22, y23, y24, 

y25, y2 6, y27, y28, y29, y30, y31, y32: Bit 

This contrasts with all other variables in the MAA description, which are local to a small group of 
equations, being defined after the associated "of sort" statement; the latter style is clearest, 
because the total collection of both equations and variables, in each data type, is fairly large and 
varied. 

To take advantage of the operations provided for bit strings, applying them to blocks, it is 
necessary to recognize blocks as bit strings. This is done using an operation 

BitString: Block -> BitString 

National Physical Laboratory, UK 



- 33-

which "converts" a block to the equivalent Bit String value: 

BitString 

( 
Block 

( 
xl, x2, x3, x4, xS, x6, x7, x8, 

x9, xlO, xll, x12, x13, x14, xlS, x16, 

x17, x18, x19, x20, x21, x22, x23, x24, 
x25, x26, x27, x28, x29, x30, x31, x32 

Bit(xl) + x2 + x3 + x4 + xS + x6 + x7 + x8 + 

x9 + xlO + xll + x12 + x13 + x14 + xlS + xl6 + 

xl7 + x18 + x19 + x20 + x21 + x22 + x23 + x24 + 

x25 + x26 + x27 + x28 + x29 + x30 + x31 + x32; 

Here, + is the operation which appends a bit to a bit string. In the absence of brackets, the 
operations are evaluated from left to right. 

This definition has an important consequence: the first argument to the Block operation is 
regarded as the first bit of the string, which means it is the most significant bit when the block is 
viewed as a number. While this is the natural interpretation of the arguments to Block, this 
equation makes it explicit. 

Using operations 

_eq_, _ne_: Block, Block -> Bool 

X eq Y and X ne Y give the status of the relations "X is equal toY" and "X is not equal toY". 
These operations are already defined for bit strings, and are easy to transfer to blocks: 

forall X, Y: Block 

X eq Y BitString(X) eq BitString(Y); 

X ne Y BitString(X) ne BitString(Y); 

4.1.2 Logical operations 

CYC(X) denotes the result of a one-bit cyclic left shift of X. This is represented by an operation 

CYC: Block -> Block 
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where: 

CYC 

( 
Block 

( 
xl, x2, x3, x4, xS, x6, x7, x8, 

x9, xlO, xll, xl2, xl3, xl4, xlS, xl6, 

xl7, xl8, xl9, x20, x21, x22, x23, x24, 

x25, x2 6, x27, x28, x29, x30, x31, x32 

Block 

( 
x2, x3, x4, xS, x6, x7, x8, x9, 

xlO, xll, xl2, xl3, xl4, xlS, xl6, xl7, 

xl8, xl9, x20, x21, x22, x23, x24, x25, 

x26, x27, x28, x29, x30, x31, x32, xl 

) ; 

While a much more compact definition is possible, this one clearly shows the movement of bits 

which is the essence of this function. 

XOR(X, Y) denotes the result of a bitwise "exclusive OR" operation. This can be defined with the 

help of a separate "exclusive OR" operation for individual bits 

xor : Bit, Bit -> Bit 

where: 

0 xor 0 0; 

0 xor 1 1; 

1 xor 0 1; 

1 xor 1 0; 

The XOR function for blocks is represented by an operation 

XOR: Block, Block -> Block 
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where: 

XOR 

( 
Block 

( 
xl, x2, x3, x4, xS, x6, x7, x8, 

x9, xlO, xll, xl2, xl3, xl4, xlS, xl6, 

xl7, xl8, xl9, x20, x21, x22, x23, x24, 

x25, x26, x27, x28, x29, x30, x31, x32 

) , 

Block 

( 
yl, y2, y3, y4, yS, y6, y7, y8, 

y9, ylO, yll, yl2, yl3, yl4, ylS, y16, 

yl7, yl8, yl9, y20, y21, y22, y23, y24, 

y25, y26, y27, y28, y29, y30, y31, y32 

Block 

( 
xl xor yl, x2 xor y2, x3 xor y3, x4 xor y4, 

xS xor yS, x6 xor y6, x7 xor y7, x8 xor y8, 

x9 xor y9, xlO xor ylO, xll xor yll, xl2 xor yl2, 

xl3 xor yl3, xl4 xor yl4, xlS xor yl5, xl6 xor yl6, 

xl7 xor yl7, xl8 xor yl8, xl9 xor yl9, x20 xor y20, 

x21 xor y21, x22 xor y22, x23 xor y23, x24 xor y24, 

x25 xor y25, x26 xor y26, x27 xor y27, x28 xor y28, 

x29 xor y29, x30 xor y30, x31 xor y31, x32 xor y32 

) ; 

Again, while long-winded, this definition clearly expresses the idea of a bitwise operation. 

AND(X, Y) and OR(X, Y), similarly, denote the results of bitwise AND and OR operations. They 
could be defined in the same way as XOR. However, they have a very limited use in the MAA, 

appearing only in the following lines (part of the main loop): 

F := OR(F, A); 
F := AND(F, C); 

G := OR(G, B); 
G := AND(G, D); 

A, B, C and Dare constants, defined in hexadecimal as 0204 0801, 0080 4021, BFEF 7FDF and 
7DFE FBFF, respectively. The effect of OR with a constant is to change the bits in certain fixed 
positions to 1, while AND with a constant changes certain bits to 0. I have therefore chosen to 

define two operations 

FIXl, FIX2: Block -> Block 
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which encapsulate the specific transformations applied to F and G, respectively, by the above two 

lines. This form of definition shows what is done at this stage of the MAA, as opposed to how it is 
done. It is also much shorter than defining AND, OR and the four constants: 

FIX1 

( 
Block 

( 
x1, x2, x3, x4, x5, x6, x7, x8, 

x9, x10, x11, x12, x13, x14, x15, x16, 

x17, x18, x19, x20, x21, x22, x23, x24, 

x25, x26, x27, x28, x29, x30, x31, x32 

Block 

( 
x1, 0, x3, x4, x5, x6, 1, x8, 

x9, x10, x11, 0, x13, 1, x15, x16, 

0, x18, x19, x20, 1, x22, x23, x24, 

x25, x26, 0, x28, x29, x30, x31, 1 

) ; 

FIX2 

( 
Block 

( 
x1, x2, x3, x4, x5, x6, x7, x8, 

x9, x10, x11, x12, x13, x14, x15, x16, 

x17, x18, x19, x20, x21, x22, x23, x24, 

x25, x26, x27, x28, x29, x30, x31, x32 

Block 

( 
0, x2, x3, x4, x5, x6, 0, x8, 

1, x10, x11, x12, x13, x14, x15, 0, 

x17, 1, x19, x20, x21, 0, x23, x24, 

x25, x2 6, 1, x28, x29, x30, x31, 1 

) ; 

4.1.3 Arithmetic operations 

The MAA standard defines five functions related to addition and multiplication. Since a block can 

be viewed as a 32-bit number, two blocks can be added to give a 33-bit number, or multiplied to 

give a 64-bit number. (33 or 64 bits, here, are what is enough to represent any possible sum or 
product.) 

The MAA functions use the 33-bit or 64-bit result to define further blocks. ADD(X, Y) denotes 
the result of adding X and Y and discarding the final carry; that is, it denotes the least significant 

32 bits of the sum. Meanwhile, CAR(X, Y) denotes the final carry from adding X andY; that is, it 
has the value of the most significant bit of the 33-bit sum. So if ADD(X, Y) is denoted by s (a 
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Block value) while CAR(X, Y) is denoted by C (a Bit value), then the sum ofX and Y is 
represented by the 33-bit string C + Bi tString ( S). The three multiplication-based functions 
all use the product of X andY, with the upper (most significant) half denoted by U and the lower 
half by L. If these are represented by Block values u and L, then the product of X and Y is 
represented by the 64-bit string Bit String (U) + +  Bit String (L). 

The actual numbers represented by the 32-bit string formed of X (a Block value), the 33-bit 
string formed of C and S, and the 64-bit string formed of u and L, are denoted by: 

NatNum(BitString(X)) 
NatNum(C + BitString(S)) 
NatNum(BitString(U) ++ BitString(L)) 

These three expressions would be much simpler if Block values did not have to be explicitly 
converted to BitString values. To make this possible, I have defined three operations which 
treat a Block value as though it were a Bit String value: 

NatNum: Block -> Nat 
_+_: Bit, Block -> BitString 

++ : Block, Block -> BitString 

These operations are easy to transfer from bit strings to blocks: 

forall X: Block 

NatNum(X) = NatNum(BitString(X)); 

and 

forall X, Y: Block, b: Bit 

b + X =  b + BitString(X); 

X ++ Y = BitString(X) ++ BitString(Y); 

Now the above three numbers can be denoted by: 

NatNum(X) 
NatNum(C + S) 
NatNum(U ++ L) 

(The first expression uses the new NatNum, while the others use the old NatNum with the new+ 
and++.) 

The function MULl begins by multiplying X andY to give U and L. The rest of the calculation is 
defined in the MAA standard by the following assignments: 

S := ADD(U, L); 
C := CAR(U, L); 
MUL 1 (X, Y) := ADD(S, C). 

National Physical Labomtory, UK 

I 



- 38-

This is represented by an operation: 

MULl: Block , Block -> Block 

The key technique I have used to define MULl, and various other multi-step calculations, is the 

conditional equation; the conditions are those established by the calculation steps. I use variables 
to represent both "input" values, and values generated during the calculation. To meet the 
conditions, the "input" variables can have any values of the right sorts, but the other variables are 
forced to have the particular values that result from the actual calculation. In the case of MULl, 

the "input" values are X andY, while generated values are U, L, S, C and the final result, which I 
denote by P: 

forall X, Y, U, L, S, P: Block, C: Bit 

=> 

NatNum(X) * NatNum(Y) 

NatNum(U) + NatNum(L) 

NatNum(S) + NatNum(C) 

MULl(X, Y) = P; 

NatNum (U ++ L) , 

NatNum(C + S), 

NatNum(P) 

Given X andY, the first condition establishes what the numeric value of U ++ L has to be; but 

this implicitly fixes U and L, because they are (32-bit) blocks, and there is only one 64-bit string 
that can represent the specified numeric value. In a similar way, the second condition fixes S and 
C, and the third fixes P. The third condition works because the final carry from adding S and C is 

0,2 and so the least significant 32 bits are, in fact, the whole sum. The important outcome is that, 
for any X and Y, the conditions fix P, and so MUL 1 (X, Y) is defined to be that P value and no 

other. 

The function MUL2 begins, again, by multiplying X and Y to give U and L. The rest of the 
calculation, this time, is: 

D := ADD(U, U); 
E := CAR(U, U); 
F := ADD(D, 2E); 
S := ADD(F, L); 
C := CAR(F, L); 
MUL2(X, Y) := ADD(S, 2C). 

Here, E and C are multiplied by 2; U, in effect, is also multiplied by 2 to give D and E. 2 is 

denoted in type Bi tNatRepr by Succ (NatNum ( 1) ) (where 1 is of sort Bit), but it is 
convenient to define a constant 

where: 

2: -> Nat 

2 Succ(NatNum(l)); 

2 The maximum sum of two blocks consists of 32 ones followed by a zero. C and S fonn the sum of U and L; so if 
C is non-zero, S cannot consist of 32 ones, and C can be added without overflowing 32 bits. 
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MUL2 is represented by an operation 

where: 

MUL2: Block, Block -> Block 

forall X, Y, U, L, S, P, D: Block, C, E: Bit 

=> 

NatNum(X) * NatNum(Y) 

2 * NatNum(U) 

NatNum(D) + (2 * NatNum(E)) + NatNum(L) 

NatNum(S) + (2 * NatNum(C)) 

MUL2(X, Y) = P; 

NatNum (U ++ L) , 

NatNum(E +D), 

NatNum(C + S), 

NatNum(P) 

F does·not appear as a variable; its numeric value is given by the expression 

NatNum(D) + (2 * NatNum(E)) 

which is used in the third condition. This works because the final carry from adding D and 2E is 
0,3 and so the least significant 32 bits are the whole sum. Likewise, the fourth condition works 
because the final carry from adding S and 2C is 0. 4 

The function MUL2A is a simpler way of calculating MUL2. This works when either X or Y 
begins with a zero bit, but can give a different result otherwise. Under the condition just 
mentioned, the calculation can be simplified because the product of X and Y begins with a zero 
bit, and so E is always 0. As before, X and Y are multiplied to give U and L; the rest of the 
calculation is: 

D := ADD(U, U); 
S := ADD(D, L); 
C := CAR(D, L); 
MUL2A(X, Y) := ADD(S, 2C). 

These steps also define a value for MUL2A when X andY do not satisfy the above condition; 
only, this value may differ frop1 that of MUL2. In such cases, E is not necessarily 0 but is unused. 
MUL2A, as it acts on arbitrary blocks X and Y, is represented by an operation 

MUL2A: Block, Block -> Block 

3 U cannot consist of 32 ones, because then the product of X and Y would exceed the maximum product of two 

blocks. So 2U cannot consist of 32 ones followed by a zero; so if E is non-zero, D cannot consist of 31 ones 
followed by a zero, and 2E can be added without overflowing 32 bits. 

4 D and 2E are both even, and so their sum F is also even, and less than the maximum block. So the sum of F and L 
cannot amount to 32 ones followed by a zero; so if C is non-zero, S cannot consist of31 ones followed by a zero, 
and 2C can be added without overflowing 32 bits. 
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forall X, Y, U, L, S, P, D: Block, C, E: Bit 

=> 

NatNum (X) * NatNum (Y) NatNum (U ++ L), 

2 * NatNum (U) NatNum (E + D), 

NatNum (D) + NatNum (L) = NatNum (C + S), 

NatNum (S) + (2 * NatNum (C)) NatNum (P) 

MUL2A (X, Y) = P; 

As before, the fourth condition works because the final carry from adding S and 2C is 0.5 

The function CAR has no use in the MAA standard except in defining MULl, MUL2 and 
MUL2A. Since the LOTOS definitions of MULl, MUL2 and MUL2A do not use CAR explicitly, 
I have not defined it. 

The function ADD, however, has a separate use in the main loop, and is represented by an 
operation 

ADD: Block, Block -> Block 

where: 

forall X, Y, S: Block, C: Bit 

NatNum (X) + NatNum (Y) = NatNum (C + S) 

=> 

ADD (X, Y) = S; 

4.2 Pairs of blocks and the conditioning functions 

The key used in the MAA consists of a pair of blocks, and blocks fall naturally into pairs 
elsewhere in the algorithm. The prelude uses a function called BYT to "condition" the key and 
other pairs of blocks; this conditioning involves certain adjustments to prevent long strings of 
zeros or ones. B YT manipulates individual bytes within a block, ie octets. A related function PAT 
generates a further octet. These ideas are described in the second data type for MAA, called 
ConditioningFunctions. 

4.2.1 Concepts related to block pairs and octets 

The ideas of a block and an octet are essential to BYT and PAT. Type 
ConditioningFunctions therefore imports type BlockFunctions, and the standard 
library type Octet. Type BlockFunctions has already established the relationship between 
blocks and the equivalent BitString values; type ConditioningFunctions establishes a 

5 Dis even, and therefore less than the maximum block. So the sum of D and L cannot amount to 32 ones followed 

by a zero; so if C is non-zero, S cannot consist of 31 ones followed by a zero, and 2C can be added without 

overflowing 32 bits. 
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similar relationship between octets and BitString values. This involves using the material 
from type Bi tNatRepr again; although this is imported via BlockFunctions, I have 
imported it again explicitly into ConditioningFunctions, because it has fresh uses. 

The sort Pair consists of all pairs of blocks, generated by a constructor operation: 

Pair: Block, Block -> Pair 

Any Pair value can be expressed as Pair (X, Y) for only one X and Y; thus it amounts to a 
"record" of the X and Y that have been "placed" in it. The two blocks in a pair are meant to be 
viewed as separate variables, not as juxtaposed to form a 64-bit string. But they are not "mixed 
up", because Pair (X, Y) and Pair (Y, X) are distinct (assuming X andY are different). 

Like a block, an octet can be viewed in two ways: a string of 8 bits, or a number from 0 to 255. As 
before, these views are captured in type BitNatRepr, but octets need to be recognized as bit 
strings; this is done using an operation 

BitString: Octet -> BitString 

which "converts" an octet to the equivalent Bi tString value: 

forall bl, b2, b3, b4, bS, b6, b7, b8: Bit 

BitString(Octet(bl, b2, b3, b4, bS, b6, b7, b8)) 

Bit(bl) + b2 + b3 + b4 + bS + b6 + b7 + b8; 

This definition implies that the first argument to the Octet operation is regarded as the first bit 
of the string, and therefore the most significant bit of a number. There is actually nothing in the 
standard library type Octet to indicate this interpretation; but it is the natural interpretation, and 
I have hereby explicitly adopted it for MAA. 

As with blocks in section 4.1.3, certain expressions can be simplified if Octet values do not 
have to be explicitly converted to BitString values. In this case, I have defined one operation 
which treats an Octet value as though it were a Bit String value: 

NatNum: Octet -> Nat 

Again, this is easy to transfer from bit strings to octets: 

forall B: Octet 

NatNum(B) = NatNum(BitString(B)); 

I have defined a bitwise "exclusive OR" operation between octets: 

xor : Octet, Octet -> Octet 
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This uses the "exclusive OR" defined in type BlockFunctions for individual bits: 

forall 

xl, x2, x3, x4, xS, x6, x7, x8, 
yl, y2, y3, y4, yS, y6, y7, y8: Bit 

Octet (xl, x2, x3, x4, xS, x6, 
Octet(yl, y2, y3, y4, yS, y6, 

Octet 
( 

xl xor yl, x2 xor y2, 
xS xor yS, x6 xor y6, 

) ; 

4.2.2 The functions BVT and PAT 

x7, x8) xor 

y7, y8) 

x3 xor y3, 
x7 xor y7, 

x4 xor y4, 
xB xor y8 

The MAA standard uses a square-bracket notation for concatenation. For example, [X, Y, Z] 
would denote the result of concatenating X, Y and Z in that order; X, Y and Z are implicitly 
regarded as bit strings (in which the first bit is "most significant"). 

The functions BYT and PAT act on a pair of blocks X and Y, which, for convenience, are 
concatenated into the 64-bit string [X, Y]. The function results are denoted by BYT[X, Y] and 

PAT[X, Y]. BYT[X, Y] is another pair of blocks (the "conditioned" values of X andY), again 
concatenated into a 64-bit string, while PAT[X, Y], in essence, is an octet. These two functions 
are closely related, and are defined in the MAA standard as two results of a single calculation: the 

value of PAT is an encapsulation of the adjustments made by BYT. 

The MAA standard presents a Pascal statement to define the calculation. The individual bytes 
making up X and Y are denoted by B0 etc, as defined by the formula: 
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Each byte Bi is stored in an integer array element B[i]. "Conditioned" bytes B'0 etc are likewise 
stored in an array with non-standard identifier B'. Array B contains the bytes Bi before the 
calculation begins, while array B' is filled with the bytes B'i during the calculation. The 
calculation is: 

begin 
p := 0; 
for i := 0 to 7 do 
begin 

P := 2 * P; 
if 8[i] = 0 then 
begin 

p := p + 1; 
8'[i] := P 

end 
else if 8[i] = 255 then 

begin 

end 
else 

p := p + 1; 
8'[i] := 255 - P 

8'[i] := 8[i]; 
end 

end; 

The relevant results are: 

8YT[X, Y] = [8'0, 8'1, 8'2, 8'3, 8'4, 8'5, 8'6, 8'7] 
PAT[X, Y] = P 

The rest of this section unravels this Pascal statement to establish the underlying order, and gives 
the LOTOS description of that order. 

The essence of the statement is a loop which executes eight times, with i taking the values 0 to 7, 

thereby indexing successive elements of B and B'. In each execution, the only variables used are 
B[i], B'[i] and P. B[i] never changes, B'[i] is assigned "once and for all", and P is modified in 
every execution of the loop. The only action outside the loop is to initialize P. 

In each execution of the loop, the action is controlled by the value of B[i]. When B[i] is neither 0 

nor 255, the value of B'[i] becomes the same as B[i]. But when B[i] is 0 or 255, B'[i] becomes 
something different; I refer to this as an "adjustment". The significance of 255 is that it is the octet 
consisting of 8 ones. Using an operation 

NeedAdjust: Octet -> Bool 

Need.Adjust (B) gives the status of the condition "B needs an adjustment", where B represents 
a B[i] value: 

forall B: Octet 

NeedAdjust(B) = 

(B eq Octet (0, 0, 0, 0, 0, 0, 0, 0)) or 
(B eq Octet (1, 1, 1, 1, 1, 1, 1, 1)); 
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The changes made to P in each loop execution depend on whether B[i] needs an adjustment. 

When there is no adjustment, P is just multiplied by 2; this appends a zero to its binary 
representation. When there is an adjustment, P is multiplied by 2 and then increased by 1; these 
together append a one to its binary representation. The bit appended toP, determined by the value 

of B[i], is given by an operation 

where: 

AdjustCode: Octet -> Bit 

forall B: Octet 

NeedAdjust(B) = > AdjustCode(B) l; 

not(NeedAdjust(B)) = > AdjustCode(B) 0; 

Note the form of these conditional equations: a condition may be an expression of sort Bool (or 
any other sort containing a constant true) rather than another equation. The condition is met 

when the expression is equal to true. 

The eight loop executions generate eight bits at the end of P, corresponding to the eight B[i] 
values. These eight bits form the octet PAT[X, Y]. (Any preceding bits of P are zero, because of 

initialization, and can be omitted.) Rather than the concatenation [X, Y] (one 64-bit string), I have 
used the more abstract Pair {X, Y) (two 32-bit blocks). Then PAT is represented by an 
operation: 

PAT: Pair -> Octet 

The bytes B0 to B7 are represented by Octet variables Bl to B8 (following the numbering style 

of the standard library): 

forall X, Y: Block, Bl, B2, B3, B4, BS, B6, B7, B8: Octet 

=> 

BitString(X) = 

BitString(Bl) ++ BitString(B2) ++ 

BitString(B3) ++ BitString(B4), 

BitString(Y) = 

BitString(BS) ++ BitString(B6) ++ 

BitString(B7) ++ BitString(B8) 

PAT(Pair(X, Y)) = 

Octet 

( 

) i 

AdjustCode(Bl), AdjustCode(B2), 

AdjustCode(B3), AdjustCode(B4), 

AdjustCode(BS), AdjustCode(B6), 

AdjustCode(B7), AdjustCode(B8) 

Given X and Y, the conditions fix the eight octet values, and therefore the value of 
PAT {Pair {X, Y) ) . 

When B[i] needs an adjustment, this consists of replacing 0 by P, or 255 by (255 -P). P can be 

regarded as an octet, whose value is studied shortly. Since 255 is the octet consisting of 8 ones, 
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(255 - P) gives the octet with a one in each position where P has a zero, and a zero where P has a 

one. There are two simple ways of viewing the adjustment: 

(a) B'[i] becomes either the octet P or its logical inversion. The (eight identical) bits of B[i] 

form a control flag, where "ones" imply "invert". 

(b) B'[i] becomes a copy of B[i] in which certain bits are inverted. The ones in P mark the 
positions in which to invert. 

Both views are captured in the symmetrical statement that (when there is an adjustment) B'[i] 
becomes the bitwise "exclusive OR" result from B[i] and P. Using an operation 

Adjust: Octet, Octet ->Octet 

if B[i] and P are represented by Band P, then Adjust (B, P) gives the value for B'[i] (whether 
or not there is an adjustment): 

forall B, P: Octet 

NeedAdjust(B) => Adjust(B, P) 

not(NeedAdjust(B)) => Adjust(B, P) 

B xor P; 

B; 

The value P used to adjust B[i] has the arbitrary character common in data security: it is an 
intermediate value in the calculation of PAT[X, Y], and is different for each of the eight B[i] 

values. As already seen, each loop execution appends one bit to its binary representation; this, in 
effect, shifts the existing bits to the left. This modification precedes the adjustment of B[i]. 

The eight B'[i] values make up BYT[X, Y], which may be denoted by [Xc, Yc] (the "conditioned" 
values of X and Y). As before, I have used Pair (X, Y) rather than [X, Y] as the argument; 
likewise, I have used Pair (Xc, Yc) rather than [Xc, Yc] for the result. Then BYT is 

represented by an operation: 

BYT: Pair -> Pair 
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As before, the bytes B0 to B7 are represented by Octet variables Bl to B8; likewise, the 
"conditioned" bytes B'0 to B'7 are represented by Octet variables Bel to Bc8: 

forall 

X, Y, Xc, Yc: Block, 

Bl, B2, B3, B4, BS, B6, B7, B8, 

Bel, Bc2, Bc3, Bc4, BcS, Bc6, Bc7, Bc8: Octet, 

pl, p2, p3, p4, pS, p6, p7, p8: Bit 

BitString(X) = 

BitString (Bl) ++ BitString(B2) ++ 

BitString(B3) ++ BitString(B4), 

BitString(Y) = 

BitString(BS) ++ BitString (B6) ++ 

Bit String (B7) ++ BitString(B8), 

PAT (Pair (X, Y)) = Octet (pl, p2, p3, p4, 

Adjust(Bl, Octet(O, 0, 0, 0, o, 0, 

Adjust(B2, Octet(O, 0, 0, 0, 0, 0, 

Adjust(B3, Octet(O, 0, 0, 0, 0, pl, 

Adjust (B4, Octet(O, 0, 0, 0, pl, p2, 

Adjust(BS, Octet(O, 0, 0, pl, p2, p3, 

Adjust (B6, Octet(O, 0, pl, p2, p3, p4, 

Adjust(B7, Octet(O, pl, p2, p3, p4 ,pS, 

Adjust(B8, Octet (pl, p2, p3, p4, p5, p6, 

BitString(Xc) = 

BitString (Bel) ++ BitString(Bc2) ++ 

BitString(Bc3) ++ BitString(Bc4), 

BitString(Yc) = 

BitString(Bc5) ++ BitString(Bc6) ++ 

BitString(Bc7) ++ BitString(Bc8) 
=> 

BYT(Pair(X, Y)) = Pair(Xc, Yc); 

p5, p6, p7, p8), 

0, pl)) Bel, 

pl, p2)) Bc2, 

p2, p3)) Bc3, 

p3, p4)) Bc4, 

p4, p5)) BcS, 

p5, p6)) Bc6, 

p6, p7)) Bc7, 

p7, p8)) Bc8, 

Given X and Y, the first three conditions fix B 1 to B 8, and (since PAT is already defined) p 1 to 
p8; the next eight conditions fix Bel to Bc8; and the last two conditions fix Xc and Yc. In this 
way, the value ofBYT (Pair (X, Y)) is fixed. 

4.3 "The algorithm" proper 

Section 1.2 distinguishes a lower-level function, called "the algorithm", and a higher-level 
function, which is "the mode of operation" of that algorithm. I take "MAA" ("message 
authenticator algorithm") to mean, technically, the lower-level function, while "message 
authentication" is based on the higher-level function. 

4.3.1 Messages 

"The algorithm" acts on a sequence of one or more blocks, which form a message. Because of the 
mode of operation, this "message" is sometimes not the actual message to be authenticated, but a 
derived sequence of blocks; but "message" is still a convenient term for it. These messages, and 
actual messages, can both be viewed as strings, whose elements are blocks. 
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The third data type for MAA simply defines the concept of a message. Called Message, the type 
is an actualization of the standard library type NonEmptyString: 

type Message is 

NonEmptyString actualizedby BlockFunctions using 

end type 

sortnames 

Bool for FBool 

Block for Element 

Message for NonEmptyString 

opnnames 

Message for String 

The important parameter, Element, is thus defined to be the sort Block imported from 
BlockFunctions. That is, the elements of strings will be blocks. The associated operation 
parameters eq and ne are those defined in BlockFunctions. The technical parameters 
FBool, true and not are defined to be the Bool, true and not imported from Boolean via 
BlockFunctions. 

The sort NonEmptyString, defined in type NonEmptyString, is renamed Message. So 
Message consists of all strings of one or more blocks, ie all messages. The operation String, 

which generates strings of one element, is also renamed Message. So the message consisting of 
just the block X is denoted by Message (X). All other operations defined by type 
NonEmptyString keep the same names in type Message. 

4.3.2 The MAA calculations 

The calculations involved in the MAA proper ("the algorithm") are described in the fourth data 
type for MAA, called BasicMAA. Types BlockFunctions and 
ConditioningFunctions are imported, because their contents are central to the 
calculations. Type Message is also imported, since the MAA acts on a message. 

Type Condi tioningFunctions defines the sort Pair, consisting of pairs of blocks. Some 
of the calculations in the MAA yield two pairs, or three pairs, of blocks; but a LOTOS operation 
can yield only one result. It is therefore convenient to define a single object which contains two 
pairs, or three pairs, just as a pair is itself a single object containing two blocks. The sorts 
TwoP airs and ThreeP airs consist of these objects, generated by constructor operations: 

TwoPairs: Pair, Pair -> TwoPairs 

ThreePairs: Pair, Pair, Pair -> ThreePairs 

The first part of the calculation is the prelude. The input to this is the key, consisting of the blocks 
J and K. If these are represented by Block values J and K, the key can be represented by 
Pair (J, K). From this the prelude generates six blocks denoted by X0, Y0, V0, W, S andT. 

These, in the way they are formed and later used, fall naturally into three pairs. If they are 
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represented by Block values XO, YO, VO, w, SandT, the result of the prelude can be represented 
by: 

ThreePairs(Pair(XO, YO), Pair(VO, W), Pair(S, T)) 

Then the prelude is represented by an operation: 

Prelude: Pair -> ThreePairs 

The MAA standard specifies the prelude as follows: 

[J1, K1] := BYT[J, K); 
P := PAT[J, K]; 
Q := (1 + P) * (1 + P). 

J12 := MUL1(J1, J1); J22 := MUL2(J1, J1); 
J14 := MUL1(J12, J12); J24 := MUL2(J22, J22); 
J16 := MUL1(J12, J14); J26 := MUL2(J22, J24); 
J18 := MUL1(J12, J16); J28 := MUL2(J22, J26). 

H4 := XOR(J14, J24); 
H6 := XOR(J16, J26); 
H8 := XOR(J18, J28). 

K12 := MUL1(K1, K1); K22 := MUL2(K1, K1); 
K14 := MUL 1 (K12, K12); K24 := MUL2(K22, K22); 
K15 := MUL 1 (K1, K14); K25 := MUL2(K1, K24); 
K17 := MUL1(K12, K15);K27 := MUL2(K22, K25); 
K1g := MUL1(K12, K1?);K2g := MUL2(K22, K27). 

H' := XOR(K15, K25); 
H5 := MUL2(H', Q); 
H7 := XOR(K17, K27); 
H9 := XOR(K19, K29). 

[Xo, Y0] := BYT[H4, H5); 
[V0, W] := BYT[H6, H7]; 
[S, T) := BYT[H8, H9]. 
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Given an "input" value Key, all other values can be fixed by a series of conditions: 

forall 
Key: Pair, 

P: Octet, 
Jc, Kc, Q1 

Jl_21 Jl_41 Jl_61 Jl 81 J2_21 J2_41 J2 61 J2_81 
Kl_21 Kl_4, Kl_51 Kl_71 Kl_91 K2_21 K2_41 K2 51 K2_7, K2_9, 

H41 H51 H6, H7, H81 H9: Block 

BYT(Key) = Pair(Jc, Kc), 
PAT(Key) = P, 
(NatNum(l) + NatNum(P)) * (NatNum(l) + NatNum(P)) 

MULl (Jc, Jc) Jl_2, 

MULl(Jl_21 Jl_2) Jl_41 

MULl(Jl_21 Jl_4) Jl_61 
MULl (Jl_21 Jl_6) Jl 81 
MUL2(Jc1 Jc) J2_21 
MUL2(J2_2, J2_2) J2_41 
MUL2(J2_2, J2_4) J2_61 
MUL2(J2_2, J2_6) J2 81 
XOR(Jl_41 J2 4) H41 
XOR(Jl_61 J2_6) = H61 
XOR(Jl_81 J2_8) = H81 
MULl (Kc, Kc) Kl_21 
MULl (Kl_21 Kl_2) Kl 41 
MULl(Kc1 Kl_4) Kl 51 
MULl(Kl_21 Kl_5) Kl_71 
MULl(Kl_21 Kl 7) Kl_91 
MUL2 (Kc1 Kc) K2_21 
MUL2(K2_21 K2 2) K2_41 
MUL2(Kc1 K2_4) K2 5, 
MUL2(K2_21 K2_5) K2_71 
MUL2 ( K2-2 I K2 7 ) K2 9 I 

MUL2 (XOR(Kl_51 K2 5) I Q) H51 
XOR (Kl_7 I K2 7) H7 I 

XOR(Kl 91 K2 9) H9 
= > 

Prelude(Key) = 

ThreePairs 

) ; 

BYT(Pair(H4, H5))1 
BYT(Pair(H61 H7))1 
BYT(Pair(H81 H9)) 

NatNum(Q) 1 

The last three assignments in the informal specification are reflected in the three argument values 

in the final expression, rather than in the conditions. (Remember which way the six blocks X0 etc 
are embodied within a ThreePairs value.) Note that the constant 1, appearing in the third 
condition, is of sort Bit, imported from Bi tNatRepr via BlockFunctions. 
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The second part of the calculation is the main loop. This is performed for every message block 
Mi. Its primary purpose is to modify two values X andY. It uses two other values V and W, and 
also makes an adjustment to V. The MAA standard specifies it as follows: 

V := CYC(V); 
E := XOR(V, W); 
X:= XOR(X, M;); 
F := ADD(E, Y); 
F := OR(F, A); 

Y := XOR(Y, M;); 
G := ADD(E, X); 
G := OR(G, B); 
G := AND(G, D); F := AND(F, C); 

X:= MUL1(X, F); Y := MUL2A(Y, G). 

The fifth and sixth lines (OR and AND operations using constants A, B, C and D) are covered in 
section 4.1.2. They are represented by the operation FIXl applied to F and FIX2 applied to G. 

I have tried to make the main loop clearer by splitting it into two parts. The first two lines, above, 
are concerned with V and W, while the other five are concerned with X and Y. The only 
connection between these two parts is the value E, calculated in the first part and used in the 
second. 

The second part of the main loop can be treated as a self-contained "core". It begins with a pair of 
blocks X andY, and finishes with a pair of modified blocks X andY. The other inputs are Mi and 
E. It is represented by an operation 

MainLoopCore: Pair, Block, Block -> Pair 

where the arguments are the initial X-Y pair, Mi, and E, respectively. The values of X andY at 
different times must be given different names: 

forall X, Y, Xa, Ya, Xb, Yb, M, E, F, G: Block 

=> 

XOR(X, M) = Xa, 

XOR(Y, M) = Ya, 

FIXl(ADD(Ya, E)) F, 

FIX2(ADD(Xa, E)) G, 
MULl(Xa, F) Xb, 

MUL2A(Ya, G) = Yb 

MainLoopCore(Pair(X, Y), M, E) = Pair(Xb, Yb); 

Being the result of FIX2, G begins with a zero bit. As explained in section 4.1.3, this means that 
MUL2A yields the same result as MUL2. MUL2 could therefore replace MUL2A in this 
conditional equation without changing its meaning. It is intended in practice (and the MAA 

standard appears to demand) that MUL2A be used, and not MUL2; the above equation suggests 
this, but only informally. This issue is considered in section 3.1 (a). 
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This "core" operation can then be used to simplify the definition of the complete main loop. Just 

as X andY form a natural pair, so do V and W. Since Vis adjusted, the main loop modifies both 
these pairs, and the modified pairs both form results of the calculation. I have therefore packaged 
these two pairs as a single object. The only input besides the initial X-Y-V-W combination is Mi. 
The main loop is represented by an operation: 

MainLoop: TwoPairs, Block -> TwoPairs 

The initial pairs are represented by XY and vw, and the "new" pairs by XYn and VWn: 

forall XY, VW, XYn, VWn: Pair, M, V, W, Vn: Block 

VW = Pair(V, W), 

CYC(V) = Vn, 

VWn = Pair(Vn, W), 

MainLoopCore(XY, M, XOR(Vn, W)) = XYn 

=> 

MainLoop(TwoPairs(XY, VW), M) = TwoPairs(XYn, VWn); 

(It may be easiest to read the bottom line before the conditions.) 

The main loop is repeated for every block of the message in succession. The effect is to transform 
the X -Y- V-W combination repeatedly, using successive message blocks as inputs. The overall 
transformation is represented by an operation: 

MainLoopRepeated: TwoPairs, Message -> TwoPairs 

If the message consists of just one block, it can be denoted by Message (M), for some block M; 
and the main loop is performed once. If the message consists of more than one block, it can be 
denoted by M + MM, for some block M (the first block) and some message MM (the rest of the 
blocks); the main loop is performed for the first block, and then repeated for the rest of the blocks: 

forall XYVW, XYVWa: TwoPairs, M: Block, MM: Message 

MainLoopRepeated(XYVW, Message(M)) = MainLoop(XYVW, M); 

MainLoop(XYVW, M) = XYVWa 

=> 

MainLoopRepeated(XYVW, M + MM) = MainLoopRepeated(XYVWa, MM); 

The third part of the calculation is the coda. In this, the main loop is performed two more times, 
using the values S and T, in that order, as "message" blocks. Then the final X andY values are 
used to calculate Z = XOR(X, Y). So the inputs to the coda are the X-Y-V-W combination it 
begins with, and a pair of blocks S and T; and the result of the coda is a block Z. The coda is 
represented by an operation 

Coda: TwoPairs, Pair -> Block 
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where: 

forall XYVW, XYVWa, XYVWb: TwoPairs, S, T, Xb, Yb: Block, VWb: Pair 

MainLoop(XYVW, S) = XYVWa, 

MainLoop(XYVWa, T) = XYVWb, 

XYVWb = TwoPairs(Pair(Xb, Yb), VWb) 

=> 

Coda(XYVW, Pair(S, T)) = XOR(Xb, Yb); 

(The final V and W values, represented by VWb, are unused.) 

As outlined in section 1.2, the MAA ("the algorithm" proper) uses a key and a message to 
produce a "MAC". Of the values generated by the prelude, X0, Yo. V0 and W form the initial 
values of X, Y, V and W for the main loop (W is never changed); while S and T are the extra 
"message" blocks used in the coda. The coda result Z is the "MAC". The MAA is represented by 
an operation 

MAA: Pair, Message -> Block 

where: 

forall Key, XY, VW, ST: Pair, MM: Message, XYVWn: TwoPairs, Z: Block 

=> 

Prelude(Key) = ThreePairs(XY, VW, ST), 

MainLoopRepeated(TwoPairs(XY, VW), MM) 
Coda(XYVWn, ST) = Z 

MAA(Key, MM) = Z; 

XYVWn, 

Note that MAA is defined (though not used) for messages of unlimited length. 

4.4 Correct use of "the algorithm" 

The use of "the algorithm" (the MAA) is to authenticate a message. But using it correctly 

involves two things: "the algorithm" must be applied according to the mode of operation specified 
in the MAA standard; and it must not be used to authenticate a message with more than 1 000 000 

blocks. 

4.4.1 Segmented messages 

As mentioned in section 1.2, a message is divided into segments. All segments except the last are 
256 blocks long, while the last segment is from 1 to 256 blocks long. Each segment is a string of 
blocks; so it amounts to a "message" in its own right, and can be represented by a value of the sort 
Message. 

To represent all the segments making up the (complete) message, one can form a string of 

segments; the individual segments can then be identified as the elements of that string, each of 
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which is a "message" in the sense already established. This "higher-level" string embodies both 

the contents of the complete message, and its segmented structure; I call it a segmented message. 

The fifth data type for MAA defines the concept of a segmented message. This is simply a string 
of "ordinary" messages; so the segments can have any mixture of lengths. For the MAA, the 
segments must have the specific lengths mentioned above; a segmented message matching this 
special pattern will be called a normal segmented message. It would be more difficult to construct 

a sort consisting of normal segmented messages only, but this is not necessary. 

The new type, called SegmentedMessage, is another actualization of the standard library type 
NonEmptyString: 

type SegmentedMessage is 

NonEmptyString actualizedby Message using 

end type 

sortnames 

Bool for FBool 

Message for Element 

SegmentedMessage for NonEmptyString 

opnnames 

Segment for String 

The main parameter, Element, is defined this time to be the sort Message, imported from type 
Message. That is, the elements of the new strings will be messages. The operation parameters 
eq and ne, associated with these messages, are those defined for strings in type 

NonEmptyString, and inherited by type Message when NonEmptyString was first 
actualized. The technical parameters FBool, true and not are again defined to be the Bool, 

true and not imported from Boolean via Message. 

The sort NonEmptyString, defined in type NonEmptyString (as being actualized now), is 

renamed SegmentedMessage. So SegmentedMessage consists of all strings of one or 

more messages, ie all segmented messages. The operation String, which generates strings of 

one element, is renamed Segment. So the segmented message consisting of just the message (ie 

segment) S is denoted by Segment ( S). All other operations defined by type 

NonEmptyString keep the same names in type SegmentedMessage. 

4.4.2 Preliminaries for describing correct use of "the algorithm" 

The mode of operation, and the message length restriction, are both described in the final data 
type for MAA, called AppliedMAA. This imports type BasicMAA, since "the algorithm" is 
used, and type SegmentedMessage, since the mode of operation uses segmented messages. 

The standard library type DecNatRepr is also imported, so that the important numbers 256 and 
1 000 000 can be defined conveniently. 
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I have defined constants 

256, 1000000: -> Nat 

using their decimal representations: 

256 = NatNurn(Dec(2) + 5 + 6); 

1000000 = NatNurn(Dec(1) + 0 + 0 + 0 + 0 + 0 + 0); 

4.4.3 The mode of operation 

In its essence, a message to be authenticated is "flat"; that is, it has no segmented structure. The 
segmented structure is introduced for calculation purposes, in the mode of operation. 

An operation 

Flatten: SegrnentedMessage - > Message 

gives the "flat" version of a segmented message. If there is just one segment, the segmented 
message can be denoted by Segment ( s) , for some "message" S; and the "flat" version is 
simply s. If there is more than one segment, the segmented message can be denoted by S + SS, 

for some "message" s (the first segment) and some segmented message SS (the rest of the 
segments); the "flat" version can be formed by concatenating the segments: 

forall S: Message, SS: SegrnentedMessage 

Flatten(Segrnent(S)) 

Flatten(S + SS) 

Using an operation 

S; 

S ++ Flatten(SS); 

Normal: SegrnentedMessage -> Bool 

Normal (X) gives the status of the condition "X is a normal segmented message". If there is just 
one segment, the segmented message is normal when the segment is from 1 to 256 blocks long. If 
there is more than one segment, the segmented message is normal when the first segment is 256 

blocks long and the rest of the segments match the "normal" pattern: 

forall S: Message, SS: SegrnentedMessage 

Norrnal(Segrnent(S)) 

Norrnal(S + SS) 

Length(S) le 256; 

(Length(S) eq 256) and Norrnal(SS); 
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When a message has been segmented, "the algorithm" is applied to each segment. The "MAC" 
obtained for each segment, except the last, is prefixed to the next segment, before calculating the 
"MAC" for that next segment; and the "MAC" obtained for the last segment is the "actual" MAC 

for the whole message. For any key and segmented message, the "actual" MAC is given by an 
operation: 

MAC: Pair, SegmentedMessage -> Block 

If there is more than one segment, the "MAC" prefixed to the last segment is what would be the 
"actual" MAC for all except the last segment: 

forall Key: Pair, S: Message, SS: SegmentedMessage 

MAC(Key, Segment(S)) 

MAC(Key, SS + S) 

MAA(Key, S); 

MAA(Key, MAC(Key, SS) + S); 

(In the second equation, the + on the left appends a segment to a segmented message, while the + 

on the right prefixes a block to a message.) Note that MAC is defined (though not used) for 
segmented messages which are not normal. 

The mode of operation is embodied in an operation 

MAC: Pair, Message -> Block 

which gives the "actual" MAC for any key and ("flat") message. The correct segmented message 
is fixed by two conditions: it must have the same contents as the "flat" message; and it must be 
normal: 

forall Key: Pair, MM: Message, SS: SegmentedMessage 

=> 

MM = Flatten(SS), 

Normal (SS) 

MAC(Key, MM) = MAC(Key, SS); 

Note that (this second) MAC is defined (though not used) for messages of unlimited length. 

4.4.4 The message length restriction 

The message authenticated must have 1 000 000 blocks or fewer; I call this an acceptable 
message. The sort AcceptableMessage consists of all acceptable messages. The method of 
generating these is untidy; I have used a constructor operation 

Restrict: Message -> AcceptableMessage 

National Physical Laboratory, UK 



- 56 -

where, for each "acceptable" Message value MM, Restrict creates a "shadow" value 

Restrict (MM) representing MM, while, for each "unacceptable" MM, Restrict (MM) is 
defined as an arbitrary acceptable message. The arbitrary acceptable message I have chosen is the 
single block consisting of zeros: 

forall MM: Message, Zero: Block 

=> 

Length(MM) gt 1000000, 

NatNum(Zero) = 0 of Nat 

Restrict(MM) = Restrict(Message(Zero)); 

The phrase "of Nat", in the second condition, is needed because 0 is an overloaded operator: 

there are constants named 0 in the sorts Nat, Bit and DecDigit; "0 of Nat" identifies the 
first of these. (The rules which deduce the meaning of an overloaded operator from its context do 
not make use of the opposite side of an equation.) The second condition fixes the variable Zero; 

it does not matter what Block value is actually used, but it must still be specific, to ensure that 

Restrict ( MM) is not defined as more than one arbitrary acceptable message. 

Each AcceptableMessage value is meant to be regarded as Restrict (MM) , where MM is 

acceptable; it is MM that really embodies the contents of the message. But there is one 
AcceptableMessage value which is also Restrict (MM) for all unacceptable MM. An 

operation 

Contents: AcceptableMessage -> Message 

identifies which message is "really" represented by any AcceptableMessage value: 

forall MM: Message 

Length(MM) le 1000000 

=> 

Contents(Restrict(MM)) = MM; 

Correct authentication is represented by an operation 

Authenticator: Pair, AcceptableMessage -> Block 

where Authenticator (Key, X) gives the MAC for that key and message: 

forall Key: Pair, X: AcceptableMessage 

Authenticator(Key, X) = MAC(Key, Contents(X)); 
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5 Problems with using LOTOS for data security standards 

5.1 The lack of partial functions in LOTOS 

5.1.1 Partial functions and why they are desirable 

The distinction between total and partial functions was mentioned in section 2.1.1, which 
explained that an operation in LOTOS is always a total function. 

The significance of this is illustrated by the operation 

MAC: Pair, Message -> Block 

(the second MAC) in section 4.4.3. As pointed out at the end of that section, this is defined for 
messages of unlimited length, although it must be used only for messages of 1 000 000 blocks or 
fewer. Ideally, it should be defined only for messages of 1 000 000 blocks or fewer. 

The issue here is what combinations of argument values are valid. LOTOS uses a simple 
principle: the valid combinations are those which match the argument sorts listed in the 
functionality. In practice, one would like to add other conditions. In effect, the line 

MAC: Pair, Message -> Block 

states that if Key is a Pair value and X is a Message value, then MAC (Key, X) is a Block 
value. But one would like to state that if Key is a Pair value and X is a Message value, and the 
length of X is less than or equal to 1 000 000, then MAC (Key, X) is a Block value; if the 
length of X is greater than 1 000 000, MAC (Key, X) should be undefined. MAC would then be a 
partial function. 

In this example, the desired extra condition concerns only one argument. Consequently, an 
alternative approach would be to define a subset of the relevant sort, and specify that as the 
argument sort. In this example, the subset would contain those Message values whose length is 
less than or equal to 1 000 000, and might be called AcceptableMessage. This differs from 
AcceptableMessage in section 4.4.4 in that it contains actual Message values, not 
"shadow" values which need explicit conversion to and from Mess age values. So one might 
write 

where: 

MAC: Pair, AcceptableMessage -> Block 

forall Key: Pair, MM: AcceptableMessage, SS: SegmentedMessage 

=> 

MM = Flatten(SS), 

Normal(SS) 

MAC(Key, MM) = MAC(Key, SS); 

MM would still be aMes sage value, and the result sort ofF 1 at ten would still be Message. 

National Physical Laboratory, UK 



-58-

This has illustrated two valuable techniques, which LOTOS does not provide: arbitrary 
preconditions (argument restrictions) for an operation, and subsorts. With either technique, the 
material in section 4.4.4, which is the awkward part of my MAA description, could be eliminated. 
While both techniques are suitable in this example, other situations call for one of them in 
particular. Preconditions are more natural and convenient if there is some interdependence 

between two or more arguments of an operation; the alternative is to replace these arguments by a 
single object which embodies them, and define a subsort of such "aggregates". Subsorts are more 

natural and convenient if a special class of some object is used frequently; the alternative is to 
state the same precondition every time. 

The MAA standard creates little need for partial functions. The main units of calculation (CYC, 

MULl etc; BYT and PAT; the prelude, main loop and coda; and "the algorithm") are total 
functions by nature. At a more detailed level, some of the steps use partial functions, in effect, but 

I have defined these steps implicitly rather than as LOTOS operations. For example, the 
arithmetic functions in section 4.1.3 involve converting blocks into numbers, performing 
calculations, and then converting numbers back into blocks; converting a number to a block (or to 

a 33-bit or 64-bit string) is a partial function, because it cannot be done for numbers that are too 
large. The ability to define partial functions is needed only for the message length restriction, as 
already explained. 

With other data security standards, the need for partial functions may easily cause far more severe 

problems. For example, schemes based on number theory can be expected to abound in special 
conditions restricting the numbers involved. The MAA itself provides several clues to how 

problems could arise; the rest of this section considers these. 

I have just mentioned the use of implicit calculation steps at a detailed level, to avoid defining 
LOTOS operations which would represent partial functions, eg converting a number to a block. I 
have achieved this by stating "reverse" conditions, eg defining a block by stating which number it 

can be converted into. It is precisely implicit conditions of this kind that frustrate automatic 
analysis by a LOTOS tool, as mentioned in section 3.4. So an MAA description designed to be 
checked by a tool would contain a number of operations representing partial functions. 

The limitations of LOTOS have influenced the definition of blocks. The sort Block, in section 

4.1.1, uses a constructor operation with 32 arguments. This approach would not be so convenient 

if blocks were 512 bits long, which is not unrealistic in data security. It would be better if Block 

could be defined as a subsort of Bit String, by placing a condition on the length. Then the 
operations Block, BitString, eq, ne, NatNum, + and ++,defined in sections 4.1.1 and 

4.1.3, could be omitted, and the standard operations of BitNatRepr used instead. Similar 
benefits would result from defining Octet as a subsort of Bi tString. An operation like XOR 

could be defined recursively, with two BitString arguments, if one could set the precondition 

that these have the same length. 

Section 4.4.1 mentioned the difficulty of constructing a sort consisting of normal segmented 

messages. This would be naturally defined as a subsort of SegmentedMessage. It could be 
used for the "message" argument to the first MAC operation in section 4.4.3, to reflect the actual 

use of this operation. This is not important, because it is easy to define MAC for all segmented 

messages. However, an analogous problem which arises with another algorithm-related standard 
is less tractable. ISO 8372 specifies modes of operation for a 64-bit block cipher. In some modes 

of operation, the message is made up of blocks whose size is a parameter: it ranges from 1 to 64, 
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but is the same for all blocks in a given message. Defining 64 different message sorts, with 64 

separate sets of constructor operations, is hardly practical. It is best to represent a block by a bit 
string, and a message by a string of bit strings. The problem is that this generates messages with 
mixed block sizes, to which the modes of operation do not apply. Size matching problems also 

affect the calculations within the modes of operation. This is a case of "restricted flexibility", 
which calls for partial functions. 

Consider a different approach to the question of message padding, considered in section 3.1 (b). 
One might wish to define a MAC operation with three arguments - the key, the message as a bit 
string, and a string of padding bits - and assume that padding is to the right of the last block. This 

would need three preconditions: 

(a) The length of the message string must be less than or equal to 32 000 000. 

(b) The length of the padding string must be less than 32. 

(c) The sum of the lengths of the message and padding strings must be a multiple of 32. 

Precondition (c) is another kind of size matching problem. 

5.1.2 Circumventing the lack of partial functions 

This section considers several ways of trying to circumvent the inability to define a partial 

function in LOTOS. These are illustrated using the initial example in section 5 .1.1, concerning the 
operation: 

MAC: Pair, Message -> Block 

Note that LOTOS provides the ability to state conditions, as can be seen in conditional equations. 
It is simply that conditions cannot be used as preconditions for an operation, or to define a 

subsort. 

(a) One approach is what I have done in section 4.4.4: where one would like to define a 
subsort, one creates instead a separate set of "shadow" values. This is constructed by an 
operation which "converts" the wanted values of the parent sort to their "shadows", while 
mapping the unwanted values to an arbitrary wanted value. 

This has two disadvantages. One is that the "shadow" values are artificially separated from the 
parent sort, and have to be explicitly converted to and from it. The other is the meaningless 
connection between the unwanted values of the parent sort and an arbitrary value of the "shadow" 
sort. If one generates a Mess age value X, using "ordinary" operations, one must use the indirect 

formula 

Authenticator(Key, Restrict(X)) 

for the MAC. But this is open to "abuse", because one can generate a message X with more than 
1 ()()() 000 blocks, and use the same formula; this will give the MAC for Message (Zero) 

(where zero is the block consisting of zeros), which is a corruption of the scheme. 
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Correct application depends on the informal understanding that (using the example) an 

AcceptableMessage value X represents Contents (X) and no other Message value. 

(b) A simpler idea is to think of an operation as a partial function and treat it accordingly. One 
would write equations to define the result for "valid" arguments, and do nothing about 
"invalid" ones. For example, one would write: 

forall Key: Pair, MM: Message, SS: SegmentedMessage 

=> 

Length(MM) le 1000000, 

MM = Flatten(SS), 

Normal (SS) 

MAC(Key, MM) = MAC(Key, SS); 

(c) Another idea is to define a special "error" value, and use this as the result when the 
arguments are "invalid". For example, one would introduce an extra constructor operation 

Error: -> Block 

and use the equation in (b) together with: 

Length(MM) gt 1000000 

=> 

MAC(Key, MM) = Error; 

These ideas both suffer from a fatal problem. 

Consider (c) first. The problem is that whenever an operation uses a Block argument, Error 

becomes a possible value. For example, the operation Pair creates a multitude of extra pairs of 

blocks, where one or both is Error. Moreover, any of these can form the argument to PAT; then 
the conditions of the equation that defines PAT cannot be met, and so in each case PAT creates a 
new Octet value. Moreover, the standard library type Octet provides operations to extract the 
eight individual bits from an octet; for the new octets, these operations create a host of new Bit 

values. These new Bit values can be combined, 32 at a time, into new Block values. And each 
of these new Block values is like Error, triggering its own avalanche of new values. New 
messages can be built using the new blocks, and can be authenticated, generating yet more blocks. 

The outcome is an endless explosion of meaningless values. These can be manipulated within a 

rich and rigorously defined algebra. This does not reflect the intended authentication scheme. 

In (b), the consequence of not defining the result for "invalid" arguments is that MAC creates a 
new Block value in every such case. Each of these new Block values has the same effect as 
Error in (c). 

(d) In a modification of (c), when any operation acts on an "error" argument, the result is 
defined as another error. This prevents operations from creating meaningless values. With 
this approach, each sort must have a special "error" value of its own. 

This has several disadvantages. The "error" values are not meant to exist in practice; if behaviour 
specifications are written, using variable data, "error" values may have to be explicitly forbidden. 
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The data types must include many extra equations to cover all cases of "error" arguments, as well 
as conditions to guard equations that do not apply to "error" values. All the error-handling parts of 
the specification are a distraction from the main purpose. The standard library types cannot be 
used, because they do not provide "error" values. 

With a description like that of the MAA, using data types only, correct application depends on the 
informal understanding that "error" values are not to be implemented and manipulated in practice. 

(e) Another modification of (c) creates a separate sort for the result, with "shadow" values 
representing the "valid" results, plus an "error" value. For example, one can define a sort 
MACValue, with constructor operations: 

MACValue: Block - > MACValue 

Error: -> MACValue 

Then one can define 

MAC: Pair, Message -> MACValue 

using the equations in (b) and (c), with MAC (Key, SS) (at the end of the first equation) 
replaced by MACValue (MAC (Key, SS)). This time, operations do not create 
meaningless values because their arguments are Block rather than MACValue, and so 
cannot be Error. 

This has the disadvantage that the MAC is not represented by a Block value, although in reality 
it is a block. In some applications, one may wish to manipulate the MAC as a block. One could 
define an operation which "converts" a MACVal ue value to a Block value, and maps Error to 
an arbitrary Block value, eg Zero. Then the disadvantages would correspond to those of (a); 
one would use a formula like 

Block(MAC(Key, X)) 

for the MAC, and this would be open to "abuse". 

Correct application depends on the informal understanding that (using the example) 

MACValue (x) represents x, while Error need not be implemented. 

(f) A simple approach is to define a total function, which gives the correct result for "valid" 
arguments, and an arbitrary result for "invalid" arguments; the intended use of the 
operation can be stated informally. For example, one can simply omit the material in 
section 4.4.4, and use the total function: 

MAC: Pair, Message -> Block 

The informal commentary can mention that the message must not have more than 
1 000 000 blocks. 

This is clearly the right approach when the function will be used only to define other functions in 
the specification; the "invalid" arguments will simply not arise. This is the case with the first MAC 
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operation in section 4.4.3; segmented messages which are not normal are "invalid", but never 
used. 

There are two possible disadvantages. The obvious one, when the function is not used merely to 

define other functions, is that the goal of expressing everything in formal language is not fully 
achieved. The other arises when the result for "valid" arguments cannot be naturally extended to 

"invalid" ones, as it can with both MAC operations; then it becomes necessary to write an artificial 
extra definition. The final example in section 5.1.1 illustrates this: when the sum of the lengths of 
the message and padding strings is not a multiple of 32, the definition of the MAC must be 
specially contrived. 

Correct application depends on the informal knowledge of "valid" and "invalid" arguments. 

(g) An extension of (f) defines a "companion" function with the same argument sorts and a 
Bool result. The second operation gives true for the "valid" arguments and false for 
the "invalid" ones. For example, MAC can be accompanied by an operation 

MACValid: Pair, Message - > Bool 

where: 

forall Key: Pair, MM: Message 

MACValid(Key, MM) = Length(MM) le 1000000; 

This has the disadvantage that MAC still yields a result when the arguments are "invalid", and so is 
open to "abuse". The second disadvantage of (f) can also arise. 

Correct application depends on the informal understanding that the "companion" function 

determines the applicability of the main function, and need not be implemented in its own right. 

(h) A development of (g) combines the two functions, by defining a single object which 

contains both results. For example, one can define a sort Authentication, with a 

constructor operation 

Authentication: Bool, Block -> Authentication 

where Authentication (true, x) represents a valid authentication with MAC 
value x, while Authentication (false, x) represents an invalid authentication: 

forall Key: Pair, MM: Message, SS: SegmentedMessage 

= > 

MM = Flatten(SS), 

Normal (SS) 

Authenticate(Key, MM) = 
Authentication(Length(MM) le 1000000, MAC(Key, SS)); 

In principle, this is the same as (e), with Authentication (true, x) replacing 
MACValue (x), and all Authentication (false, x) values replacing Error. Where one 
then defined an operation to "convert" a MACValue value to a Block value, one now defines an 
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operation to extract the second component of an Authentication value. In essence, the 
disadvantages of (e) apply here; the second disadvantage of (f) can also arise. 

Correct application depends on the informal interpretation of the two components of the result, in 
analogy with (g). 

(i) An extension of (f) uses a behaviour specification to establish the correct use of the 
operation. For example, one can write: 

authenticate ? Key: Pair ? X: Message ? C: Block 
[(Length(X) le 1000000) and (C eq MAC(Key, X))] 

This specifies an observable event. Section 2.1.4 described how LOTOS defines a data 
value abstractly, as a collection of ground terms. LOTOS defines an observable event just 
as abstractly: the event is defined as a label (an identifier) with a string of data values. 
One possible intuitive meaning is that the data values represent actual data handled during 
the event. In this example, the event has the label authenticate and involves three 
data values. The question marks mean that the values are variable; they are given the 
names Key, X and C. It is specified that they are of sorts Pair, Message and Block, 
respectively; intuitively, they represent a key, message and MAC. The square brackets 
contain a constraint - a condition which must be met. The condition stated is the one that 
defines a correct authentication. (A "correct authentication" uses any key, involves an 
"acceptable" message, and generates the "right" MAC for that key and message.) This 
event specification defines a wide choice of observable events, differing in the three data 
values in the string; the possible events correspond to the set of correct authentications. 

This is clearly the right approach in a normal LOTOS specification, where operations are defined 
only for use in behaviour specifications; "invalid" arguments are simply not used. 

With a description like that of the MAA, this approach has the disadvantage that it implies that an 
event takes place. To have a formal meaning, the above lines must be placed in a proper 
specification, along with the data types for MAA. This specification will define the behaviour of a 
system. This could be a symbolic system which executes one event and then stops, but this is 
artificial. One can readily specify an "MAA machine", eg with separate events for loading keys 

and authenticating messages, but this involves implementation-specific details. The MAA 
standard defines an idea, not a system. 

The second disadvantage of (f) can also arise (even in a normal specification). 

Correct application depends on the informal understanding that (using the example) there is one 

possible event for every correct authentication, but the symbolic event need not correspond to an 

"actual" event occurring in time. 

In conclusion, it can be seen that there are ways of circumventing the lack of partial functions in 

LOTOS, but they are all unsatisfactory and rely on some informal understanding. 
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5.2 Standards using an unspecified data algebra 

5.2.1 Explanation of the problem 

An important feature of the MAA standard is that it is completely specific and self-contained 
(given my decision in section 3.1 (b)). It specifies that the message is any string of 1 to 1 000 000 
blocks, while the key is any pair of blocks, where a block is a string of 32 bits; and for every such 
message and key, it gives a recipe to identify precisely which one of the 232 possible block values 
is the right MAC. So the contents of the sorts involved, and the connections between argument 
and result values of the operation Authenticator, are known exactly. 

The material in the MAA standard could be embedded within a more comprehensive a nd 
application-oriented standard. 1'his standard might define a more complex algorithmic scheme, in 
which forming the MAC is just one element; or it might define a protocol, part of which involves 
transmitting messages together with MAC values. Then one could write a LOTOS description of 
this more comprehensive standard. My data types could form part of that description, defining the 
message authentication aspect. The Authenticator operation could then be used in 
expressions, either in the equations of another data type, which define a higher-level operation, or 
in a behaviour specification, to define the MAC used in some observable event. 

Now imagine a more generic version of this standard, which allows users to choose any suitable 
authenticator algorithm. The purpose of this standard is to define the framework of a scheme, 
either algorithmic or a protocol, for achieving some purpose. Message authentication is a 
necessary part of the scheme, but any good authenticator algorithm will achieve the desired goal, 
and so the standard does not place a needless restriction on users. 

(a) Suppose that a message is still defined as a string of 1 to 1 000 000 blocks, the key as a 
pair of blocks, and the MAC as a single block, where a block is a string of 32 bits. Then 
the sorts involved are still completely defined, and can be generated using the same 
constructor operations as in the MAA description. To represent the authenticator 
algorithm, one really wants an operation 

Authenticator: Pair, AcceptableMessage -> Block 

just as before. The difference now is that this need not be the function defined in the MAA 
standard, but may be any total function matching this functionality. 

What one wishes to specify is that for every Pair value Key and every 
AcceptableMessage value X, Authenticator (Key, X) is one of the 232 Block 

values already created by the Block operation; but one does not wish to specify which 
one. This cannot be done in LOTOS. Since one does not know which Block value 
Authenticator (Key, X) is, one cannot write any equations to define it. But if one 
writes no such equations, then Authenticator creates a new Block value 
Authenticator (Key, X). Moreover, this new Block value is like the value Error 

in section 5.1.2 (c): it can be used as an argument to operations, leading to an endless 
explosion of meaningless values. 
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Another idea is to create a separate sort consisting of MAC values, and write, for example: 

Authenticator: Pair, AcceptableMessage -> MACValue 

Authenticator is then the constructor operation for MACValue. This represents a 

higher level of abstraction: one considers the fact that there is a MAC value for every key 
and message, but is no longer concerned with the fact that the MAC is actually a block; 
then it no longer matters which block it is. This approach does not create new Block 

values, and so avoids the above explosion of meaningless values. 

However, one problem remains and another is created: 

(i) The new problem is that the MAC may need to be further manipulated in a way 
which depends on the fact that it is a block. For example, the standard may require 
the message and MAC to be concatenated, and enciphered using 32-bit cipher 

feedback; the encipherment process would act on a string of blocks. One cannot 
define an operation to "convert" each "abstract" MAC value to its "concrete" block 
representation, because this raises the same problems as Authenticator did 
previously. 

(ii) The existing problem is that the various MAC values, even if they belong to a sort 
of their own, are not correctly modelled. In practice, many different combinations 
of key and message must yield the same MAC value. But one does not know which 

combinations yield the same MAC, because this depends on the authenticator 
algorithm. So one cannot write the equations to make these Authenticator 

results the same. But if one writes no such equations, then the Authenticator 

results are all different. So MACVal ue contains too many values. 

To highlight what is wrong, consider the process of checking a message: some 
communicating entity receives a message and MAC, and compares the MAC with 
the result of Authenticator; if the values differ, the entity takes some special 
action defined in the standard. This process can be described in a behaviour 

specification; this would use conditions, like the equality of MAC values, to 

determine the behaviour. Using the LOTOS semantics, one can then prove that the 
test always fails (the MAC values are not equal) if the message is not the "right" 
one; whereas in reality the test might still succeed, because a different message 
could yield the same MAC. So the specified behaviour is incorrect. 

(b) Now suppose, more realistically, that the standard specifies nothing about the nature of the 
key; that is, the key need not be a pair of blocks, but might be a bit string of some fixed 

size, or a matrix of numbers satisfying certain properties, or any other structure, depending 

on the choice of authenticator algorithm. (The standard is also likely to be less precise 

about the nature of an acceptable message.) 

This creates a new problem, because one no longer knows what the "key" sort should 
contain. The LOTOS semantics determine exactly how many values each sort contains, 
but this is now unknown. One cannot write the constructor operations to generate the keys, 
while if one introduces no operations that yield key values, there are no keys at all. So 
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besides being unable to provide the right equations, one cannot provide the right 
operations. 

These are hypothetical examples, but the basic problems arise in actual data security standards. 

One algorithm-related standard, ISO 8372, specifies modes of operation for a 64-bit block cipher; 
the block cipher is an unspecified function, because the standard applies to any 64-bit block 
cipher; and the nature of the key is unspecified, because it depends on the cipher chosen. In the 
MAA standard itself, one might take a different approach to the question of message padding, 
considered in section 3.1 (b); as in the VDM and Z descriptions [2, 3], one might wish to use an 

explicit padding function to transform a bit string into a block sequence, where the contents of the 

padding field are not specified. Initial indications are that protocol-related data security standards, 
especially the symbolic protocols mentioned in section 1.1, use algorithmic elements, and indeed 

simple data items, which are partly unspecified. 

In effect, these standards do not define a specific algebra of data values, but allow a choice of 
algebras. The problem can be viewed as one of parameterization: these standards involve a 
parameterized algebra, with flexibility in the sorts and operations. A LOTOS specification can 
have parameters, but not of the required kind: the parameters are either gates, which are just the 
labels used to identify observable events, or variables, which carry a value selected from some 

sort and are used in the behaviour specification; they cannot be sorts or operations. 

5.2.2 Using parameterized data types 

One idea is to use parameterized data types, because these allow sort and operation parameters. 
Using the hypothetical example in section 5.2.1, the Authenticator operation could be a 
formal operation, so that it can represent many different actual operations. The key, message and 

MAC sorts would have to be formal sorts, because the argument and result sorts of a formal 
operation must themselves be formal. But this also enables them to represent many different 
actual sorts, such as different kinds of key. 

This technique cannot be used to write a specification of a generic protocol. The sorts and 

operations of a parameterized type are excluded from the final many-sorted algebra, and cannot 

be used in behaviour specifications. The only use of parameterized types (apart from importing 

them into other parameterized types) is to actualize them, after which the actualized version (a 
specific instance) can be used in behaviour specifications. The actual sorts and operations must 

come from somewhere inside the same specification; as noted at the end of section 5.2.1, they 
cannot be parameters to the overall specification. Parameterized types are a mechanism for 

removing duplication between similar data types, not for leaving choices open to the 
implementation. 

A parameterized type might be used to write a description of a generic algorithm. This is because 

the description, like that of the MAA, may consist of data types only; as explained in section 3.3, 
this is technically not a specification, but a component of one; and it is more flexible than a 
specification, in that sort and operation parameters are allowed. For example, a parameterized 

type could use a formal operation Authenticator, representing an unspecified authenticator 
algorithm, and define, in terms of Authenticator, its own (non-formal) operations, 

representing higher-level algorithmic functions. Then, for any specific choice of authenticator 
algorithm, one could, in principle, write a separate data type to define the authenticator algorithm, 
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and use this to actualize the parameterized type; this actualization would yield an 
unparameterized type, whose sorts and operations would completely model that instance of the 
standard. 

This approach has serious shortcomings. If the description of a standard is based on a 
parameterized type, it has no formal meaning. The MAA description can be formally interpreted 

using part of the LOTOS semantics, as described in section 3.3; but the dynamic semantics cannot 
be applied in the case of a parameterized type, as explained at the end of section 2.3. Instead, the 
description must be interpreted informally: one must imagine how the parameterized type could 
be actualized, and then use the formal meaning of the resulting unparameterized type. For this, 
one must imagine extra type definitions which are "well-behaved", not undermining the 
description, eg by violating the principles in the last part of section 2.2.2. There may also be 
"genuine" constraints on the actual parameters; for example, though messages are a formal sort, 

the standard may still state that they consist of 32-bit blocks; or it may demand that the 
authenticator algorithm is designed so that messages differing in only one block never yield the 
same MAC with the same key. The techniques available, such as formal equations, are not 
powerful enough to express all such requirements. 

In short, only an extension of the description can have a formal meaning, and what extensions are 

valid is only informally understood. This reflects the fact that LOTOS is being used in a way for 
which it was not designed. One could say that part of the description is missing, and that this is 
just a special case of the approach considered in section 5.2.3. 

5.2.3 Leaving gaps in the description 

A simple approach is to leave a gap in the description wherever information is not available. 
Wherever an operation is unspecified, one can introduce its name and functionality, but omit the 
equations defining it. Wherever a sort is unspecified, one can introduce its name, but omit the 
constructor operations and any equations associated with them. The description may be either a 
proper specification, to describe a protocol, or a set of data types, to describe an algorithm. 
Technically, the LOTOS semantics still give the text a formal meaning, because the omissions do 
not break any syntactic or semantic rules; but this formal meaning must be disregarded, because it 

is an incorrect model. 

Since the text has no valid formal meaning, it is not a formal description of the standard. But it 
may become a formal description when suitably extended - not a formal description of the 
standard, but a formal description of some implementation, or instance, of the standard, where all 
choices have been made. In principle, the extension consists of inserting equations or operations 

in all the gaps, to define the specific operations or sorts chosen. In practice, many auxiliary sorts, 
operations and types may be needed, like those used to describe the MAA. The additions to the 
text must be "sensible"; that is, their effect must be to produce sorts and operations of an 

"intended" nature, without changing the meaning of existing parts of the text in "unintended" 
ways. As in section 5.2.2, then, only an extension of the description can have a useful formal 
meaning, and what extensions are valid is only informally understood. 

In other words, one can write a formal description of an implementation of the standard, but one 

writes only an informal description of the standard itself. The standard can be implemented in 
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different ways, each needing a different formal description. The informal description contains the 
elements common to the different formal descriptions. 

Note that interpreting descriptions can involve two kinds of informal understanding. With any 
LOTOS description, there must be some informal interpretation after a formal meaning is 
obtained, because the formal meaning is a mathematical structure consisting of abstract elements, 
whose intuitive meaning must be understood or explained. With an informal LOTOS description, 

of the above kind, there must also be some informal interpretation before a formal meaning is 
obtained, concerned with how the text can be extended. When informal understanding of the 
second kind is needed, no formal reasoning can be applied to the description; the description is 

not self-contained, and has less value. 

Writing a description with gaps is still better than using no formal language at all: it does reduce 
the amount of informal explanation, and therefore the scope for misunderstanding. But the 
mathematical system provided by LOTOS cannot be used, and so one of the important advantages 
of LOTOS - its completely formal basis - is lost. 

5.2.4 Using processes to perform calculations 

In defining a calculation involving data values, it is possible to avoid using a LOTOS operation 

altogether. Instead, one can define a process, which specifies the behaviour of a conceptual entity. 
This entity exists for the purpose of performing data calculations. It may "run" concurrently with 
other processes in the system, which can communicate with it; when other processes require a 

calculation to be performed, they send the "input" values to the "calculator" process, and this 
carries out the calculation and sends the results back. 

This technique can be used instead of defining operations other than constructors. The values 
existing in each sort must be created by operations; a process cannot create any values, and so the 
constructor operations are still needed. But other operations always yield values .that "already" 

exist, and a process can also do this. Just as one can define such an operation using equations to 

specify the result, one can define a process using expressions to specify the "output" values 

arising from any given "input" values. The behaviour specification defining the actions of the 

process may resemble a program. 

The significance of this approach is that it is possible to specify non-deterministic behaviour. One 

use of non-deterministic specifications is to allow a choice to be made as an implementation 
design decision. This means that a calculation need not be fully specified, which potentially 
overcomes the problem in section 5.2.1 (a). The additional problem in section 5.2.1 (b) remains, 

however, because a process cannot create values in a sort. 

This approach is not altogether satisfying. Using a behaviour specification is not as "clean" as 

using an operation, because it defines not only the result of the calculation, but also a mechanism 
for obtaining it, involving a succession of events in time. The technique is analogous to that 
described in section 5.1.2 (i) for describing partial functions, and is an artificial device as far as 

algorithm-related standards are concerned. If the calculation is "invoked" as one element of a 

hierarchy of calculations, one is forced to define all higher-level calculations which use this one 

using the same technique, because a LOTOS operation cannot invoke a process in its definition. 
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The need to resort to this technique represents a failure of the "abstract data type" part of LOTOS 
to fulfil its intended role. 

There is also an awkward problem of "repeatability". A simple non-deterministic calculation does 

not have to yield the same result every time it is invoked with the same "input" values. It is 
possible to specify consistent results by introducing "memory", in the form of variables internal to 
the process. The extra specification involved in this is cumbersome, and artificial in nature. 

Finally, I have already explained that this approach overcomes the problem of unspecified 
operations but not unspecified sorts. In most, and perhaps all, standards with unspecified 

operations, there are also unspecified sorts, and so this technique is of no help. 
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Conclusions 

The distinction between algorithm-related and protocol-related standards, in data security, has 
been considered, because these two classes of standard call for different features in the language 
used to describe them. LOTOS was designed for describing OSI standards, which suggests it 
would have the features needed to describe protocol-related standards. On the other hand, a 
LOTOS specification defines the behaviour of a system in terms of observable events, which is 
not the purpose of algorithm-related standards. LOTOS might therefore be expected to be suitable 
for protocol-related, but not algorithm-related, standards in data security. 

However, the LOTOS description of the MAA standard, presented in this report, demonstrates 
that this distinction is not necessarily relevant. Used with care, LOTOS can sometimes yield a 
clear description of a complex algorithm. This exercise used the "abstract data type" component 
of LOTOS exclusively; the description consists of a set of data types rather than a proper 
specification, but it can still be given a formal meaning by using part of the LOTOS semantics. 

But the MAA standard has characteristics which make it easier to describe than other standards 
(given my decision concerning message padding, in section 3.1 (b)). Firstly, it is straightforward, 
in the sense of being based on total functions: the authentication procedure, and its main 
components, can act on any bit strings of the prescribed sizes. Secondly, the procedure is 
completely specified: the result does not depend on implementation choices. There are other 
algorithms with these characteristics, such as the American DES (Data Encryption Standard) 
algorithm; LOTOS may be equally suitable for describing these. 

With many algorithms, the inability to define partial functions in LOTOS makes the description 
awkward. The MAA description is not entirely free from this problem, because of a limit on the 
length of a message. In many cases, the need for partial functions will be more extensive. There 
are ways of circumventing the limitation, but these can become very cumbersome, and they rely 
on some informal understanding. 

Many standards also leave some aspects unspecified, where choices are left to the 
implementation. This is a more serious problem, because the LOTOS semantics define a rigid 
algebra of data values, containing no choice. In certain circumstances, this limitation can be 
circumvented by using non-deterministic processes, but this is unnatural and awkward. In most, 

and perhaps all, cases, only an informal LOTOS description can be written, either based on 
parameterized types or containing gaps. The description itself has no valid formal meaning, but 
can, in principle, be extended into a description of any instance of the standard; the extended text 
does have a valid formal meaning, but what extensions are valid is only informally understood. 
No formal reasoning can be applied to the description. 

These two problems affect both algorithm-related and protocol-related standards, because the 
latter (in data security) normally involve the use of algorithms. It is possible that the second 
problem arises with all protocol-related standards in data security. 

In the case of algorithm-related standards, both problems are overcome if one uses VDM or Z, 

because these languages allow partial functions to be defined, and allow some aspects to remain 
unspecified. So while LOTOS is an effective language for describing a limited selection of 
algorithm-related standards, all these and many other algorithm-related standards can probably be 
described well in VDM or Z, which appear to have greater expressive power for this purpose. 
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In the case of protocol-related standards, there may not yet be a better alternative to LOTOS. This 

would mean that, in many and possibly all cases, there is no satisfactory language for describing 
such standards (in data security). If LOTOS is used in these circumstances, the advantage of its 
completely formal basis is lost, but it still has the advantage of abstract expression. However, it is 

possible that VDM or Z is adequate for some of these standards, because the standards involve 

only a limited form of concurrency. 

In short, my conclusion is that LOTOS is unsuitable for describing any but a few data security 
standards, though it may be the least unsuitable language for protocol-related ones. 

These conclusions apply to LOTOS in its present form. The above problems stem from the 
limitations of the "abstract data type" part of LOTOS. This mechanism for defining data types 

forms a self-contained language in its own right. It could be replaced by an alternative data type 

language, without making any change to the rest of LOTOS. If the data type language provided 
the flexibility of VDM or Z, the resulting combination might form a powerful language for 
describing both algorithm-related and protocol-related data security standards. But it is possible 

that symbolic protocol standards (mentioned in section 1.1) would still be too abstract: they might 

define "ideas" or "schemes", rather than "systems" with a prescribed behaviour. 

Indeed, the shortcomings of the present data type language result from efforts to limit the 
timescale in developing LOTOS. Improvements to the language are under consideration, and so a 
future version of LOTOS may remove the problems I have discussed. 
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Appendix: Text of the formal description of the MAA standard 

library 

NonEmptyString, BitNatRepr, Octet, DecNatRepr 

endlib 
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type BlockFunctions is 

BitNatRepr 

sorts Block 

opns 

eqns 

xor : 

2: 

Block: 

_eq_, ne_: 

BitString: 

NatNum: 

Bit, Bit -> Bit 

-> Nat 

Bit, Bit, Bit, 

Bit, Bit, Bit, 

Bit, Bit, Bit, 

Bit, Bit, Bit, 

-> 

Block 

Bit, 

Bit, 

Bit, 

Bit, 

Block, Block -> Bool 

Block -> BitString 

Block -> Nat 

Bit, 

Bit, 

Bit, 

Bit, 

+ . 

++ : 

Bit, Block -> BitString 
Block, Block -> BitString 

CYC: Block -> Block 
XOR: Block, Block -> Block 

FIXl, FIX2: Block -> Block 

ADD, MULl, MUL2, MUL2A: Block, Block -> Block 

forall 

xl, x2, x3, x4, xS, x6, x7, x8, 

x9, xlO, xll, x12, x13, x14, xlS, x16, 

x17, x18, x19, x20, x21, x22, x23, x24, 

x25, x26, x27, x28, x29, x30, x31, x32, 

yl, y2, y3, y4, yS, y6, y7, y8, 

y9, ylO, yll, y12, y13, y14, ylS, y16, 

y17, y18, y19, y20, y21, y22, y23, y24, 

y25, y26, y27, y28, y29, y30, y31, y32: Bit 

ofsort Bit 

0 xor 0 0; 

0 xor 1 1; 

1 xor 0 1; 

1 xor 1 0; 

ofsort Nat 

2 = Succ(NatNum(l)); 
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ofsort BitString 

BitString 

( 

Block 

( 

xl, x2, x3, x4, xS, x6, x7, x8, 

x9, xlO, xll, x12, x13, x14, xlS, x16, 

x17, x18, x19, x20, x21, x22, x23, x24, 

x25, x26, x27, x28, x29, x30, x31, x32 

Bit(xl) + x2 + x3 + x4 + xS + x6 + x7 + x8 + 

x9 + xlO + xll + x12 + x13 + x14 + xlS + x16 + 

x17 + x18 + x19 + x20 + x21 + x22 + x23 + x24 + 

x25 + x26 + x27 + x28 + x29 + x30 + x31 + x32; 

ofsort Bool 

forall X, Y: Block 

X eq Y BitString(X) eq BitString(Y); 

X ne Y BitString(X) ne BitString(Y); 

ofsort Nat 

forall X: Block 

NatNum(X) = NatNum(BitString(X)); 

ofsort BitString 

forall X, Y: Block, b: Bit 

b + X =  b + BitString(X); 

X ++ Y = BitString(X) ++ BitString(Y); 
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ofsort Block 

CYC 

( 
Block 

( 
xl, x2, x3, x4, x5, x6, x7, x8, 

x9, xlO, xll, xl2, xl3, xl4, xl5, xl6, 

xl7, xl8, xl9, x20, x21, x22, x23, x24, 

x25, x26, x27, x28, x29, x30, x31, x32 

Block 

( 
x2, x3, x4, x5, x6, x7, x8, x9, 

xlO, xll, xl2, xl3, xl4, xl5, xl6, xl7, 

xl8, xl9, x20, x21, x22, x23, x24, x25, 

x2 6, x27, x28, x29, x30, x31, x32, xl 

) ; 

XOR 

( 
Block 

( 
xl, x2, x3, x4, x5, x6, x7, x8, 

x9, xlO, xll, xl2, xl3, xl4, xl5, xl6, 

xl7, xl8, xl9, x20, x21, x22, x23, x24, 

x25, x2 6, x27, x28, x29, x30, x31, x32 

) , 

Block 

yl, y2, y3, y4, y5, y6, y7, y8, 

y9, ylO, yll, yl2, yl3, yl4, yl5, yl6, 

yl7, yl8, yl9, y20, y21, y22, y23, y24, 

y25, y26, y27, y28, y29, y30, y31, y32 

Block 

( 
xl xor yl, x2 xor y2, x3 xor y3, x4 xor y4, 

x5 xor y5, x6 xor y6, x7 xor y7, x8 xor y8, 

x9 xor y9, xlO xor ylO, xll xor yll, xl2 xor yl2, 

xl3 xor yl3, xl4 xor yl4, xl5 xor yl5, xl6 xor yl6, 

xl7 xor yl7, xl8 xor yl8, xl9 xor yl9, x20 xor y20, 

x21 xor y21, x22 xor y22, x23 xor y23, x24 xor y24, 

x25 xor y25, x26 xor y26, x27 xor y27, x28 xor y28, 

x29 xor y29, x30 xor y30, x31 xor y31, x32 xor y32 

) ; 
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FIX1 

( 
Block 

( 
x1, x2, x3, x4, xS, x6, x7, x8, 

x9, x10, x11, x12, x13, x14, x15, x16, 

x17, x18, x19, x20, x21, x22, x23, x24, 

x25, x26, x27, x28, x29, x30, x31, x32 

Block 

( 
x1, 0, x3, x4, xS, x6, 1, x8, 

x9, xlO, x11, 0, x13, 1, x15, x16, 

0, x18, x19, x20, 1, x22, x23, x24, 

x25, x26, 0, x28, x29, x30, x31, 1 

) ; 

FIX2 

( 
Block 

( 
x1, x2, x3, x4, xS, x6, x7, x8, 

x9, x10, x11, x12, x13, x14, x15, x16, 

x17, x18, x19, x20, x21, x22, x23, x24, 

x25, x26, x27, x28, x29, x30, x31, x32 

Block 

( 
0, x2, x3, x4, xS, x6, 0, x8, 

1, x10, x11, x12, x13, x14, x15, 0, 

x17, 1, x19, x20, x21, 0, x23, x24, 

x25, x26, 1, x28, x29, x30, x31, 1 

) ; 
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ofsort Block 

forall X, Y, U, L, S, P, D: Block, C, E: Bit 

NatNum(X) + NatNum(Y) = NatNum(C + S) 

= > 

ADD(X, Y) = S; 

= > 

NatNum(X) * NatNum(Y) 

NatNum(U) + NatNum(L) 

NatNum(S) + NatNum(C) 

MULl(X, Y) = P; 

NatNum(X) * NatNum(Y) 

2 * NatNum(U) 

NatNum (U ++ L) , 

NatNum(C + S), 

NatNum(P) 

NatNum(D) + (2 * NatNum(E)) + NatNum(L) 

NatNum(S) + (2 * NatNum(C)) 

=> 

MUL2(X, Y) = P; 

NatNum (U ++ L), 

NatNum (E + D), 

NatNum(C + S), 

NatNum(P) 

NatNum(X) * NatNum(Y) 

2 * NatNum (U) 

NatNum(D) + NatNum(L) 

NatNum(S) + (2 * NatNum(C)) 

NatNum (U ++ L), 

NatNum (E + D), 

NatNum(C + S), 

NatNum(P) 

= > 

MUL2A(X, Y) = P; 
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type ConditioningFunctions is 

BlockFunctions, Octet, BitNatRepr 

sorts Pair 

opns 

eqns 

Pair: 

xor : 

BitString: 

NatNum: 

Need.Adjust: 

AdjustCode: 

Adjust: 

BYT: 

PAT: 

ofsort Octet 

forall 

x1, x2, x3, x4, 

y1, y2, y3, y4, 

Block, Block -> Pair 

Octet, Octet -> Octet 

Octet -> BitString 

Octet -> Nat 

Octet -> Bool 

Octet -> Bit 

Octet, Octet -> Octet 

Pair -> Pair 

Pair -> Octet 

xS, x6, x7, x8, 

yS, y6, y7, y8: Bit 

Octet(x1, x2, x3, x4, xS, x6, x7, x8) xor 

Octet (y1, y2, y3, y4, yS, y6, y7, y8) 

Octet 

( 

x1 xor y1, x2 xor y2, x3 xor y3, 

xS xor yS, x6 xor y6, x7 xor y7, 

) ; 

ofsort BitString 

x4 

xB 

forall b1, b2, b3, b4, bS, b6, b7, b8: Bit 

xor 

xor 

BitString(Octet(b1, b2, b3, b4, b5, b6, b7, b8)) 

Bit(b1) + b2 + b3 + b4 + b5 + b6 + b7 + b8; 

ofsort Nat 

forall B: Octet 

NatNum(B) = NatNum(BitString(B)); 

ofsort Bool 

forall B: Octet 

Need.Adjust(B) = 

(B eq Octet (0, 0, 0, 0, 0, 0, 0, 0)) or 

(B eq Octet (1, 1, 1, 1, 1, 1, 1, 1)); 
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ofsort Bit 

forall B: Octet 

NeedAdjust(B) => AdjustCode(B) 1; 

not(NeedAdjust(B)) => AdjustCode(B) 0; 

ofsort Octet 

forall B, P: Octet 

NeedAdjust(B) => Adjust(B, P) 

not(NeedAdjust(B)) => Adjust(B, P) 

B xor P; 

B; 

ofsort Octet 

forall X, Y: Block, Bl, B2, B3, B4, BS, B6, B7, B8: Octet 

=> 

BitString(X) = 

BitString(Bl) ++ BitString(B2) ++ 

BitString(B3) ++ BitString(B4), 

BitString(Y) = 

BitString(BS) ++ BitString(B6) ++ 

BitString(B7) ++ BitString(B8) 

PAT(Pair(X, Y)) = 

Octet 

( 

) ; 

AdjustCode(Bl), AdjustCode(B2), 

AdjustCode(B3), AdjustCode(B4), 

AdjustCode(BS), AdjustCode(B6), 

AdjustCode(B7), AdjustCode(B8) 
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ofsort Pair 

forall 

=> 

X, Y, Xc, Yc: Block, 

Bl, B2, B3, B4, BS, B6, B7, B8, 

Bel, Bc2, Bc3, Bc4, Bc5, Bc6, Bc7, Bc8: 

pl, p2, p3, p4, p5, p6, p7, p8: 

BitString(X) = 

BitString(Bl) ++ BitString(B2) ++ 

BitString(B3) ++ BitString(B4), 

BitString(Y) = 

BitString(BS) ++ BitString(B6) ++ 

BitString(B7) ++ BitString(B8), 

Octet, 

Bit 

PAT(Pair(X, Y)) = Octet(pl, p2, p3, p4, pS, p6, p7, p8), 

Adjust (Bl, Octet (0, 0, 0, 0, 0, 0, 0, pl)) Bel, 

Adjust(B2, Octet(O, 0, 0, 0, 0, 0, pl, p2)) Bc2, 

Adjust (B3, Octet (0, 0, 0, 0, 0, pl, p2, p3)) Bc3, 

Adjust (B4, Octet (0, 0, 0, 0, pl, p2, p3, p4)) Bc4, 

Adjust(BS, Octet(O, 0, 0, pl, p2, p3, p4, pS)) BcS, 

Adjust (B6, Octet (0, 0, pl, p2, p3, p4, pS, p6)) Bc6, 

Adjust(B7, Octet(O, pl, p2, p3, p4 ,pS, p6, p7)) Bc7, 

Adjust(B8, Octet(pl, p2, p3, p4, pS, p6, p7, p8)) Bc8, 

BitString(Xc) = 

BitString(Bcl) ++ BitString(Bc2) ++ 

BitString(Bc3) ++ BitString(Bc4), 

BitString(Yc) = 

BitString(BcS) ++ BitString(Bc6) ++ 

BitString(Bc7) ++ BitString(Bc8) 

BYT(Pair(X, Y)) = Pair(Xc, Yc); 
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type Message is 

NonEmptyString actualizedby BlockFunctions using 

end type 

sortnames 

Bool for FBool 

Block for Element 

Message for NonEmptyString 

opnnames 

Message for String 
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type BasicMAA is 

BlockFunctions, ConditioningFunctions, Message 

sorts TwoPairs, ThreePairs 

opns 

TwoPairs: 

ThreePairs: 

Prelude: 

MainLoopCore: 

MainLoop: 

MainLoopRepeated: 

Coda: 

MAA: 

Pair, Pair -> TwoPairs 

Pair, Pair, Pair -> ThreePairs 

Pair -> ThreePairs 

Pair, Block, Block -> Pair 

TwoPairs, Block -> TwoPairs 

TwoPairs, Message - > TwoPairs 

TwoPairs, Pair -> Block 

Pair, Message -> Block 
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eqns 

ofsort ThreePairs 

forall 

Key: Pair, 

P: Octet, 

Jc, Kc, Q, 
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Jl_2, Jl 4, Jl 6, Jl 8, J2_2, J2_4, J2_6, J2 8, 
Kl_2, Kl 4, Kl_5, Kl_7, Kl_9, K2_2, K2_4, K2_5, K2_7, K2_9, 
H4, H5, H6, H7, H8, H9: Block 

= > 

BYT(Key) = Pair(Jc, Kc), 
PAT(Key) = P, 

(NatNum(l) .+ NatNum(P)) * (NatNum(l) + NatNum(P)) 

MULl(Jc, Jc) Jl_2, 
MULl(Jl 2, Jl_2) Jl 4, 

- -

MULl(Jl 2, Jl 4) Jl 6, 
- -

MULl(Jl 2, Jl 6) Jl 8, 
- -

MUL2(Jc, Jc) J2 2, 
-

MUL2(J2 2, J2 2) J2 4, 
- -

MUL2(J2 2, J2 4) J2 6, 
- -

MUL2(J2 2, J2 6) J2 8, 
- -

XOR(Jl 4, J2 4) H4, 
- -

XOR(Jl 6, J2 6) = H6, 
- -

XOR(Jl 8, J2 8) = H8, 

MULl(Kc, Kc) Kl 2, 
-

MULl(Kl_2, Kl 2) Kl 4, 
- -

MULl(Kc, Kl 4) Kl 5, 
-

MULl(Kl 2, Kl 5) Kl 7, 
- - -

MULl(Kl 2, Kl 7) Kl 9, 
- - -

MUL2(Kc, Kc) K2 2, 
-

MUL2(K2 2, K2 2) K2 4, 
- - -

MUL2(Kc, K2 4) K2 5, 
-

MUL2(K2 2, K2 5) K2 7, 
- - -

MUL2(K2 2, K2 7) K2 9, 
-

MUL2(XOR(Kl_5, K2 5) ' Q) H5, 
XOR(Kl 7, K2 7) H7, 

- -

XOR(Kl 9, K2 9) H9 
-

Prelude (Key) = 

ThreePairs 

BYT(Pair(H4, H5)), 
BYT(Pair(H6, H7)), 
BYT(Pair(H8, H9)) 

) ; 
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ofsort Pair 

forall X, Y, Xa, Ya, Xb, Yb, M, E, F, G: Block 

= > 

XOR(X, M) = Xa, 

XOR(Y, M) = Ya, 

FIXl(ADD(Ya, E)) F, 

FIX2 (ADD (Xa, E)) G, 

MULl (Xa, F) Xb, 

MUL2A(Ya, G) = Yb 

MainLoopCore(Pair(X, Y), M, E) Pair (Xb, Yb) ; 

ofsort TwoPairs 

forall XY, VW, XYn, VWn: Pair, M, V, W, Vn: Block 

VW = Pair(V, W), 

CYC(V) = Vn, 

VWn = Pair(Vn, W), 

MainLoopCore(XY, M, XOR(Vn, W)) = XYn 

= > 

MainLoop(TwoPairs(XY, VW), M) = TwoPairs(XYn, VWn); 

ofsort TwoPairs 

forall XYVW, XYVWa: TwoPairs, M: Block, MM: Message 

MainLoopRepeated(XYVW, Message(M)) = MainLoop(XYVW, M); 

MainLoop(XYVW, M) = XYVWa 

= > 

MainLoopRepeated(XYVW, M + MM) MainLoopRepeated(XYVWa, MM); 

ofsort Block 

forall XYVW, XYVWa, XYVWb: TwoPairs, S, T, Xb, Yb: Block, VWb: Pair 

MainLoop(XYVW, S) = XYVWa, 

MainLoop(XYVWa, T) = XYVWb, 

XYVWb = TwoPairs(Pair(Xb, Yb), VWb) 

= > 

Coda(XYVW, Pair(S, T)) = XOR(Xb, Yb); 

ofsort Block 

forall Key, XY, VW, ST: Pair, MM: Message, XYVWn: TwoPairs, Z: Block 

=> 

Prelude(Key) = ThreePairs(XY, VW, ST), 

MainLoopRepeated(TwoPairs(XY, VW), MM) 

Coda(XYVWn, ST) = Z 

MAA(Key, MM) = Z ;  
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type SegmentedMessage is 

NonEmptyString actualizedby Message using 

end type 

sortnames 

Bool for FBool 

Message for Element 

SegmentedMessage for NonEmptyString 

opnnames 

Segment for String 
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type AppliedMAA is 

BasicMAA, SegmentedMessage, DecNatRepr 

sorts AcceptableMessage 

opns 

eqns 

256, 1000000: 

Flatten: 

Normal: 

MAC: 

MAC: 

Restrict: 

Contents: 

Authenticator: 

ofsort Nat 

-> Nat 

SegmentedMessage -> Message 

SegmentedMessage -> Bool 

Pair, SegmentedMessage -> Block 

Pair, Message -> Block 

Message -> AcceptableMessage 

AcceptableMessage -> Message 

Pair, AcceptableMessage -> Block 

256 = NatNum(Dec(2) + 5 + 6); 

1000000 = NatNum(Dec(l) + 0 + 0 + 0 + 0 + 0 + 0); 

ofsort Message 

forall S: Message, SS: SegmentedMessage 

Flatten(Segment(S)) 

Flatten(S + SS) 

:;.fsort Bool 

S; 

S ++ Flatten(SS); 

forall S: Message, SS: SegmentedMessage 

Normal(Segment(S)) 

Normal(S + SS) 

ofsort Block 

Length(S) le 256; 

(Length(S) eq 256) and Normal(SS); 

forall Key: Pair, S: Message, SS: SegmentedMessage 

MAC(Key, Segment(S)) 

MAC(Key, SS + S) 

ofsort Block 

/ 

MAA(Key, S); 

MAA(Key, MAC(Key, SS) + S); 

forall Key: Pair, MM: Message, SS: SegmentedMessage 

=> 

MM = Flatten(SS), 

Normal (SS) 

MAC(Key, MM) = MAC(Key, SS); 
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ofsort AcceptableMessage 

forall MM: Message, Zero: Block 

=> 

Length(MM) gt 1000000, 

NatNum(Zero) = 0 of Nat 

Restrict(MM) = Restrict(Message(Zero)); 

ofsort Message 

forall MM: Message 

Length(MM) le 1000000 

=> 

Contents(Restrict(MM)) = MM; 

ofsort Block 

forall Key: Pair, X: AcceptableMessage 

Authenticator(Key, X) = MAC(Key, Contents(X)); 
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