
Innovations Syst Softw Eng (2011) 7:257–264
DOI 10.1007/s11334-011-0163-2

SI : FM & UML

UML/SysML semantic tunings

Ileana Ober · Iulian Ober · Iulia Dragomir ·
El Arbi Aboussoror

Received: 30 April 2011 / Accepted: 1 September 2011 / Published online: 2 October 2011
© Springer-Verlag London Limited 2011

Abstract Recent years have seen a manifest increase in the
use of modelling by the embedded systems industry. UML
and SysML are two examples of languages used in this con-
text. One of the reasons why the use of models is interest-
ing is the possibility to perform early verification, validation
and testing. A lot of work was devoted to developing theo-
retical results in verification and validation, and interesting
results are available. Integrating these results in frameworks
that take high-level models as an entry remains a challenging
task, for several reasons that include the difficult scalabili-
ty of the theoretical results. In previous work, we presented
OMEGA 2, a framework that takes this challenge. Applying
our framework on large industrial models revealed the fact
that some features of the UML/SysML semantics which lead
to bottlenecks in verification are not actually necessary in
the models that we considered, thus leaving place for opti-
misations. This paper discusses the gap existing between the
choices made in the general UML/SysML semantic frame-
work and the actual needs of the users. We illustrate it based
on the semantics of ports, for which we give a simplified
version of the semantics. This semantics was implemented
in our tools and we quantify the optimisation obtained when
applying it to a set of case studies.

Ileana Ober (B) · Iulian Ober · I. Dragomir · E. A. Aboussoror
IRIT, Université de Toulouse, 118, route de Narbonne,
31062 Toulouse, France
e-mail: Ileana.Ober@irit.fr

Iulian Ober
e-mail: Iulian.Ober@irit.fr

I. Dragomir
e-mail: Iulia.Dragomir@irit.fr

E. A. Aboussoror
e-mail: El-Arbi.Aboussoror@irit.fr

Keywords UML · SysML · Composite structure ·
Operational semantics · Case studies

1 Introduction

Model Driven Engineering approaches are being adopted in
a large number of domains. UML [15] and SysML [14] are
two examples of languages used in this context. In the area of
embedded software, but not only, one of the reasons the use
of models is interesting [1] is that they allow for early veri-
fication at model level. The early verification is done using
various automation techniques, amongst the most used being
model checking techniques [5]. One of the major difficulties
that model checking has to face is that of its scalability on
large models, as they result from current industrial practice.
The 2007 Turing Lecture [4] mentioned the need for scal-
able verification methods to cope with “inherent complexity
limitations when applied to large systems” and suggested it
could be achieved by adapting to “specific semantic domains
depending on the data handled”. In this paper, we go in this
direction and present a semantics optimisation approach. We
focus on the semantics of composite structures, as defined in
UML 2 and SysML.

In previous work [12], we have presented a UML-based
environment for model-checking operational, design-level
UML models based on a mapping to a model of communi-
cating extended timed automata. The target language of the
mapping is the IF format, for which existing model-check-
ing and simulation tools can be used [3]. This framework
was successfully applied on industrial case studies, such as
a component of the airborne Medium-Altitude Reconnais-
sance System [13] and a manually re-engineered model of
the Ariane-5 flight software [11]. Recently, we extended the
framework to UML 2.0 and SysML, which implies covering

123

258 I. Ober et al.

hierarchical composite structure diagrams (or internal block
diagrams) [9].

The preliminary applications of this new framework on
medium-size case studies were encouraging and were fol-
lowed by an application on a full fledged industrial case study.
Although we were able to pass the first compilation stages, it
became obvious that, to be able to perform effective valida-
tion, we need to work on optimising the existing semantics.
Feed-backs obtained from the case studies suggested some
semantics optimisations. We start from the observation that
in most of the cases, the notions of port, interface, and con-
nector, present in the case-studies, are much simpler that their
complex counterparts defined by the UML 2.0 standard.

The remainder of the paper is organized as follows. We
start by a brief overview of the need for hierarchical struc-
tures, in Sect. 2, and we present the major characteristics of
the hierarchical composite structure diagram semantics, such
as defined by UML [15] and covered by our semantics [10].
In Sect. 3, we present some feed-backs obtained when apply-
ing “standard” semantics to realistic case studies. These lead
us to some semantics optimisations, that we will overview in
Sect. 4. In Sect. 5, we evaluate the two semantics, both from
a qualitative and a quantitative perspective.

2 Hierarchical composite structure diagrams

In this section, we overview the main concepts present in
UML hierarchical composite diagrams (Sect. 2.1) and we
make some considerations on their semantics (Sect. 2.2).

2.1 Key concepts

Composite structures are introduced in UML 2.x [2,15] for
the specification of “structures of interconnected elements
that are created within an instance of a containing classifier”.
Composite structures are a powerful mechanism to increase
the expressiveness and the readability of UML class models.
They are used for specifying the initialisation of complex
(hierarchical) object structures. This is particularly useful for
real-time embedded systems, which are often structured as
hierarchical block models, with classes having a fixed num-
ber of instances with predefined roles.

An example of a composite structure identifying the model
elements involved is given in Fig. 1. A composite structure
defines the structure of (instances of) a class in terms of inner
components, also called parts (b in Fig. 1), and of commu-
nication connectors, also called links (c,d,e,f). Connec-
tors exist either between inner components (d,e) or between
inner components and the outside environment of the com-
posite structure (c,f). A connector has two end points; an
end point can be either an inner component or a port. A
connector can be the realization of an association, although

this is not mandatory. UML introduces the following termi-
nology for connectors: delegation connectors are connectors
between a (port of a) part and a port of its containing compos-
ite structure (e.g., c,f) and assembly connectors are links
between (ports of) two parts of the same composite structure
(e.g., d,e).

A port represents an interaction point between an object
and its environment. The allowed inbound requests that can
travel through the port are specified by the provided inter-
face(s) (e.g., g), while the outbound requests are specified
by the required interface(s) (e.g., h).

For further technical details, the reader is referred to the
UML standard [15].

2.2 Semantic considerations

Composite structures are a big evolution of the object-ori-
ented paradigm, which is the basis of UML. Their impli-
cations on the semantic level are huge and not completely
defined by the UML standard (see for example the problems
outlined in [6,10]).

The principle of the OMEGA profile is to have a clear
and coherent executable semantics for the chosen UML sub-
set, i.e. conform to the UML standard. In previous work, we
presented the semantics of the composite structure diagrams
[10]. We focus here only on the elements used in the context
of this paper: the semantics of ports.

For the translation of composite structures, the main chal-
lenge was to fit the relatively complex, hierarchical UML
modelling constructs into the simple and flat object space
of IF automata, while remaining as close as possible to the
UML standard semantics. While remaining rather abstract,
the UML standard semantics gives some information on the
expected semantics. For instance, with respect to a port it
states that: “when an instance of a classifier is created,
instances corresponding to each of its ports are created and
held in the slots specified by the ports, in accordance with its
multiplicity”.

Based on this, we built a semantics using the principle
that the ports should be handled—at the semantics level—as
first class language citizens. Concretely, each port instance is
implemented as an IF process instance and each connector is
represented by attributes in the end points (in ports or in com-
ponents). A UML composite structure diagram is thus used
as an initialisation scheme for instantiating components and
ports and for creating links. The composite structure is, there-
fore, translated to a constructor (see [12] for a description of
constructors in OMEGA).

The tests we performed on this semantics proved that the
semantics choices we made are sound and we were able
to catch errors in the composite structure of some models.
Preliminary medium size tests performed on this semantics,
in terms of model-checking the IF translation of realistic

123

UML/SysML semantic tunings 259

Fig. 1 Example of a composite
structure diagrams with its main
concepts

ATM

kb:Keypad 1

d:Display 1

cu:CashUnit 1

ca:CardUnit 1 bb:BankTransactionBroker
1

bank

 knaBotMTA MTAoTknaB

cont:Controller 1

cu
ca
d

k

cu

ca

d

k

ATM_Bank

BankToATM ATMtoBank

a

b
d c

e

f

g h

Elements :
(a) port
(b) part
(c) delegation connector
 (port-to-instance)
(d) assembly connector
 (port-to-instance)
(e) assembly connector
 (instance-to-instance)
(f) delegation connector
 (port-to-port)
(g) provided interface
(h) required interface

models using complex composite structure diagrams, pro-
vided encouraging results and we went further and applied
our semantics on full-fledged industrial case studies.

3 Feed-back from industrial case studies

In the context of the FullMDE project, we applied the
OMEGA 2 toolset on a set of small toy examples as well as
one large industrial case study, the solar generation system
(SGS) of the automated transfer vehicle (ATV)1 designed by
Astrium Space Transportation.2 The concrete specification
of this system as well as the verifications performed on these
models are out of the scope of this paper. However, we will
stop on some lessons that emerged from these case studies.

The main objectives of this experiment were the follow-
ing:

1. to assess whether the OMEGA profile is expressive
enough to cover all the situations that can be encoun-
tered in real case studies;

2. to make sure the semantic choices are coherent with the
user expectations;

3. to see how far we can go in applying verification tech-
niques on these models.

An important feature of this experiment is that the models
were conceived independently by the field engineers after a
minimal training on using our tool suite. This is an impor-
tant feature because the end users are the ones that can best
assess the expressiveness of a language, with respect to their
needs. It implies that the modelling framework should be
usable, without deep knowledge of the technicalities behind
each concept.

1 http://www.esa.int/atv.
2 http://www.astrium.eads.net.

The hierarchical structure diagrams proved to be a central
artefact for the system models. In our case studies, the users
intensively used structure diagrams to cope with complexity.
For example, the SGS case study contains 25 internal block
diagrams (IBD) at various nesting levels in the model (there
are 4 levels of block containment), each diagram contain-
ing up to 13 parts and 68 connectors. In some cases, several
IBDs are used to describe the same block from different view
points, resulting in blocks that have up to 14 parts and around
130 contained connectors.

The OMEGA2 tools introduce a set of rules for construct-
ing sound and well-typed composite structures, which are
detailed and rationalized in [10]. The overall conclusion from
the case studies is that the rules are not over-restrictive and
went mostly unperceived, as they parallel best practices rules
adopted by the engineering team. Concerning the operational
semantics of structured classifiers, however, the choices that
were made initially were sometimes challenged by obser-
vations made during the case studies, as we show in the
sequel.

One of the first observations that we were able to make
was that, often, UML/SysML offers several alternative ways
for encoding the same information. While this is a frequent
source of problems for tool builders and semantics defini-
tions, we should turn it into an advantage, by inciting the
users to make the choices that are closer to their particu-
lar application domain and to make sure the tools support
this.

For instance, in SysML there are several ways to spec-
ify connectors between blocks. A connector can be linked to
a block instance either directly or via a port. For a directly
linked connector to be meaningful, it is in general neces-
sary to type it with an association (the exact well-formedness
rules are defined in [10]). However, during the experimenta-
tion phase, we found out that system engineers neither use
directly linked connectors, nor use associations, which are
viewed as a software-level concept with weak semantics and

123

http://www.esa.int/atv
http://www.astrium.eads.net

260 I. Ober et al.

not suitable for system-level modelling. Instead, ports with
clearly identified provided/required interfaces are systemat-
ically used. This type of observation can help prioritise the
features offered by a tool and provide optimisations for the
most relevant concepts from a user perspective.

Another observations are that, sometimes, the user’s
demands for features go beyond their actual needs and are
irrespective of the induced price. As a concrete example,
during the preliminary discussions, the users expressed their
need to have a broadcast semantics for ports that have mul-
tiple connectors transporting the same interface departing
from them. (Alternatives, also used in other tools such as
IBM Rhapsody3 or Tau,4 would be to either choose non-
deterministically the connector through which requests are
delivered, to signal this as a modelling error, or to demand
that the port behaviour be explicitly specified in that case by
the designer.) During the case studies, however, it turned out
that this functionality was never used, since it diverges from
the functioning of the deployed systems. Still, offering the
possibility to do broadcasts induces overhead in the under-
lying semantics that affects even the case studies not using
this feature. For example, in the case of a broadcast, the mes-
sage received by the port of a composite class needs to be
dispatched to all the parts that are able to treat it and need to
be computed.

Finally, the most important observation concerns the
behaviour of ports. UML/SysML offers a very powerful con-
cept of port, which can have an associated behaviour or proto-
col state machine. Nevertheless, none of the 388 ports in the
SGS model actually used this feature. Across the case stud-
ies, the ports were always used as simple interaction points,
having the default behaviour of transferring requests from
a source to a destination connector according to their type.
Despite that, all these ports lead to new active entities at the
level of the semantics, which is a significant unnecessary
overhead, as we will show in the next sections.

This leads us to the conclusion that a quantified evalu-
ation of the costs induced by choices between alternative
semantics would allow more substantiated decisions, closer
to the actual needs of the users. The next two sections concen-
trate on one such example of semantic tuning: we present a
lighter alternative semantics for ports and connectors and we
make a qualitative and quantitative evaluation with respect to
the standard semantics. The outcome of these evaluations is
that, under certain conditions and in well-identified contexts,
a lighter semantics could be used. The standard semantics
remains obviously the one capable of dealing the variety of
situations the can be encountered in practice.

3 http://www.ibm.com/software/awdtools/rhapsody.
4 http://www.ibm.com/software/awdtools/tau/.

A

b:B1

I

pB

c:C1

I, J

pC

pA

I, J

D

e:E1

IpE

f:F1

J

pF
I, J

pD

Syst

d:D1

I, J

pD
a:A1

I, J

pA

Fig. 2 Hierarchical composite structure example

4 An example of semantic tuning

In this section, we present the technical details of a seman-
tics simplification example, which addresses the issue of port
behaviour. As we have seen above, although it does not give a
complete semantics for ports, the UML standard implies that
ports are active entities and this is also the way they were
implemented in OMEGA.

To illustrate this, we use the hierarchical composite
structure example in Fig. 2. B, C, E and F are active classes
(owning behaviour described by state machines), but with no
hierarchical structure of their own. We do not give here their
complete definition, as it can be either inferred from what is
already present in the upper part of Fig. 2 (in terms of ports
and implemented/required interfaces), or it is not important
for the purpose of this example.

A is a class that contains two parts—an instance of the
active class B, respectively an instance of class C—and a
port pA. In the context of A, the “wiring” of ports and con-
nectors occurs as illustrated in Fig. 2. Similarly, D is a class
containing parts, ports and connectors as illustrated in the
figure.

The upper part of Fig. 2 gives the type definitions of A
and D. The lower part of the figure gives an example of their
possible combined usage in the context of another composite
class (here Syst).

Note that in other parts of the model, any of these classes
could be used in different ways, provided their port constraints

123

http://www.ibm.com/software/awdtools/rhapsody
http://www.ibm.com/software/awdtools/tau/

UML/SysML semantic tunings 261

:A

:pA

:F:E:D:C:B

:pE:pD:pC:pB :pF

:Syst

Fig. 3 Object diagram according to the original semantics

are satisfied. The structures shown in Fig. 2 are used at run-
time to create instances of composite classes (A, D, Syst) by
creating and wiring the respective sub-components.

The run-time semantic structure corresponding to the
example, as implied by the UML semantics, is presented
in Fig. 2. Each time the Syst class is instantiated, it results
in the creation of the elements described in the object dia-
gram presented in Fig. 3. In this object diagram, we have
instances corresponding to each of the parts present in Syst,
i.e. one instance of the class A and D respectively, as well as
instances for each of their ports (here pA and pD). The crea-
tion of the instances of A and D leads to the recursive initiali-
sation of their respective structure (B,C, pB, pC, …). Figure
3 describes the connectors existing between these instances
as well as their directionality. Their creation is also part of
the semantics, and enables the communication as specified
in the definition of class A.

The entities generated corresponding to the initialisation
of A as well as those generated corresponding to the initiali-
sation of D are respectively connected, as specified in the
definition of Syst, and result in the connector that binds pA
and pD.

One can see that the semantics of Syst is given in terms
of 12 active entities, out of which six correspond to ports.
Our semantics being expressed in terms of a process-based
formalism (IF, see [3]), each of these entities results in the
creation of a new process. The behaviour of the processes
corresponding to the ports (pA, pB, …, pF) is fairly sim-
ple and it consists of systematically forwarding the received
messages, unless advanced port policies are expressed at the
level of the UML model in terms of state machines attached
to ports.

The complete absence, across our case studies, of state
machines attached to ports implies a possible optimisation:
replacing the objects corresponding to ports by passive (data
only) entities. There is, however, a difficulty in eliminating
the objects that correspond to ports, which comes from the
completely dynamic nature of the model: in our example,
the instantiation of C results in a part of A that forwards the
messages to the context embedding A. However, C may also
be instantiated in other contexts, and one cannot statically
determine the destination of C’s messages, as it is depend-
ing on the hierarchical structure in which the instance of B
is embedded. It is obvious that the actual destination of the

d(I)

:A :D :E:C
d(I)

d(J)

:B :F

:Syst

Fig. 4 Elements in the simplified semantics

messages sent out by C can only be calculated at run-time and
its type may vary depending on the structure that encloses C.

Note that we aim for a modular compilation method, i.e.
a method that allows to compile the block C in a unique way
regardless of the contexts in which C is instantiated. This
means that the code corresponding to C cannot contain any
direct information of the destination of the messages, but
rather use an indirection mechanism. The mechanism has to
be flexible enough so that the initialisation of the actual con-
nections of a composite (e.g., an instance of A) does not need
to involve knowledge about the inner components (b, c).

In the interest of space, we do not give here all the details
of this alternative translation, but instead we explain how
it works on the UML model sketched in Fig. 2. As in the
case of the “classical” semantics, the active objects result in
active entities. This leads to active entities corresponding to
the instances of A, B, C, D, E and F, as shown in Fig. 4. These
are the only active entities in our semantics, since the ports
are modelled as passive data.

Let us examine in which order the various elements pres-
ent in Fig. 4 are created. Based on the composite structure
diagrams described in Fig. 2, at the instantiation of Syst are
created one instance of A and one instance of D, as well as the
connector between pA and pD. The creation of A involves
to the creation of one instance of B and one instance of C.
At the creation of C, due to the presence of pC—that requires
the interfaces I and J—two passive objects of a particular
type called routing cell are created, which will eventually
(i.e., once the connections of A will be initialised) store the
destinations for requests emanating from pC and belonging
to I and respectively J. A routing cell is a very simple passive
object which stores the destination information for a par-
ticular (port,interface) pair (in IF, the destination is simply
represented by a process identifier).

The routing cells are represented in Fig. 4 as grayed rect-
angles (d(I) and d(J)). The creation of B also leads to a routing
cell for the required interface I (also denoted d(I)). Once b
and c have been created, the structure diagram of A leads to
the creation of pA and of the connectors: pB to pA and pC
to pA. The semantics of these two UML connectors is that
messages sent out via pB and pC get to the future external
connection of pA. As a result, pA will contain a reference
to the routing cells d(J) of C and to the d(I) of B and C, as
shown in Fig. 4.

123

262 I. Ober et al.

Creating D, leads to the creation of one instance of E and
one instance of F. Moreover, based on its composite struc-
ture, D’s port variable contains references to the instances E
and F.5 Finally, after the instances of A and D are created,
the connector pA to pD is created. This consists of filling
the routing cells pointed by pA with the values referred by
pD. Note that this can be done without knowledge of the
connections and subcomponents of A and D.

5 Evaluation

5.1 Qualitative evaluation

Two important questions arise for every semantic tuning:

1. what restrictions to the models does the semantic tuning
incur?

2. in what cases the alternative semantics is equivalent with
the original semantics and in what cases it is not?

These questions cannot be given a general answer and
can only be treated case-by-case. The first question is gener-
ally simple and the answer derives from the definition of the
semantic tuning. For instance in our example, the restrictions
are that models should only use standard ports (no flow ports),
not use user-defined port behaviour nor broadcast ports.

The second question is harder and the equivalence argu-
ment is difficult to formalize. For our example, it became
clear after working with a few specifications that the seman-
tics of a system is preserved if there is no possibility for
message overtaking along multi-channel connections in the
original model and if the model abstracts away from delays
in ports/channels. This is due to the nature of our routing
scheme, which propagates the routing information when
components/links are created, and then allows a signal to
be taken from source to destination in only one step. If for
example b and c emit an I signal each (in this order), the
signals will arrive in the same order at the destination (e). In
the original UML/SysML semantics, it is possible that the
channel pB-pA is slower than pC-pA, and the signal from
c overtakes the one from b. We found, however, that the
kind of high-level system models that are usually handled
with OMEGA is rarely concerned with message overtaking
and channel/port congestion (as specific performance analy-
sis methods are usually used for this).

5 In this semantics, we do not consider broadcast ports, which implies
that at the level of pD there is only one connection conveying signals
belonging to I and only one for signals belonging to J. Note that it is
possible to extend the mechanism to support broadcast ports. As this
incurs an overhead, it should be treated as a semantic tuning and should
be balanced according to the need for such broadcast ports in actual
models.

When both the standard and the alternative semantics can
be used to generate a manageable behaviour model of a sys-
tem, in form of a labelled transition system (LTS), one can
prove the equivalence of the two semantics (modulo hid-
ing of port actions) using LTS equivalence. As an example,
we have tried this on a medium-size model of an automated
teller machine (ATM—see next section) and have been able
to prove that the two semantic models are strongly bisimi-
lar, using the CADP toolbox [7]. Since the point of semantic
tuning is to simplify the semantics so that larger models can
become tractable, it is in general not possible to do this com-
parison on all the models for which the simplification is nec-
essary. In such cases, it is useful to have a set of test models
on which semantic equivalence can be tested with the method
mentioned above to gain confidence in the faithfulness of the
semantic tuning.

5.2 Quantitative evaluation

In this section, we make a quantitative assessment of the
simplification of port semantics presented in Sect. 4, in the
interest of showing the potential gains for such semantic tun-
ings. The quantitative evaluation is important for a semantic
tuning, as it gives the user the possibility to choose what
semantic to use for a particular model, by making trade-offs
based on her needs.

We have comparatively applied our two semantics for
ports on the two case studies mentioned before: the toy model
of an ATM and the real-world model of the SGS. To char-
acterise these case studies and to give an idea on their com-
plexity, we use the following metrics:

– Number of classes/blocks (NBlocks);
– Number of ports (NPorts);
– Number of connectors (NConn);
– Depth of the hierarchical structure (DPT);
– Maximum number of ports per class/block (MaxPorts);
– Average number of ports per class/block (AvgPorts);
– Maximum number of connectors connected to a port

(MaxCP);
– Average number of connectors connected to a port

(AvgCP).

Table 1 gives a characterisation of the two case studies
with respect to the metrics introduced above.

To assess the impact of using the two alternative seman-
tics, we analyse the resulting IF code, as it results when apply-
ing the original semantics and the tuned semantics.

In the case of the ATM case study, we analyse the follow-
ing measures:

– number of processes (NoP) after the translation of the
specification in IF. An important number of IF processes
corresponds to an important number of active entities run-
ning in parallel, leading to extra complexity.

123

UML/SysML semantic tunings 263

Table 1 Metrics characterisation of the two case studies

ATM SGS

NBlocks 8 24

NPorts 19 388

NConn 15 397

DPT 3 4

MaxPorts 6 106

AvgPorts 4 16

MaxCP 3 8

AvgCP 2 2

Table 2 Comparative analysis in the case of the ATM

NoP NoS NoSP O R

Standard semantics 55 11998 5900

Alternative semantics 33 5552 2883

Reduction (%) 60 46 49

Table 3 Comparative analysis in the case of the SGS

NoP NoSteps

Standard semantics 984 5461

Alternative semantics 422 2350

Reduction (%) 43 43

– number of states (NoS) gives the size of the state space.
– number of states after partial order reduction

(NoSP O R) gives the number of states that remain
explored when applying the partial order reduction algo-
rithm of the IF model-checker.

Table 2 gives the values for these measures. According
to these results, the change in semantics leads to reducing
the number of active entities (IF processes) to approximately
60%. This active entities reduction results in an important
reduction of the number of states (NoS) to 46%. The reduc-
tion is approximately the same when applying partial order
reduction, implying that the two reductions (semantic tuning
and POR) are additive.

The metrics for the SGS case study are different, since
SGS describes a much more complex behaviour and the com-
plete state space cannot be generated without further seman-
tic tuning. However, as its behaviour is acyclic, one can look
at the impact of the semantic tuning on the size of a nominal
scenario (i.e., from start-up to the full deployment of the solar
wings). The number of steps (NoSteps) measures the length
of the nominal scenario. Table 3 gives a quantitative compar-
ative analysis of NoP (defined as before) and NoSteps, in
the case of the two alternative semantics.

These measurements show that one can quantify the cost
of a particular semantic choice. This has the advantage that
it allows the users to make informed choices with respect to

the use of certain constructs or semantic “profile”. On the
other side, if this method is taken to the extreme, it may have
the drawback that users may have the tendency to use too
primitive concepts, leading to models that are harder to test,
maintain and extend.

6 Conclusion

The interest of applying formal analysis methods as early as
possible in the development life-cycle has been often estab-
lished [8]. However, applying these techniques on complex
models is challenging. A lot of work has been dedicated to
dealing with complexity and combinatorial explosion, e.g., in
the model-checking community (see [4] for a survey). Using
an over-complex semantics may impact other analysis meth-
ods too, including simulation and testing. In this paper, we
argue that it may be useful to work on adapting the semantics
based on the characteristics and needs of the models that are
considered. To support this point, we consider one particular
semantic optimisation in the context of UML/SysML com-
posite structures, which was implemented in the OMEGA2
framework, and for which the gains are quantified on the
basis of two case studies.

Beyond the semantic optimisation example, this paper
argues on the need to analyse the correlation between the
semantics of the model and the actual needs of its appli-
cation domain. General languages, such as UML, have the
huge advantage of being largely known and applicable. How-
ever, they often bring an overhead that proves to be critical
for model-based verification and validation activities. For
the communities using these languages, we think that it may
be interesting to set up a repository of semantic variants,
which makes explicit the details about the induced restric-
tions, the sufficient conditions for equivalence with the stan-
dard semantics and the potential gains in terms of various
metrics, along the lines of what we did for the example con-
sidered in this paper. Note that in our examples we focused
only on the potential benefit for simulation and model-check-
ing. A similar reasoning may be applied with respect to other
parameters such as testability, maintainability or compatibil-
ity with the characteristics of the application domain.

The existence of such a repository would make possi-
ble to create customised semantics, based on the application
(domain) needs. This would also open the way for better
knowledge of the advantages and drawbacks induced by the
choice of particular concepts or semantic variations.

References

1. Balasubramanian K, Krishna AS, Turkay E, Balasubramanian J,
Parsons J, Gokhale AS, Schmidt DC (2006) Applying model-
driven development to distributed real-time and embedded avionics
systems. Int J Embed Syst 2:142–155

123

264 I. Ober et al.

2. Bock C (2004) UML 2 composition model. J Object Technol
3(10):47–74

3. Bozga M, Graf S, Ober I, Ober I, Sifakis J (2004) The IF toolset.
In: Bernardo M, Corradini F (eds) Formal methods for the design
of real-time systems. In: International school on formal methods
for the design of computer, communication and software systems,
SFM-RT 2004, Bertinoro, Italy, September 13–18, 2004, Lecture
notes in computer science, vol 3185. Springer, Berlin, pp 237–267

4. Clarke EM, Emerson EA, Sifakis J (2009) Model checking: algo-
rithmic verification and debugging. turing lecture from the winners
of the 2007 ACM A.M. Turing Award. Commun ACM 52(11):74–
84

5. Clarke EM, Grumberg O, Peled DA (1999) Model checking.
MIT Press, Cambridge

6. Cuccuru A, Gérard S, Radermacher A (2008) Meaningful compos-
ite structures. In: Czarnecki K, Ober I, Bruel J-M, Uhl A, Völter
M (eds) MoDELS. Lecture notes in computer science, vol 5301.
Springer, Berlin, pp 828–842

7. Fernandez J, Garavel H, Kerbrat A, Mounier L, Mateescu R,
Sighireanu M (1996) CADP—a protocol validation and verifica-
tion toolbox. In: Alur R, Henzinger TA (eds) CAV. Lecture notes
in computer science, vol 1102. Springer, Berlin, pp 437–440

8. Hinchey M, Jackson M, Cousot P, Cook B, Bowen JP, Margaria
T (2008) Software engineering and formal methods. Commun
ACM 51(9):54–59

9. Ober I., Dragomir I (2010) OMEGA2: a new version of the profile
and the tools. In: Calinescu R, Paige RF, Kwiatkowska MZ (eds)
ICECCS. IEEE Computer Society, Washington, pp 373–378

10. Ober I., Dragomir I (2011) Unambiguous UML Composite Struc-
tures: The OMEGA2 experience. In: Cerná I, Gyimóthy T,
Hromkovic J, Jeffery KG, Královic R, Vukolic M, Wolf S (eds)
SOFSEM. Lecture notes in computer science, vol 6543. Springer,
Berlin, pp 418–430

11. Ober I, Graf S, Lesens D (2006) Modeling and validation of a
software architecture for the Ariane-5 Launcher. In: Gorrieri R,
Wehrheim H (eds) Formal methods for open object-based distrib-
uted systems. In: Proceedings of the 8th IFIP WG 6.1 international
conference, FMOODS 2006, Bologna, Italy, June 14–16, 2006,
Lecture notes in computer science, vol 4037. Springer, Berlin,
pp 48–62

12. Ober I, Graf S, Ober I (2006) Validating timed UML models by
simulation and verification. STTT 8(2):128–145

13. Ober I, Graf S, Yushtein Y, Ober I (2008) Timing analysis and val-
idation with UML: the case of the embedded MARS bus manager.
ISSE 4(3):301–308

14. OMG (2008) Object Management Group—systems modeling lan-
guage (SysML), v1.1. http://www.omg.org/spec/SysML/1.1/

15. OMG (2009) Object Management Group—unified modeling lan-
guage (version 2.2). http://www.omg.org/spec/UML/2.2

123

http://www.omg.org/spec/SysML/1.1/
http://www.omg.org/spec/UML/2.2

	UML/SysML semantic tunings
	Abstract
	1 Introduction
	2 Hierarchical composite structure diagrams
	2.1 Key concepts
	2.2 Semantic considerations

	3 Feed-back from industrial case studies
	4 An example of semantic tuning
	5 Evaluation
	5.1 Qualitative evaluation
	5.2 Quantitative evaluation

	6 Conclusion
	References

