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Abstract—Design of critical embedded systems demands for
guarantees on the reliability of the implementation/compilation
of a specification. In general, this guarantee takes either
the form of a certified compiler, or the validation of each
translation. Here we adopt the translation validation approach.
In particular, we translate both the SIGNAL specification and
the associated C simulator into LTSs. Then, an appropriate
(successful) preorder test between both LTSs can be interpreted
as a refinement between the C implementation and its source
SIGNAL specification, otherwise, counter-examples are gener-
ated automatically. The feasibility of our approach is shown
through examples.

Keywords-Labelled Transition Systems; Multi-clocked Syn-
chronous Programs; Concurrent Programs; Refinement

I. INTRODUCTION

Design of critical embedded systems demands for guar-
antees in the reliability of the implementation/compilation
from a specification. In general, this guarantee takes either
the form of a certified compiler, or the validation of each
translation. On the one hand, compiler certification proposes
to verify each phase of the compiler. This approach has
the drawback of freezing the potential improvements and/or
developments of the compiler, given that a change in the
compiler incurs the risk of redoing (part of) the verifi-
cation. Translation validation, on the other hand, takes a
common representation for the source and the target and
compares them appropriately to decide on the presumed
relation of refinement between the source and the target
models. As opposed to compiler certification, validation of
the translation has to be done for each source and target
whereas a certified compiler is guaranteed to produce (at
least) a refinement for every translation. Here we adopt
the translation validation approach for specifications given
in SIGNAL and its generated C simulators. In particular,
we translate both the SIGNAL (multi-clocked) specification
and the associated C simulator into LTSs. Then, an ap-
propriate (successful) preorder test on both LTSs can be
interpreted as a refinement between a C implementation
and its source SIGNAL specification, otherwise, counter-
examples are generated automatically. The feasibility of our
approach is shown through examples.

The paper is organized as follows. Related work is revised
in Section II. Section III introduces SIGNAL and FIACRE
which are the languages used in our validation proposal
to describe the source specifications and common LTS

representation, respectively. We assume basic knowledge
of the C programming language (the language of the im-
plementation), and thus we do not present this language
here. In Section IV a translation from SIGNAL to LTSs is
provided, and then we present our correct implementation
relation in the context of LTSs. Next, in Section V examples
of translation from SIGNAL to LTSs are provided together
with the translation of their generated simulators, in order
to test their potential refinement relation. We conclude in
Section VI and give references to future work. Finally, the
appendix provides our algorithm to translate C to FIACRE
(LTS textual representation).

II. RELATED WORK

A. Pnueli et al. [1], [2] were the sole attempts to val-
idate the SIGNAL to C translation. They used so-called
synchronous transition systems (STS) as a common rep-
resentation for the specification and the implementation.
STS are later interpreted as Boolean functions manipulated
through BDD representations; and their refinement test
amounts to matching selected states, comprising the values
of input-output-memory variables, for the source and the
implementation.

By contrast, our proposal is finer (exposing concurrency
within an STS “state”) and equally permits test of refinement
modulo input-output-memory values, or a restriction to
input-output values, depending on the desired granularity of
the model representation. The choice of granularity does not
affect the soundness of the refinement relation established,
only its scalability. The scope of their translation validation
is limited to the class of endochronous SIGNAL programs,
whereas we do not impose such a restriction. It is not
clear whether they restrict their validation for reasons of
tractability or by lack of applicability of their method(s).
Apparently, the reason is that endochronous programs enjoy
some determinism properties that disappear once this class
is abandoned. In addition, we do not use a Boolean rep-
resentation of the specification, but an LTS representation,
which may represent some savings in (an explicit) state
representation. Nonetheless, our work was most inspired by
this research.

On a different approach to validate the translations from
embedded system specifications, G. Singh [3] translates
Bluespec System Verilog specifications into PROMELA (the
language used by model checker SPIN) as well as its RTL
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implementation. The problem of refinement checking is
recast as that of having both PROMELA models (the one
obtained from the specification and the one obtained from its
implementation) hold for the same set of LTL specifications.
It is clear that the precision of this refinement test relies on
the set of LTL specifications which depend themselves on
the user capturing enough requirements about the models
in the set of LTL formulas provided. In our translation
validation approach we can also adopt this approach of
refinement with respect to a set of temporal formulas, with
the advantage that we are not restricted to LTL expressivity,
but allow the greater expressivity of alternation-free regular
mu-calculus [4].

III. SIGNAL AND FIACRE

A. The SIGNAL language

SIGNAL is a data-flow relational language that relies on
the polychronous model [5], [6].

1) Introduction to SIGNAL: In SIGNAL, a process P con-
sists of the parallel composition of equations x :=op(y, z)
over signals x, y, z defined on discrete time, where op is
one of four kernel operators as explained next. A delay
equation x := y $1 init v defines x every time/instant y is
present. Initially, x is defined by the value v, and then, it
is defined by the previous value of y. The unary delay is
naturally extended to an N -ary delay in the equation x :=
y $N init v1, . . . , vN . A sampling equation x := y when z
defines x by y when z is true (the simplified equation
x := when z is equivalent to x := z when z). A merge
equation x := y default z defines x by y when y is present
and by z otherwise. Finally, an equation x := y f z can use
a Boolean or arithmetic operator f to define all of the nth

values of the signal x by the result of the application of f
to the nth values of the signals y and z. The synchronous
composition of processes P ||Q consists of the simultaneous
solution of the equations in P and in Q. It is commutative
and associative. The process P where x restricts the signal
x to the lexical scope of P .

P,Q ::= x := op(y, z) | P where x | P ||Q (process)

In SIGNAL, the presence of a value along a signal x, which
represents the clock of x, is an expression noted x̂, or x̂. It
is true, at a given instant, when x is present. Otherwise, it is
absent. Specific derived processes and operators are defined
in SIGNAL to manipulate clocks explicitly. We only use the
simplest one, xˆ = y, that synchronizes all occurrences of
the signals x and y (x and y are said synchronous).

2) Static analysis of SIGNAL specifications: Table I
shows the clock relations associated with each primitive con-
struct of SIGNAL. For the undersampling construct, the clock
of the Boolean signal b is partitioned into [b] and [¬b]. The
sub-clock [b] (resp. [¬b]) denotes the set of instants where
the Boolean expression b is present and true (resp. false).
Clock relations are automatically collected and inferred by

Table I
CLOCK RELATIONS FOR PRIMITIVES

construct clock relations
y := f(x1,...,xn) ŷ = x̂1 = ... = x̂n

y := x $1 init c ŷ = x̂

y := x when b
ŷ = x̂ ∩ [b],

[b] ∪ [¬b] = b̂ and [b] ∩ [¬b] = ∅
z := x default y ẑ = x̂ ∪ ŷ

Table II
SCHEDULING RELATIONS FOR PRIMITIVES

construct scheduling relations
y := f(x1,...,xn) ŷ : x1 → y, . . . , ŷ : xn → y
y := x $1 init c
y := x when b ŷ : x→ y, ŷ : b→ ŷ

z := x default y x̂ : x→ z, ŷ − x̂ : y→ z

the compiler from any program to be analyzed. For a process
P = P1 ||... ||Pn, its associated clock relations are the
result of applying the clock calculus on the conjunction
of the clock relations associated with the sub-processes Pk,
k ∈ 1..n.

Table II shows the scheduling relations associated with
each primitive construct of SIGNAL. A conditional schedul-
ing relation: c : x → y means that for all instants in
the clock c the computation of y cannot be performed
before the value of x is known. That is, the precedence
is effective at the intersection of the three clocks: x̂, ŷ, c.
For any signal x, we have that the value of x cannot
be computed before x̂, the clock of x, hence the implicit
scheduling relation x̂ : x̂ → x. Notice that the delay does
not have scheduling relations between its input and output.
The composition of SIGNAL equations induces the union
of their associated scheduling relations that we call the
conditional dependency graph. Reasoning about this graph in
conjunction with the information of the clock relations helps
the compiler in producing a normalised SIGNAL program
where the presence/absence of each program signal may
be (uniquely) determined. This rewriting is key to resolve
some nondeterminism in our proposed translation from
endochronous SIGNAL specifications to LTSs.

More precisely, in order to assess the consistency of the
clock relations associated with a program, and to organize
the control of such a program, the so-called clock calculus
of the compiler synthesizes a clock hierarchy [7], [8]. A
clock hierarchy is a dominates relation on the quotient set
of signals, according to ˆ= relation (x and y are in the same
class iff they are synchronous, i.e. xˆ=y). Briefly, a class C
dominates a class D (C is higher than D) if the clock of D
is computed as a function of Boolean signals belonging to C
and/or to classes dominated by C. When the clock hierarchy
has a unique highest class, the process has a fastest clock
(relative to the other clocks), called master clock, and there
is a unique (deterministic) way to compute the clocks of
all signals, we say that the process is endochronous. Such
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FcrPgrm → Dcls Prcs root_prc
Prcs → Comp Prcs | BPrc Prcs | BPrc

Comp → id [̀́ PortList ]̀́ is LclPortDclList ParallelCmps
BPrc → id [̀́ PortList ]̀́ is StateList [var VarDclList ]

InitStmt TransList
PortList → IdList : Type | IdList : Type, PortList

StateList → states IdList
VarDclList → ε | IdList : TypeVar, VarDclList

TransList → FromState Stmt TransList | FromState Stmt
Stmt → SelStmt; Stmt | IfStmt; Stmt | ToState; Stmt

| CommStmt; Stmt | AssignStmt; Stmt | ε
CommStmt → id !̀́ ExpList | id ?̀́ ExpList Cond | id

Cond → ε | where bool exp
SelStmt → select Stmt NDetChs end

NDetChs → `[]́ Stmt | `[]́ Stmt NDetChs

Figure 1. Subset of FIACRE language

1) process fifo1[ p_x,p_sx:bool, c:none ] is
2) states s1, s2, s3
3) var rx1, b, C_sx, x, sx: bool
4) init rx1 := false; b := false; to s1
5) from s1
6) select
7) b := not b;
8) C_sx := not b;
9) if (b) then
10) p_x ?x
11) end;
12) to s2
13) []
14) c;
15) to s1
16) end
17) from s2
18) if (b) then rx1 := x end;
19) if (C_sx) then
20) sx := x;
21) p_sx !sx
22) end;
23) to s3
24) from s3
25) c;
26) to s1

Figure 2. fifo1 implementation in FIACRE

a program can be run in an autonomous way (its master
clock plays the role of an activation clock). Otherwise, the
program needs extra information from its environment to be
run in a deterministic way.

B. The FIACRE language

In the following we present the syntax of the FIACRE
language (resembling CSP [9]) which is one of the input
languages for the tool-set CADP [10]. We will use CADP
functionalities of model checking and preorder testing on
LTSs, in order to prove refinement between the LTSs gen-
erated from our FIACRE programs. In particular, we need
a textual representation (as FIACRE programs) of LTSs to
describe the translation from a generated C program to an
LTS.

An extract of FIACRE syntax is shown in Fig. 1 for further
reference. Also, the FIACRE program (fragment) shown in
Fig. 2 will serve as a running example in the explanation
below, and for the first translation validation case.

Roughly speaking, a FIACRE program (FcrPgrm) consists

of a set of global declarations (Dcls) for constants, types and
channels, a set of basic processes (BPrc) out of which com-
ponents (Comp, which are processes themselves) are built
through parallel composition (ParallelCmps) with possible
synchronization on their ports (PortList, LclPortDclList).
(Fig. 2 shows one basic process named fifo1 whose
declaration spans lines 1-26; its ports are p_x, p_sx
and c, that communicate two Booleans and no data, re-
spectively.) Clearly components serve to describe/construct
models hierarchically without specifying any real computa-
tion, whereas basic processes (BPrc) do contain the actual
computation (TransList) specified as a set of transitions in
a textual description (from which an LTS is produced).
This way we can associate a (computation) state with a
basic process, by naming the state (label) it is in (from its
StateList, line 2 in the example) and the value of its local
variables (VarDclList, shown in line 3). Initially, a basic
process state is determined after executing its initialisation
statement (InitStmt, and line 4 of our example program).
Then, by (synchronous) composition of the (computation)
state of its sub-components, we can inductively construct the
(computation) state of a component and continue similarly
until we reconstruct the (computation) state of the designated
root process/component (root_prc).

A FIACRE transition begins by a designation of the state
label from which (FromState, and lines 5, 17 or 24) its
statements (Stmt, and line ranges 6-16, 18-23, 25-26)
can be executed, typically leading to other states through
an unconditional jump (ToState, and lines 12, 15, 23, 26).
The statements executed upon entrance to a transition up to
the jump to another state are considered as an atomic step
of the process where they occur. As a result, a string in con-
catenation FromState Stmt may denote more than one (LTS)
transition if Stmt contains branching constructs (SelStmt
and/or IfStmt). A statement is either a selection statement
(SelStmt, as in lines 6-16), an if-statement (IfStmt), an
unconditional state transition statement (ToState), a port
communication statement (CommStmt, shown in lines 10,
14, 21, 251), or an assignment statement (AssignStmt,
exemplified by lines 7, 8, 20). Statements may be composed
sequentially using `;́. Most constructs (IfStmt, AssignStmt,
ToState) have the standard imperative semantics, except the
selection and communication statements that we explain
next. A selection statement offers a non-deterministic choice
(Stmt separated by`[]́) between its (top) statements. A port
communication statement (CommStmt), in turn, may be of
any one of three sorts: emission (line 21), (conditional)
reception (line 10), or dataless synchronization (lines 14,
25). The value(s) communicated, in port communication, are
that(those) described by the (list of) expression(s) (ExpList)
that follow the designated port. If more that one value
is communicated, then we use a comma-separated list (of

1Recall that dataless synchronization uses no emission/reception symbol.
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expressions) to communicate each value. For an emission,
the value communicated depends on the value of the ex-
pression to be emitted, whereas for a reception the value
received is the one that matches the expression given. When
a variable is used for reception then all values in its type
are possible. The condition on a reception (Cond) may
impose extra constraints (bool exp) on the values that can
be received. Such a constraint is restricted to the syntax of
standard Boolean expressions. Last, but not least, it is worth
mentioning a syntactic restriction on the allowed occurrences
of communication statements. At most one communication
statement (emission or reception) is allowed per FIACRE
process transition (that is, in any one execution path from the
given state to a target state). In our example of Fig. 2 we can
identify compliance with this restriction by the occurrence
of at most one communication statement per branch of a
select statement (lines 10, 14), and only one communication
statement for transitions from states s2, s3, notably those in
lines 21, 25, respectively. This restriction will be important
for the discussion presented in Sect. V while extracting
FIACRE models from C programs.

We will not present the compilation of FIACRE into LTS
but refer the interested reader elsewhere [11] for a full
description of the language semantics.

C. Labelled Transition Systems (LTSs)

In the following we will introduce the definition of an
LTS, hiding of labels in LTSs, and the relations of (strong)
bisimulation/equivalence and simulation between LTSs that
we use for testing refinement.

As a way of notational convention suppose that A is a
set of symbols called observable actions, and τ 6∈ A the
unobservable action. Given A ⊆ A, we write Aτ for the set
A ∪ τ .

Definition 1 (Labelled Transition System, LTS): An LTS
is a quadruple S = 〈Q,A, T, q0〉, where Q is the set of
states, A ⊆ A is the set of observable actions, T ⊆
Q × Aτ × Q is the transition relation, and q0 ∈ Q is the
initial state.

We will write q1
a→ q2 ∈ T to denote that (q1, a, q2) ∈ T .

We will use (sparingly) the parallel composition operator of
two LTSs [9], say S1 and S2, that we note as “S1 |[A]| S2”
to model the concurrent execution of S1 and S2 with forced
synchronization on (action list) A.

Next, we present the hiding operator, which renders
unobservable some otherwise observable actions.

Definition 2 (Action set hiding in an LTS): Let LTS S =
〈Q,A, T, q0〉, and let B ⊆ A. The expression “hide B in S”
denotes the LTS 〈Q,A \ B, T ′, q0〉 where T ′ is defined by
the rules:

q
a→ q′ ∈ T ∧ a ∈ B

q
τ→ q′ ∈ T ′

q
a→ q′ ∈ T ∧ a 6∈ B

q
a→ q′ ∈ T ′

Observe that action a ∈ A above is assumed a constant
string, and that communicating LTSs passing data are com-
monly denoted using the port name, say x, through which
data, D for instance, is communicated; also, the symbols !
or ? are used to denote emission or reception. In principle,
reception may be made on any value of the type of data
that is declared for the designated port, but a variable of the
same type could be used. In the multi-way synchronization
scheme, that we use, several emissions and/or receptions
could be matched when their port is the same and the data
communicated is equal too. However, in order to compose
in parallel two LTSs we assume receptions and emissions
match iff the port and the data match regardless the sign (?,
or !) used for communication. Moreover, for conciseness
we will use a list of ports without listing the actual data
when referring to synchronization sets in hiding and parallel
composition.

Finally, consider the (strong) equivalence between two
states of two LTSs which will be used to define (strong)
equivalence of their respective LTSs.

Definition 3 (LTS state equivalence relation, Req): Let
two LTSs Si = 〈Qi, A, Ti, q0i〉 with i = 1, 2. Given p ∈ Q1

and q ∈ Q2 then p is equivalent to q, noted p Req q, iff the
two conditions below hold

(I) ∀p
a→ p′ ∈ T1 ∃q

a→ q′ ∈ T2 ∧ p′ Req q′;
(II) ∀q

a→ q′ ∈ T2 ∃p
a→ p′ ∈ T1 ∧ q′ Req p′

Hence two LTSs are equivalent iff their initial states are
state equivalent (i.e. q01 Req q02). Moreover, we say that S1

simulates S2 iff the initial states of each LTS are related
through a state simulation relation, noted q01 Rimp q02 ,
where Rimp is defined by condition (I) alone (replacing Req

by Rimp). Similarly we can say that S2 simulates S1 iff
q02 Rimp q01 and this time we use only condition (II) of the
Req relation (with the appropriate replacement). Note that
Req is an equivalence relation whereas Rimp is a preorder.

IV. FROM SIGNAL TO LTSS

Let us now describe our translation of kernel SIGNAL
equations into LTSs [12]. For ease of readability and com-
pactness LTSs are presented here graphically rather than
textually (using FIACRE). However, a textual representation
should be straightforward from the pictures provided.

Briefly, for every source SIGNAL variable, say X, the
translation uses a communication port named pX and the
data communicated through such a port has the same name
and type as the source SIGNAL variable, X, that it denotes.
Additionally, the translation will assume a dataless port C
whose occurrence, inside the generated LTS, denotes the end
of an instant/reaction (according to SIGNAL semantics and
the source program translated).

Observe that the actions of an LTS are (abstractly) repre-
sented as

• pX?X for pX a port and X the expression or variable
denoting the data received through that port; or
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(a) Z := X default Y
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5

pI ?I

pA ?A

pA ?A

pI ?I
I = true

I = false

pX !A

C
C

C

C

(b) X := A when I

−1 0 1 2 3
Y_1 = C_1;

... = ... ;

Y_N = C_N;

pY !Y_1 pX ?X

C

C

Y_N = X;

Y_(N−1) = Y_N;

... = ... ;
Y_1 = Y_2;

(c) Y := X$N init C_1,...,C_N

0

1

2

3 4
pY !(X*B)

pX ?X

pB ?B

pX ?X

pB ?B

C

C

(d) Y := X*B

Figure 3. Abstract LTSs for SIGNAL kernel equations

0 1 2
pCLK pA !A

C
C

Figure 4. LTS for CLK ˆ= A

• pX!X for pX a port and X the expression or variable
(whose current value is) emitted through that port; or

• assignments or Boolean expressions involving variables
(and possibly constants).

Intuitively, a transition labelled with a Boolean expression
will trigger (and thus occur) if and only if the action
(denoting a Boolean expression) evaluates to true. The actual
LTS actions are obtained when variables are replaced by their
values, all communication offers are turned into emissions,
and transitions labelled with true Boolean expressions or
assignments merge their source state into their target state
when executed/traversed. Transitions with Boolean expres-
sions evaluating to false are removed.

An LTS for each of SIGNAL kernel equations is depicted
in Fig. 3. All LTSs except the one of delay, Fig. 3(c), have

label 0 in their initial state. The initial state of the LTS for a
delay equation is labelled with -1. In practice, an instance
of this LTS would have this state eliminated and its transition
to 0 too, as explained above, given that the transition label
is an expression that does not involve communication. As a
result we can consider that the initial state of all possible
instances of delay is labelled with 0. For the LTSs of most
operators we can appreciate that the possible ordering of
receptions-emissions are dictated by considering all possible
clocks of the SIGNAL operators. The delay operator is the
exception, because one of the two (possible) orderings of
the visible actions (emit-receive or receive-emit) induces
deadlocks in composition. The implicit assumption for the
whole translation is that the values are generated in the left-
hand-side of a SIGNAL equation, hence the translation as
emission, and the right-hand-side (of the same equation)
receives the values generated elsewhere, thus the receptions,
all within one instant/reaction. We use action C to mark the
end of an LTS instant/reaction. Also, occurrences of C can
be thought of as denoting a tick of a clock, an upper bound
of all the clocks in any SIGNAL program.

Notice that all these transition systems (Fig. 3) are de-
terministic. Moreover, a trace of an elementary path/cycle
in one of our (proposed or generated) LTSs from state with
label 0 to state with label 0 represents a “synchronous”
reaction. Two signals are “synchronous” iff either each
(simple) cycle (from 0 to 0) contains the label of both of
them, or none of them.

In order to render the translation semantics preserving [12]
we need the scheduling relations information from the source
SIGNAL program, namely, the class of synchronous signals
and also the reorganization of the source program such as
that produced by SIGNAL clock calculus. Our LTS interpre-
tation of a class of synchronous signals, say CLK ˆ= A, is
given in Fig. 4. This is enough to express clock equivalences
with more signals. That is, the clock equivalence expressed
as CLKˆ=Aˆ=Bˆ=C would be translated as the parallel
composition of three LTSs—one for each pair CLKˆ=A,
CLKˆ=B, and CLKˆ=C—with synchronization on CLK and
added C, i.e. LTS1|[pCLK,C]|LTS2|[pCLK,C]|LTS3.

Parallel composition in SIGNAL is then replaced by par-
allel composition of the associated LTSs using the common
variables as synchronization set. That is, given two LTSs,
Si = 〈Qi, Ai, Ti, q0i〉 with i ∈ {1, 2}, generated by our
translation, we compose them in parallel synchronizing on
the common port names, A = A1 ∩A2: S1|[A]|S2.

SIGNAL variable hiding is similarly translated as hiding
in LTSs, following the mapping from SIGNAL variable
names to LTS port names. For instance, SIGNAL process
P where x will translate as hide pX in LTSP . (Viewed
as a FIACRE program, source signal x becomes a local port
of some component.) The LTS first effect of hiding is that
of replacing the set of actions listed as hidden by τ labels.
We eliminate such transitions through τ?.a bisimulation
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process fifo1 = (? boolean x; ! boolean sx;)
(| sx := current_1(x,̂ sx)
| interleave(x,sx) |)

where
process current_1 = (? boolean wx; event c;

! boolean rx;)
(| rx1 := wx default rx2
| rx2 := rx1$1 init false
| rx1 ˆ= wx ˆ+ when c %clock addition%
| rx := rx1 when c
|) where boolean rx1, rx2; end;

process interleave = (? boolean x, sx; !)
(| x ˆ= when b
| sx ˆ= when (not b)
| b := not(b$1 init false)

|) where boolean b; end;
end;

Figure 5. A one-place FIFO in SIGNAL

reduction [13] since they do not change the input-output
relation of the SIGNAL source, which is the focus of our
interest for refinement checking. Also, refinement testing in
the presence of τ transitions in the specification and the
implementation LTSs is bound to fail given the optimized
form of the implementation wrt the specification. Moreover,
the presence of τ transitions in any one of the two LTSs com-
posed in parallel may render our translation from SIGNAL to
LTS an overapproximation for exochronous programs with
clock constraints [12]. Endochronous programs, by contrast,
do not rise this semantics preservation issue.

V. VALIDATION EXAMPLES

In the following we provide the source SIGNAL programs
and assume the associated/corresponding LTS generated
from the result of clock calculus on the given source
program. Moreover, we present the reduced LTS where all
τ transitions have been eliminated.

A. A one-place FIFO

Consider the SIGNAL program in Fig. 5 denoting a one-
place FIFO. The input is a Boolean x, and the output is
available, through signal sx, exactly one instant (in the clock
of b) after the data has been input.

Now consider the generated C program (in Fig. 6) from
the fifo1 SIGNAL program. In general, the structure of
the generated code executes in a (non-terminating) loop
(not shown here). The first thing that it does is to initialize
needed variables, i.e. the variables referring to a delay, in
function fifo1_initialize, and then call the function
fifo1_iterate to calculate a reaction of the program.
Reading and/or writing of (input and/or output) signal values
is preformed through functions r_fifo1_signalname
and w_fifo1_signalname, respectively.

Now, the translation (Fig. 2) into FIACRE proceeds by
creating one process with one port (and one local variable)
for each input and output C-variable (so designated from
the code generator of SIGNAL); the type of such ports are
the type of the variable they denote. Designated local C
variables become FIACRE local process variables. An extra

1) logical x, sx; /* input/output signals */
2) logical rx1, b, C_sx; /* local signals */

3) logical fifo1_initialize() {
4) rx1 = FALSE;
5) b = FALSE; }
6) logical fifo1_iterate() {
7) b = !b;
8) C_sx = !b;
9) if (b)
10) if (!r_fifo1_x(&x)) return FALSE;
11) if (b) then rx1 := x end;
12) if (C_sx) {
13) sx = x;
14) w_fifo1_sx(sx); } }

Figure 6. C implementation of fifo1

dataless communication port C is added, in a similar way
as was done for the translation from SIGNAL source, in
order to mark the boundaries of a reaction. The initial action
of such process corresponds to translating the body of C
function fifo1_initialize, followed by a jump to
the designated first state of such process (typically named
s1). There is only one FIACRE statement that describes
all possible transitions from the first state of the process:
a select statement (SelStmt). The first choice offers the
possible executions of the source C iterate function up to an
i/o statement (typically a reading statement). The second,
and last choice of the select statement is a transition
that is supposed to let time pass without a reaction of
the program (a stuttering step), which is not included in
the C program for simplicity, determinism, and because
C programs are not meant to be composed as it is done
for SIGNAL programs. We need the stuttering transitions,
however, for comparing specifications and implementations,
and also to mark reactions boundaries of the implementation.

As regards the generation of the remaining states and
transitions of the FIACRE fifo1 process (Fig. 2), we follow
a similar pattern as that briefly explained above: partition the
control-flow of the C iterate function, creating blocks (of C
statements) that end in an i/o C statement, and then translate
each C block as a FIACRE transition. Because i/o in the C
implementation is translated as port communication in the
generated FIACRE process we had to split control-flow of
the source C to produce valid FIACRE code compliant with
the restriction of at most one communication statement per
transition. FIACRE unconditional jump statements will serve
to link FIACRE transitions following the control flow of the
source C code. Assignments, conditionals, and expressions
are quite similar in syntax and semantics between C and
FIACRE, hence we will omit their discussion. The algorithm
for this translation is given in the appendix where we use
the well-known compilers concept of basic blocks as the
partitioning criterion for simplicity of exposition.

The LTS associated with SIGNAL specification of Fig. 5
is given in Fig. 7. And the LTS for the implementation
(rendered as a FIACRE program) in Fig. 2 is also in Fig. 7.
Clearly, the relation between the implementation and the
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Figure 7. LTS for fifo1 specification

process fifo2 = (? boolean x; ! boolean ssx;)
(| ssx := fifo1(sx)
| sx := fifo1(x) |)

where
boolean sx;
process fifo1 ... % Same code as in Fig. 5 %

Figure 8. Two-place FIFO in SIGNAL

specification is indeed a refinement. It is important to notice
here that our LTSs are minimal modulo τ?.a reduction, oth-
erwise the comparison may be too detailed to succeed. That
is, τ transitions of the specification may not correspond to τ
transitions of the implementation, and vice versa. Typically
the implementation LTS contains less transitions/traces than
the specification. However, this example does not exhibit this
characteristic. Our next example will illustrate this difference
between specification and implementation.

B. A two-place FIFO

Consider now a two-place FIFO specification in SIGNAL,
as shown in Fig. 8. It re-uses the fifo1 specification
(Fig. 5), by composing two instances of the one-place FIFO
to obtain a two-place FIFO. The novelty of this example
is twofold. After clock calculus we learn that it has two
master clocks and that there is a clock constraint unresolved
by the compiler. Most notably, this clock constraint arises
because there are multiple (two in this case) definitions for
one event, and the compiler is unable to tell whether the
definitions are equivalent. The event concerned here is the
point of communication between the two one-place FIFOs.
There are two definitions for this event because each FIFO
reads and writes at the pace of its internal clock. Given that
there are two instances of the one-place FIFO, there are two
(seemingly) independent activation clocks that must meet in
a specific event: the passing of data from the first to the
second FIFO.

LTS of specification: The compositional LTS generation
from this specification does reflect the cases where the clock
constraint holds and where it does not; we have verified [12]
using model-checking that this is indeed the case. However,
if we compose the two LTSs denoting instances (as shown
in Fig. 9) of a one-place FIFO, the resulting LTS only
contains cases where the clock constraint is verified, hence
our insistence on eliminating τ transitions.

Clock constraints in implementation: Generating a C
program (Fig. 10) from this specification reflects the un-
resolved clock constraint (lines 31, 32) by modifying the
interface of the implementation (signals C, C2 in line 2)
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Figure 9. LTS for two-place FIFO

with respect to that of the specification, thus exposing two
(previously local) clock signals that (roughly) correspond
to the clocks of the roots of the clock trees in the hierarchy
produced by the clock calculus. The reason for the extended
interface should be clear when one considers a C sequential
implementation of a parallel source specification (in SIG-
NAL). Had the implementation language been parallel too,
there would be no need for an interface extension; nonethe-
less such a parallel implementation would still contain some
form of exception triggering in case of possible misuses.
Returning now to the sequential implementation, there is
the potential of an exception triggered by a violation of the
clock constraint. Here the compiler (explicitly) distrusts the
user by attaching the code to consider a possible misuse;
alternatively, the compiler can obviate/skip this test if asked
explicitly. In the end, either option would generate the same
code differing only in the existence of the lines that trigger
the exception. For the purposes of this exposition we will
use the implementation that generates exceptions in case of
a constraint violation.

Exochronous implementations: The reason that the im-
plementation exposes two (previously internal) clock signals
is that the specification is exochronous, as opposed to
endochronous specifications where given the state of the
program the clock of all its signals is uniquely determined
(modulo stuttering steps). For exochronous programs, the
compiler synthesizes a small controller on top of the original
clock trees and asks the user to provide the clocks of the
added root signals in each extended tree. This way the
implementation is able to encode the reading of the data
associated with the signals on the root of both trees.

Reasoning about clock constraints: Our translation
into FIACRE will change slightly, in this example, for two
reasons. We do not translate exceptions, and reading of some
inputs is now done in one FIACRE communication event, as
opposed to reading in separate events. These two changes are
related in the sense that we search to produce an LTS where
no exception situation can possibly arise. This amounts to
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1) /* ==> input/output signals */
2) logical x, ssx, C, C2;
3) /* ==> local signals */
4) logical b, X1, b2, Csx, Csx2, b3, Cssx;

5) logical fifo2_initialize() {
6) x = FALSE;
7) b = FALSE;
8) X1 = FALSE;
9) b2 = FALSE;
10) Csx = FALSE; }
11) logical fifo2_iterate() {
12) if (!r_fifo2_C(&C)) return FALSE;
13) if (!r_fifo2_C2(&C2)) return FALSE;
14) if (C) {
15) b = !b;
16) Csx = !b;
17) if (b)
18) { if (!r_fifo2_x(&x)) return FALSE; }
19) }
20) Csx2 = (C ? Csx : FALSE);
21) if (C2) {
22) if (Csx2)
23) X1 = x;
24) b2 = !b2;
25) Cssx = !b2;
26) if (Cssx) {
27) ssx = X1;
28) w_fifo2_ssx(ssx); }
29) }
30) b3 = (C2 ? b2 : FALSE);
31) if ((Csx2) != (b3))
32) polychrony_exception("Csx2 != b3" );
33) Csx = FALSE;
34) }

Figure 10. C implementation of fifo2

12) if (!r_fifo2_C(&C0)) return FALSE;
13) if (!r_fifo2_C2(&C20)) return FALSE;
14) if (C0) {
15) b1 = !b0;
16) Csx0 = !b1;
19) }
20) Csx20 = (C0 ? Csx0 : FALSE);
21) if (C20) {
24) b21 = !b20;
29) }
30) b30 = (C20 ? b21 : FALSE);
31) if ((Csx20) != (b30))
32) polychrony_exception("Csx20 != b30" );

Figure 11. Slice of fifo2 implementation

back-propagating the condition of exception to the reading
of the clocks added to the interface. We will proceed by
computing a backward slice [14] of the fifo2_iterate
function, from the site where the exception is potentially
triggered. This produces a program (Fig. 11) consisting of
lines 12, 13, 14, 15, 16, 19, 20, 21, 24, 29, 30, 31
and 32, where the last two lines concern the reading of the
clocks that interest us. Next, we label the occurrences of
all variable references (in the slice) with an index giving
the C code a static single-assignment form [15], as shown
in Fig. 11. The interest of having this form is to make
explicit the (variable) definition that a (variable) occurrence
is referencing. It should not be surprising that the pass to
SSA form is so neat (without introducing the φ-functions
typical of SSA form), since SIGNAL is declarative, and the

iterate function of the C code does not contain cycles,
except when arrays are used in the SIGNAL specification.
We can now reason about the assignments and conditionals
as Boolean expressions. In particular, we are interested in
propagating backwards (from line 31 to lines 12, 13)
the expression denoting the compliance with the clock
constraint, i.e. the negation of the expression ((Csx20)
!= (b30)). This goal may be achieved by successive
(forward) substitutions of the Boolean equations associated
with each statement until we have expressed the variables
referenced in the clock constraint in terms of variables
defined at the moment of reading the clocks in lines 12, 13.
Consequently, replacing b1’s definition by its sole reference
in line 16 yields equation Csx0 = !(!b0); then replacing
this definition in line 20 results in equation Csx20 = C0

&& b0 which is ready for its use in the reading statement
of C0, given that it references variables in the same scope.
Proceeding in a similar way for b30 we obtain the equation
b30 = C20 && (!b20). Finally, the result of complying
with the clock constraint (Csx20 == b30) can be recast
as the equivalent constraint (C0 && b0) == (C20 &&
(!b20)). It is worth noticing that this new constraint can be
enforced if we know the values of clocks C0 and C20 at the
same time, provided that the values of the other variables
are normally accessible. Considering the new form of the
relational constraint above we will change our translation for
reading the (extra) clock variables of the FIACRE interface.
Briefly, we need to declare a FIACRE channel to commu-
nicate a pair and then declare the appropriate port (in the
port list of a process declaration) as communicating using
the declared channel. The FIACRE program in Fig. 12 shows
the translation of the C implementation in Fig. 10, where we
have enforced the compliance with the clock constraint, and
hence we do not have to worry about capturing in the trans-
lation the part dealing with possible violation of the clock
constraint (though we include it for completeness of the
translation). Only two small modifications of our algorithm
(shown in the appendix) are needed to produce FIACRE code
after the processing explained above: (i) specialise the basic
block decomposition to avoid splitting the reading of new
interface clocks into different blocks; and (ii) translation of
the sequential composition for reading of such clock signals,
since they will always occur together.

Testing refinement: We now seem to be in a position to
test refinement between the SIGNAL specification and its C
implementation. However, the LTS for the implementation
(not shown) has an extra port, and associated events, that
are not visible (neither exist) in the specification: the port
named p_cc of Fig. 12. It suffices to hide such port (and
associated events) and to minimize the resulting LTS modulo
τ?.a reduction, so as to eliminate the τ transitions generated
by hiding. Here, unlike our one-place FIFO refinement test
(Sect. V-A), the LTS of the implementation and that of the
specification (Fig. 9) are different. The actual test determines
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channel TC is bool#bool
process fifo2[p_cc:TC, p_x,p_ssx:bool, c:none] is
states s1, s2, s3, s4
var C, C2, b, b2, b3, Csx, Csx2, X1, Cssx, ssx,

x: bool
init x := false; b := false; X1 := false;

b2 := false; Csx := false; to s1
from s1
select
p_cc ?C,C2 where (C and b) ≡ (C2 and (not b2));
to s2

[]
c; to s1

end
from s2
if (C) then

b := not b;
Csx := not b;
if (b) then p_x ?x end

end;
to s3

from s3
if (C) then Csx2 := Csx

else Csx2 := false end;
if (C2) then

if (Csx2) then X1 := x end;
b2 := not b2;
Cssx := not b2;
if (Cssx) then ssx := X1; p_ssx !ssx end

end;
to s4

from s4
if (C2) then

b3 := b2
else

b3 := false
end;
if (Csx2 <> b3) then ... end;
Csx := false;
c;
to s1

Figure 12. Implementation of fifo2 in FIACRE

whether a (strong) simulation relation between the imple-
mentation and the specification exists: the result is positive.
The implementation indeed simulates the specification and
hence it is a refinement. It is worth noting here that the
difference between the two LTSs is that the implementation
imposes an input (communication through port p_X) before
any output (communication through port p_SSX) is avail-
able, even if this is possible in the same instant. The LTS
for the specification, by contrast, exhibits the two possible
orders of (instantaneous) input and output whenever they
are possible. This difference is automatically generated by
the CADP functionality for testing equivalence between two
LTSs modulo (strong) equivalence/bisimulation.

C. Validation using input-output-memory values

Here we only mention, for lack of space, that our val-
idation approach using LTSs also allows the possibility to
test a finer correspondence between the C implementation
and the SIGNAL specification. Notably, we will now test the
refinement relation using input-output-memory values [2]
as visible/observable actions in our generated LTSs, as
opposed to the restricted visibility of input-output actions
we considered in our previous examples.

As a sort of comparison between the LTSs exposing input-
output observations and those for input-output-memory ob-
servations, for the one-place FIFO example (Sect. V-A) the
state space of the specification LTS goes from 4 states and
6 transitions to 22 states and 35 transitions in the detailed
specification, whereas for the implementation we had 4
states and 6 labels that raised to 15 states and 20 transitions.
The refinement test is still valid, as expected. However, in
this case the LTS for the specification is not equivalent
to the LTS of the implementation, as was the case for a
restricted observation. The reason for this difference being
that the specification allows several interleavings (within one
reaction) of the events associated with memory variables and
those associated with input and output, while the implemen-
tation LTS considers only one (possible) ordering. This result
is most natural, since our translation of SIGNAL into LTSs
exposes the concurrency of events arising within reactions.
Had we used a state-based representation, as Pnueli [2],
this parallelism would be hidden, while our action-based
representation does the opposite.

The same experiment, of allowing observations of mem-
ory values in addition to input-output values, for the two-
place FIFO was also successful. The sources and results of
all our experiments can be found at ftp://ftp.irisa.fr/local/
signal/publis/SIG2C TV/.

VI. CONCLUDING REMARKS

We have shown a translation of C programs generated
from (multi-clocked) SIGNAL specifications into LTSs (via
a FIACRE textual representation). Given that SIGNAL speci-
fications can be translated into LTSs too, we are able to test
the possibility of a (strong) simulation relation between the
LTS of the C implementation and the LTS of the SIGNAL
specification. Given the detail of the comparison and that
of the representation we argue that the success of this test
can be interpreted as a refinement relation between the
implementation and the specification, otherwise a counter-
example is generated automatically. Other preorder relations
on LTSs exist (e.g. those implemented in CADP toolset). In
particular, testing for the weak trace simulation relation on
our LTSs (for specification and implementation) amounts to
establishing the “trace refinement” relation used in CSP [9].
We show through examples the feasibility of our translation
validation approach, provided models are finite state.

We have also shown some rudiments of reasoning
about unresolved clock constraints (or assertions) in (multi-
clocked) SIGNAL implementations, in order to extend the
reasoning capabilities of the SIGNAL compiler, and as a
compile time code manipulation/transformation. That this
technique is extensible to all C programs (generated by the
SIGNAL compiler) is the subject of our current research.
Nonetheless, we anticipate that this (however schematic)
technique can be extended to (SIGNAL and the generated
C) programs with scalar domains.
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Last, but not least, the translation from C programs to
LTSs, in the context of the SIGNAL code generator, can be
regarded as a model extraction technique that is exploitable
through model checking in CADP [10].

Future work: We envisage to construct an automatic
model extractor (from C to FIACRE) for the C programs
generated by the SIGNAL compiler, in order to test the scala-
bility issues of our proposed technique. Moreover, this model
extractor should be easily extensible and applicable to the
SIGNAL generated C code that uses threads, which is another
application avenue for our translation validation proposal. As
regards extraction of finite state models from SIGNAL and/or
C programs, we do not discard the adoption of existing
techniques in this respect, most notably those based on
counter-example guided abstraction refinement [16], and/or
those [17] based on bounding the reasoning about the values
of program variables, for deciding equivalence.

REFERENCES

[1] A. Pnueli, M. Siegel, and E. Singerman, “Translation validation,” in Proceed-
ings of TACAS’98. LNCS 1384, 1998, pp. 151–166.

[2] A. Pnueli, O. Shtrichman, and M. Siegel, “Translation validation: From SIGNAL
to C,” in Correct System Design Recent Insights and Advances. LNCS 1710,
March 2000, pp. 231–255.

[3] G. Singh and S. K. Shukla, “Verifying compiler based refinement of
BluespecTM specifications using SPIN model checker,” in 15th International
SPIN Workshop on Model Checking Software. LNCS 5156, 2008, pp. 250–269.

[4] R. Mateescu and M. Sighireanu, “Efficient on-the-fly model-checking for
regular alternation-free mu-calculus,” Sci. Comp. Program., no. 46, pp. 255–
281, 2003.

[5] P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann, “Polychrony for system design,”
Journal of Circuits, Systems, and Computers, vol. 12, no. 3, pp. 261–304, 2003.

[6] L. Besnard, T. Gautier, and P. Le Guernic. (2010, March) SIGNAL V4-INRIA
version: Reference Manual. [Online]. Available: http://www.irisa.fr/espresso/
Polychrony/

[7] T. P. Amagbegnon, L. Besnard, and P. Le Guernic, “Arborescent canonical form
of Boolean expressions,” INRIA/IRISA, Campus Universitaire de Beaulieu,
35042 Rennes Cedex, France, Tech. Rep. 2290, 1994.

[8] T. P. Amagbegnon, L. Besnard, and P. Le Guernic, “Implementation of the
dataflow synchronous language SIGNAL,” in Proceedings of PLDI’95. ACM
Press, 1995.

[9] A. W. Roscoe, The Theory and Practice of Concurrency. Prentice-Hall, 1997.

[10] H. Garavel, F. Lang, R. Mateescu, and W. Serwe, “CADP 2006: A toolbox for
the construction and analysis of distributed processes,” in CAV’07. Springer
LNCS 4590, 2007, pp. 158–163.

[11] B. Berthomieu, J.-P. Bodeveix, M. Filali, H. Garavel, F. Lang, F. Peres, R. Saad,
J. Stocker, and F. Vernadat, “The syntax and semantics of FIACRE,” March
2009, deliverable No. 4.2.4 of project ANR05RNTL03101 OpenEmbeDD.

[12] J. C. Peralta, T. Gautier, P. Le Guernic, and L. Besnard, “Labelled transition
systems for compositional description of multi-clocked SIGNAL specifications,”
submitted for publication.

[13] R. Mateescu, “On-the-fly state space reductions for weak equivalences,” in
FMICS’05. ACM, 2005, pp. 80–89.
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APPENDIX

Here we briefly outline the (unoptimized) algorithm to translate the
C programs generated from SIGNAL (multi-clocked) specifications, into
a FIACRE process. Translation of assignments and branching statements is
straightforward because the names of the SIGNAL source and C variables
remain the same. The only C source statements that will be dealt with
differently are the input, output, and exception invocations. Input and output
will be translated as reception and emission, respectively, using ports having
the name of the signal used for reading/writing. Exception invocations may
be translated as jumps to a special blocking state, for thoroughness of the
translation, even though we proposed one way to translate such C programs
so that this transition never arises.

As a preprocessing of the input C program we propose a traversal of
the iterate function to construct a suitable control-flow graph, CFG,
from which FIACRE code generation is simple. Such a traversal constructs
a standard CFG for the given function, where vertices are labelled by basic
blocks of the source. Clearly statements labelled by input, output and/or
exception invocation will occur at most once in a basic block. As a side
processing of this CFG construction we add a special label to each vertex to
denote a different state of the FIACRE process that will be constructed. As a
result, we have a labelled directed graph G = 〈V, E〉 with set of vertices V
and edges E. Each vertex of V has two labels: (a) one denoting a FIACRE
state label, noted state(v); and (b) one denoting the C statements of a
basic block, noted statements(v), for v ∈ V . Also, we will refer to
the sole entry vertex of G as vi, and an extra vertex vo 6∈ V will be
needed to “close” the transitions of the generated FIACRE process using a
synchronization on port C.
Input: Initialization function and G = 〈V, E〉 of iterate function
Output: A FIACRE process declaration, PF

1: Translate contents of initialization function into the init section of
PF , and translate the return statement as a jump statement to
state(vi)

2: Declare one port and local variable for each input/output source
variable, and add port C

3: Declare a local variable for each source local variable
4: ∀v ∈ V ∪ {vo} declare state state(v)
5: for all v ∈ V ∧ v 6= vi create transition text do
6: Declare start of transition: from state(v)
7: for all s ∈statements(v) translate as do
8: if s an assignment then
9: translate as assignment

10: else if s a conditional then
11: translate as conditional and fill-in true and false branches

with a jump statement to successor states state(vt) and
state(vf ), respectively (i.e. v

true−→ vt, v
false−→ vf ∈ E)

12: else if s an input or output statement then
13: translate as port communication followed by jump to successor

state state(v′)
14: else if s a return then
15: translate as jump to state state(vo)
16: else if s an exception statement then
17: translate as jump to artificial deadlock state state(vx)
18: end if
19: end for
20: end for
21: Add a transition text: from state(vo) C; to state(vi)
22: Add select statement: from state(vi) select with translation of

statements(vi) as in lines 6-16 above, and with alternative branch
containing C; to state(vi) end.
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