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Abstract. Our goal is to study the incremental construction of architectural spe-

cifications. Techniques and tools will be provided to detect errors in the specifi-

cation and design phases. This work distinguishes two kinds of component: 

primitive components and composite components. Components are described 

using UML, and their formal semantics are given by transforming a subset of 

UML into LTS. The verification techniques are based on existing comparison 

relations to ensure that each step preserves dynamic properties of previous 

steps. Verifying architectures is accomplished by checking the freedom of 

dead-locks and the substitutability of components. 
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1 Introduction 
The construction of critical reactive software architectures, in which errors could 

have serious consequences on human life, environments or significant assets, is chal-

lenging. When constructing such architectures, one focus on behavioral analysis in 

order to detect communication problems such as dead-locks between components. 

Hence, two aspects are considered: construction processes of architectures and 

evaluation techniques.  

First, to support the construction of architectures, we believe that using an incre-

mental approach [3][10] is suitable. The incremental construction operations of archi-

tecture that we consider are the following: i) addition operation (adding a compo-

nent or a connection into the architecture); ii) removal operation (removing a com-

ponent or a connection from the architecture); iii) substitution operation (substitut-

ing a component by a new one); iv) split operation (split a component into sub-

components); v) merge operation (several components are merged into a compo-

nent). At this stage, the addition and substitution operations are focused. 

Second, to support the evaluation techniques, we have to deal with two problems: 

i. Define the semantics of architectures by transforming UML architectures 

into formal languages. We have chosen LTSs (Labeled Transition Sys-

tems) for the semantics of UML architectures and components.  
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ii. Compare models in order to verify that a model preserves the necessary 

properties of the previous version by using pre-orders and equivalences. 

Conformance relations (conf, red, ext, conf-restr, cred, cext) [2], [8], [11], 

testing pre-orders !"#$% & "#'() & ")*), and bi-simulations (=, !) have 

been considered and implemented in previous works. However, confor-

mance relations and testing pre-orders do not preserve the substitution 

property in hiding contexts, while bi-simulations relations are claimed to 

be too strong. In complex system design, hiding and parallel composition 

are the most important contexts and have to be considered carefully. So 

we need to find appropriate relations to be used correctly in hiding and 

parallel composition contexts. 

2 Methods for architecture analysis 
2.1 Architecture modeling 

Two kinds of components are distinguished: primitive components, and composite 

components. A primitive component may specify its behavior by itself, while a com-

posite component contains the internal architecture so that its behavior is deduced 

from its sub-components’ behaviors. In this work, architectures mean composite 

components.  

Our work focuses on defining reusable pieces of models, which means that pieces 

are independent and well-encapsulated. So, we use the notion of port, which is means 

to ensure the encapsulation property. Ports may be behavioral or non-behavioral. 

Ports of primitive components are all behavioral ports. Requests received are directly 

forwarded from a provided port to the classifier behavior of the owning component. 

Requests received from ports are indicated by Triggers of State Machines. In order to 

represent demands, which are sent to required ports from the classifier behavior, we 

use Invocation Actions of Activities. From our point of view, the combination of State 

Machines and Activity is necessary for the encapsulation of primitive components. 

Architectures are modeled by assemblies of components using UML Composite 

Structures. Ports of architectures are non-behavioral ports, as they act like a routing 

device to forward the messages to or from the sub-components. At this moment, we 

restrict to binary connections between ports. 

2.2 Semantics of architectures 

The semantics of primitive components is determined by transforming a subset of 

State Machines and Activity into LTSs [10][11]. 

We define the semantics of architecture by transforming UML Composite Struc-

tures into EXP.OPEN [7] specification by a set of rules. Then LTSs are generated by 

using facilities of the CADP toolkit [5]. In case the system contains many compo-

nents, the obtained LTS can be very complex. We have proposed the methods to 

compare the LTSs of architectures based on their minimizations [10]. 
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2.3 Verification of architectures 

Once the semantics of architectures is determined, the following verification activi-

ties can be done: a) verifying the absent of dead-locks in architectures; b) verifying 

the conformance between architectures using comparison relations. 

Dead-lock analysis. 

We have proposed a compatibility relation [4][6][12], which can be used to guar-

antee the absent of dead-locks in architectures, between two LTSs. Because it is al-

ways possible to consider the context of a component as a set of components, which 

can be modeled by a unique LTS, the compatibility between a component and its 

context can be verified. However, this relation is not strong enough to guarantee the 

conformance between two architectures.  

In case a new component C is added into the system, the compatibility between C 

and its environment E (the components that C is connected to) needs to be verified. A 

possible solution is to benefit the advantages of the substitution relations (to be dis-

cussed in the next part) by replacing E by the new composite EC created from E and 

C. As a result, the verification of the substitutability between E and EC guarantees the 

absent of dead-locks and the conformance between the two versions of architecture. 

 

Concerning b), to compare two architectures, there are two ways [10]: 

i. Global analysis: the behaviors of the whole architecture are computed, 

and then analyzed using the conformance relations we have implemented. 

This method can be used to evaluate all incremental operations. But a 

problem appears when the system becomes complex so that having the 

LTS of the whole architecture is space expensive. The second way could 

solve this limitation. 

ii. Differential analysis: only the behaviors of the modified parts between 

two architectures are considered. For example: a component is substituted 

by a new one (or a group of components); or a group of components is 

substituted by a component. This leads to the problem of component subs-

titutability.  

Component substitutability. 

The relations which satisfy the substitutability properties in any context are con-

gruence relations. Congruence relations defined over the conformance relation are 

cext and cred [8]. However, these relations fail to be congruent in hiding contexts 

creating divergences [8][9], (i.e. an infinite sequence of internal actions) which means 

cred and cext are not appropriate in the context of components assembly. 

We are interested in the fairness assumption, in which divergences are not always 

considered as catastrophic (as in [9]). Fairness assumptions mean that the system is 

not allowed to continuously favor some choices at the expense of others. Fairness is 

important in reactive systems. We have found that the should-testing pre-order [1], 

which is congruent in parallel composition and hiding context, is an answer to a long 

stated problem: the greatest congruence stronger than conf. It exactly corresponds to 
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what we are looking for and in addition, its decidability is represented in [13]. We 

have studied and implemented this relation, which has the complexity of O(nm2
3n+5m

).  

3 Conclusion  
We have considered the usage of UML State Machines and Activity for describing 

primitive components, and UML Composite Structures for describing architectures. 

Then a set of rules has been proposed to transform UML architectures and compo-

nents into formal semantics. We have added to our tool, IDCM [10] (Incremental 

Development of Conforming Model): i) the transformation of component’s behaviors 

(described by State Machine and Activity) into LTS; ii) the transformation of UML 

Composite Structures into EXP.OPEN. Finally, the dead-lock detection and substitu-

tability problems have been considered. The should-testing pre-order [13], which is 

suitable for the context of component substitutability, has been implemented. 

For future works, we would like to: i) study problems of asynchronous communi-

cation between components, which often are used in web services applications; ii) 

formalize a framework for incremental construction of architectures;  
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