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Abstract. Explicit behavioural interfaces are now accepted as a manda-
tory feature of components to address architectural analysis. Behavioural
interface description languages should be able to deal with data types
and with rich communication means. Symbolic Transition Systems (STS)
support the definition of component models which take into account
control, concurrency, communication and data types. However, verifica-
tion of components described with protocol modelled by STS, especially
model-checking, is difficult since they possibly involve different sources
of infinity. In this paper, we propose the notions of bounded analysis

and bounded decomposition. They can be used to test boundedness of
systems and to generate finite simulations for them so that standard
model-checking techniques may be applied for verification purposes.

1 Introduction

Behavioural interface description languages and protocol descriptions are needed
in component models to address architectural analysis and verification issues
such as checking component behavioural compatibility, detecting architectural
deadlocks or building adaptors to compensate incompatible component inter-
faces, but also to relate efficiently design models and implementation ones. In
this context, different behavioural models have been used, such as process alge-
bras [1, 8, 20] or automata-based formalisms [4, 24]. In the context of a national
project, ACI DISPO, our researches are interested in checking components and
resources or services availability.

Components may exchange data with service requests, or may internally
compute data values on which behaviours depend, yielding compositions which
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deadlock only for some specific values (e.g., think of an arithmetic component
which accepts two integers, x and y and denies service when y is 0). Therefore,
there is a need for component models integrating data types within behaviours.
Unfortunately, this is known to yield state explosion problems when verifying
models, especially with model-checking. Research on Symbolic Transition Sys-
tems (STS) [10, 18, 19] aims at providing a model and dedicated verification
techniques to deal with these issues.

In this paper we develop a model of communicating components based on
STS, together with specific analysis techniques. First, we formalise our notion of
communicating and concurrent STS, with a proper semantics based on configu-
ration graphs. We also link our STS with LTS using interpretations and we state
properties relating interpretations and STS composition. This provides a unified
framework where STS and LTS can be both defined and composed. Second,
we present a decidable boundedness procedure (bounded analysis) which tests
the boundedness of communicating components architectures (called systems).
Model-checking techniques can be used thereafter to prove properties. It is com-
mon that a system handles both bounded variables and unbounded variables.
Enumerative model-checking will arbitrarily bound all the variables. Whenever
the bounds set by model-checking tools are reached, the specifier does not know
if the system is either too big for the tool or really unbounded. For instance, a
system which deadlocks for every n smaller than 10, does not imply anything
about the behaviour for greater values of n. Bounded analysis may therefore
be viewed as a complementary debugging means to detect possible flaws that
model-checking may miss in the presence of data types. Next, we develop a
decomposition technique (bounded decomposition) that is used to split systems
into parts which can be separately tested for boundedness and if so, checked
separately. This approach may not solve every problem related to infinite data
types, but it is especially worthy with the (numerous) systems involving bounded
resources (i.e., where parts associated to the resources are bounded) and with
systems where the number of components is bounded.

The paper is organised as follows. Section 2 formally defines STS, config-
uration graphs, relations between STS and LTS, and communication between
STS. Sections 3 and 4 present, respectively, boundedness analysis and bounded
decomposition and illustrate them on examples. Section 5 reviews related work.
Finally, Section 6 draws up some concluding remarks. More details about our
approach and formal definitions can be consulted in [26].

2 Formalising Components as Symbolic Transition

Systems

This section states some definitions we use thereafter to introduce our approach.
First of all, we consider algebraic specifications as an abstraction of concrete
implementation languages like Java, C++, or Python. A signature (or static
interface) Σ is a pair (S, F ) where S is a set of sorts (type names) and F a set
of function names equipped with profiles over these sorts. X is used to denote
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the set of all variables, it contains a distinguished variable, SelfD, whose goal
is much like explicit receivers in Object-Oriented languages (e.g., this in Java).
From a signature Σ and from X , one may obtain terms, denoted by TΣ,X . An
algebraic specification is a pair (Σ, Ax) where Ax is a set of axioms between terms
of TΣ,X . Let r be a ground term, r↓ denotes the normal form or normalization
(assumed to be unique) of r. v : R means that v has type R and v(u) denotes
the application of v to term u.

2.1 Symbolic Transition Systems

Symbolic Transition Systems [10, 18, 19] have initially been developed as a so-
lution to the state and transition explosion problem in value-passing process
algebras using substitutions associated to states and symbolic values in transi-
tion labels.

Definition 1 (STS). An STS is a tuple (D, (Σ, Ax), S, L, s0, T ) where:
(Σ, Ax) is an algebraic specification, D is a sort called sort of interest defined in
(Σ, Ax), S = {si} is a countable set of states, L = {li} is a countable set of event
labels, s0 ∈ S is the initial state, and T ⊆ S × TΣBoolean,X ×Event× TΣD,X ×S

is a set of transitions.

Note that countable means that the set may be infinite but can be enumerated.
Events denote atomic activities that occur in the components. Events are either:
i) hidden (or internal) events: τ , ii) silent events: l, with l ∈ L, iii) emissions:
l!e, with e ∈ TΣ,{SelfD}, or iv) receptions: l?x : R with x ∈ X\{SelfD}. Inter-
nal events denote internal actions of the components which may have an effect
on its behaviour yet without being observable from its context. Silent events
are pure synchronising events, while emissions and receptions naturally corre-
spond, respectively, to requested and provided services of the components. To
simplify we only consider binary communications here, but emissions and recep-
tions may be extended to n-ary emissions and receptions. STS transitions are
tuples (s, µ, ε, δ, t) for which s is called the source state, t the target state, µ

the guard, ε the event and δ the action. Each action is denoted by a term with
variables where at least SelfD occurs. A do-nothing action is simply denoted by
SelfD. In forthcoming figures, transitions will be labelled as follows: [µ] ε / δ.

2.2 Configuration Graphs

The semantics of STS is formalised using configuration graphs. They are obtained
applying jointly the unfolding of receptions and the reduction of ground terms
to their normal forms.

Definition 2 (Unfolding). The unfolding of an STS (D, (Σ, Ax), S, L, s0, T ),
in v0 ∈ TΣD

, is the STS (D, (Σ, Ax), S′, L, (s0, v0↓), T ′). The sets S′ ⊆ S×D

and T ′ are inductively defined by: (s0, v0↓) ∈ S′ and for each (s, v) ∈ S′:

– if (s, µ, τ, δ, t) ∈ T and µ(v) ↓= true then s′ = (t, δ(v) ↓) ∈ S′ and
((s, v), true, τ, SelfD, s′) ∈ T ′,
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– if (s, µ, l, δ, t) ∈ T and µ(v) ↓= true then s′ = (t, δ(v) ↓) ∈ S′ and
((s, v), true, l, SelfD, s′) ∈ T ′,

– if (s, µ, l!e, δ, t) ∈ T and µ(v)↓= true then s′ = (t, δ(v)↓) ∈ S′ and
((s, v), true, l!e(v)↓, SelfD, s′) ∈ T ′, and iv) if (s, µ, l?x : R, δ, t) ∈ T

then for each r : R such that µ(v, r)↓= true, there is s′ = (t, δ(v, r)↓)) ∈ S′

and ((s, v), true, l!r, SelfD, s′) ∈ T ′.

Pairs (s, v) are configurations where s is the control state. Let d be an STS. Its
unfolding in a v0 term, G(d, v0), is called a configuration graph. A configuration
graph is a particular STS without reception, where guards are all equal to true,
emission terms are in normal form and actions are do-nothing actions denoted
by SelfD.

2.3 Interpretations

Configuration graphs and STS can be interpreted as LTS4. Such mappings enable
one to use existing model-checkers, such as SPIN [17] or CADP [16], to verify
these models. We introduce two LTS interpretations based on the following rules:

– (rule1) any STS transition (x, µ, ε, δ, y) is reduced to an LTS transition
(x, l, y), where l is the label of the event ε;

– (rule2) any configuration (s, v) is reduced to its control state s, and any
STS transition ((s, v), µ, ε, δ, (t, u)) is reduced to a LTS one (s, l, t).

Definition 3 (LTS Interpretations). The standard interpretation, ILTS, of
an STS, is an LTS computed with rule1 and discarding D and (Σ, Ax). The weak
interpretation, WLTS, of an STS, is an LTS computed with rule2 and discarding
D and (Σ, Ax).

We use ⊇ for the transition relation inclusion and w for the trace inclusion
of two LTSs. d1 ⊇ d2 means that d1 and d2 share the same set of states but the
set of transitions of d2 is a subset of the transitions of d1. d1 w d2 means that
any d2 trace is also a d1 trace. As defined in [2] for LTS, B = (SB , L, b0, TB)
is a simulation of A = (SA, L, a0, TA), noted B � A, iff there is a relation R
included in SA×SB such that: i) ∀sA ∈ SA, ∃sB ∈ SB such that sARsB, ii) if sA

is initial then ∃sB ∈ SB such that sARsB and sB is initial, and iii) ∀(sA, l, tA) ∈
TA, ∀sB ∈ SB, sARsB ⇒ (∃tB ∈ SB, ∃(sB, l, tB) ∈ TB ∧ tARtB).

Proposition 1. Let d be an STS:

1. WLTS(d) ⊇ WLTS(G(d, v0)),
2. ILTS(d) � ILTS(G(d, v0)),
3. ILTS(d) w ILTS(G(d, v0)).

Point 2 above defines a simulation which in turn implies trace inclusion (point 3).
Previous works [22, 12] have shown that simulation preserves a subset of µ-
calculus, namely safety properties. The above relations could be later extended
to other existing abstractions, such as [11, 22, 12, 5].

4 We recall that an LTS is a structure (S, L, s0, T ) with T ⊆ S × L × S.



Bounded Analysis and Bounded Decomposition 5

2.4 Concurrency and Communication

Concurrent communicating components can be described with protocols mod-
elled by STS, and synchronous products adapted from the LTS related defini-
tion [2] can be used to obtain the resulting global system. Given two STS with
sets of labels L1 and L2, a set V of synchronisation vectors is a set of pairs (l1,
l2), called synchronous labels, such that l1 ∈ L1 and l2 ∈ L2. Hidden events
cannot participate in a synchronisation. Two components synchronise at some
transition if their respective labels are synchronous (i.e., belong to the vector)
and if the label offers are compatible. Offer compatibility follows simple rules:
type equality and emission/reception matching. A label l such that there is no
pair in V which contains l is said to be non-synchronised or asynchronous. Corre-
sponding transitions are triggered independently and have independent running
steps. The formal definition of the synchronous product of STS can be found
in [26]. The synchronous product operator is noted ⊗V and is extended to a
n-ary product and to any depth.

The configuration graph and the standard interpretation have compatibility
properties with the synchronous product, which are formalised below.

Proposition 2. Let d1 and d2 be two STS, V a synchronisation vector, v1 ∈
TΣD1

and v2 ∈ TΣD2
:

1. G(d1 ⊗V d2, (v1, v2)) ≡ G(G(d1, v1) ⊗V d2, v2) ≡ (G(d1, v1) ⊗V G(d2, v2)).
2. ILTS(d1 ⊗V d2) � ILTS(G(d1, v1) ⊗V d2) � ILTS(G(d1 ⊗V d2, (v1, v2))).

Proposition 2.1 gives three ways to compute the configuration graph of an
STS product. Proposition 2.2 shows that the interpretation of G(d1, v1) ⊗V d2

is a finer simulation for ILTS(G(d1 ⊗V d2, (v1, v2))) than ILTS(d1 ⊗V d2). These
results are used in Section 4 to apply the standard interpretation to composite
systems.

3 Bounded Analysis

Enumerative model-checking works on state spaces which are generated from
specifications written in high-level languages such as process algebras. Symbolic
model-checking techniques rely on different techniques (such as BDD encodings)
to deal with big state spaces. However this is not sufficient when components
encapsulate or exchange data. Possibly infinite data type domains must be re-
stricted and free variables bound to avoid state explosion. For instance, reasoning
on LOTOS specifications using CADP may be performed in different ways. The
underlying global LTS can be first generated and then verified. On-the-fly tech-
niques can also be used, in presence of concurrency, to avoid the generation of
the whole global system [23]. However, a shortcoming of all these approaches is
that model-checking is applied to a restricted finite state system and full cor-
rectness cannot be ensured. Accordingly we present in the sequel of this section
an approach preserving symbolic values. Our objective is not to replace existing
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model-checking techniques and tools. Bounded analysis has to be viewed as a
complementary debugging means to detect possible flaws that model-checking
may miss.

3.1 Principle

It is common that a system handles both bounded variables and unbounded
variables. Enumerative model-checking will arbitrarily bound all the variables
and it may be insufficient to assert properly a given property for the whole sys-
tem. Bounded analysis begins by checking if a system is bounded, i.e., testing
if its configuration graph is finite or not. The system taken into account may
be either made up of a single component or several communicating components.
Whenever the system is bounded, bounds for variables can be computed or at
least estimated (see [21] for example) and the configuration graph may thereafter
be generated. Boundedness checking mainly traverses the system configuration
graph to seek accumulating cycles, i.e., a cycle of control states with a greater
data value at the end. When bounds are known, the generation of the bounded
system can be tuned such that the entire system can be computed. We exper-
imented the previous case with CADP, see [26] for an example. If the system
is not bounded, verification techniques developed for infinite systems are rele-
vant, see [5, 14, 13, 3, 7] for example. In the sequel we describe another way to
abstract infinite component systems using boundedness analysis. This approach
is particularly relevant on component systems, because of Proposition 2. This
proposition states that a composite system may be abstracted by checking the
boundedness of one component and if bounded, the synchronous product of the
bounded configuration graph with other components is computed. This approach
is illustrated in the next subsection and extended in Section 4 with a notion of
decomposition.

Definition 4 (Bounded STS). An STS is bounded, for an initial value v0, iff
its configuration graph is finite.

Checking boundedness is a semi-decidable problem and a semi-algorithm com-
puting the configuration graph has been implemented in our prototype. This
algorithm completely unfolds the system and merges identical configurations.
However boundedness is decidable for some specific classes of STS. Our proto-
type therefore implements a decision procedure for one of them, counter STS,
which are an adequate abstraction for many systems, see [15, 3] for related defi-
nitions. They are particularly convenient in the context of component availabil-
ity properties since counter STS can describe dynamic systems allocating finite
amounts of resources.

Definition 5 (Counter STS). A counter STS, is an STS where: i) the data
type is restricted to natural numbers (counters) ci 1 ≤ i ≤ m, ii) guards are
boolean conjunctions of the following atoms: true, false, ci > ni, or ci ≥ ni,
where ni is a natural, and iii) actions are ci:= Σm

j=1
aj ∗ cj ± pi, where aj , pi are

natural numbers and at least one aj is greater than 0.
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Counter STS are as powerful as generalized transfer nets [15] which extend Petri
nets with both duplication and transfer arcs. They admit neither reseting nor
equality testing, since their boundedness would then not be decidable.

Proposition 3. The boundedness test of counter STS is decidable.

The principle of the procedure is to find an accumulating cycle in the configura-
tion graph. The proof relies on the following fact: the effect of all the transitions
may be viewed as an affine increasing function on the vector of counters. This de-
fines a well-structured transition system and boundedness is therefore decidable
following a general theorem for them [15].

3.2 Application: a Resource Allocator (V1)

This subsection describes the application of bounded analysis to an infinite sys-
tem. Whenever the bounds set by model-checking tools are reached, the specifier
does not know if the system is either too big for the tool or really unbounded. For
instance a system which deadlocks for every n smaller than 10, does not imply
anything about the behaviour for greater values of n. In such a case, bounded
analysis is successful and complements model-checking. Let us consider an infi-
nite global system in which some components are finite (bounded), which has
been proved using the method introduced above. Indeed, we compute the con-
figuration graph of the bounded STS, the product with the other STS, then
the LTS interpretation of the finite resulting system. We recall with reference
to Proposition 2.2 that it is a finer interpretation than simply computing the
product and interpreting it afterwards.

IDLE

BEG

/ gauge := gauge+1

[gauge > 0]

ask

end

/ size := M
  gauge := M

init

[gauge > 0]
acquire
/ gauge := gauge−1

[gauge < size]
release

BEG

IDLE

ASK OK

ok

[num=QUOTA] new

acquire

[i in acq] release

[num < QUOTA]

/num:= num+1

/ acq[i]:=QUOTA

init

/ num:=0 client:=i

[not i in acq] ask

/ acq:=[]
num:=0
client:=0

/ acq[i]:=acq[i]−1

Fig. 1. Resource allocator system (left: allocator, right: client system)

As an illustration, let us take a resource allocator system with two compo-
nents: the allocator and the client system. Figure 1 presents the STS descriptions
of these components. The allocator can start (init), accept a request for a quan-
tity (ask), send a resource unit (acquire), release a quantity (release), fulfill



8 Pascal Poizat, Jean-Claude Royer, and Gwen Salaün

a request (end). The maximal amount of resources shared by the allocator is M.
Variable gauge is used to keep track of the allocated resources. On the other
hand, one client system centralizes the management of all the clients which are
requiring resources. To simplify the presentation, we have omitted the client ac-
tions of entering and leaving the system. The client system can start (init),
send a request for a quantity (ask) and related to client i, accept a resource
unit (acquire), release a resource acquired by the client i (release), termi-
nate the request (new), return to the idle state (ok). The amount requested
by one client is identified by the QUOTA constant (with QUOTA≤M). Variable num

stores the current number of resources while acquiring them, and the acq vector
stores the acquired resources for the clients. Synchronisations are (init,init),
(release,release), (acquire,acquire), (ask,ask) and (end,ok).

Under the hypotheses of a given M and a given QUOTA, the system is not finite
since the number of clients is not known. Model-checking techniques must set
this number, and hence find a deadlock. Indeed, after a while, resources will lack
since resources acquired by the clients are not all released before starting a new
request. Thus we can only assert that the allocator deadlocks for a given number
of clients. However, bounded analysis can be performed, since the allocator is
bounded (M is a constant and gauge≤M is a global constraint). In this example
the weak interpretation of the STS (WLTS(allocator ⊗V client system)) result-
ing from the synchronous product of the allocator and the client system STS,
and the configuration graph of the allocator STS (G(allocator, M)) are deadlock
free. Finally, we can detect that the synchronous product of the allocator config-
uration graph and the client STS (G(allocator, M)⊗V client system) deadlocks
without choosing arbitrarily a specific number of clients.

4 Bounded Decomposition

Results of the previous section are extended by a notion of decomposition which
allows in a first step to generate finite representations of bounded parts of a
system, and to check them in a second step.

4.1 Principle

The idea is to choose a subset of the data and to do a partial evaluation of STS
using it. The computation of the configuration graph is adjusted to only evaluate
guards and actions related to the selected data. One can then analyse parts of
an STS which can be bounded and then build an abstraction. This requires the
STS to be decomposable. In this section, we introduce our definitions on a binary
decomposition, even though the decomposition can be extended to n > 2 and
can be iterated several times.

Definition 6 (Decomposable STS). An STS (D, (Σ, Ax), S, L, s0, T ) is
decomposable if and only if: i) D can be decomposed into D1 × D2, ii) for each
(s, µ, ε, δ, t) in T , for each v = (v1, v2) : D, µ(v) ≡ µ1(v1) ∧ µ2(v2), with
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µi a guard for Di, iii) for each (s, µ, ε, δ, t) in T , for each v = (v1, v2) : D,
δ(v) ≡ (δ1(v1), δ2(v2)), with δi a function on Di.

When d is decomposable we may define two successive partial unfoldings, G1

and G2. G1 simulates the system relatively to D1 and keeps unchanged infor-
mation related to D2. G1 can be viewed as a partial evaluation of the configura-
tion graph. We focus here on emissions, however the principle extends to other
kinds of events. G1 applies to transitions (s, µ, l!e, δ, t) and values v1 : D1. If
µ1(v1)↓= true, G1 generates a transition ((s, v1), µ2, l!e, (SelfD1

, δ2), (t, δ1(v1)↓
)). G2 simulates G1(d, v0

1
) relatively to D2. Hence, it applies to transitions gen-

erated by G1 and values v2 : D2. If µ2(v2)↓= true, G2 generates a transition
((s, (v1, v2)), true, l!e((v1, v2))↓, (SelfD1

, SelfD2
), (t, (δ1(v1)↓, δ2(v2)↓)). Dur-

ing the G1 step, internal communications and (external) emissions are evaluated.
However, receptions from D2 must be delayed until the G2 step takes place.

Proposition 4. Let d be a decomposable STS. The configuration graph G of d

can be computed as follows: G(d, (v0

1 , v0

2)) ≡ G2(G1(d, v0

1), v0

2).

On the left hand side, a transition such as (s, µ, l!e, δ, t) with v = (v1, v2),
becomes ((s, (v1, v2)), true, l!e((v1, v2))↓, (SelfD1

, SelfD2
), (t, (δ(v1, v2)↓))).

On the right hand side, the transition is ((s, v1), v2), true, l!e((v1, v2)) ↓,
(SelfD1

, SelfD2
), (t, (δ1(v1)↓, δ2(v2)↓)) if µ1(v1)↓= true and µ2(v2)↓= true.

Both results are equivalent taking into account the decomposition properties of
d and the state isomorphism from S1 × (D1 × D2) to (S1 × D1) × D2.

Definition 7 (Bounded Decomposition). If d is a decomposable STS and
G1(d, v0

1
) is finite then it is a bounded decomposition of d.

Bounded decompositions define abstractions of STS which yet preserve inter-
esting properties with reference to the initial STS. These properties ensure that
some analysis for the initial STS can be undertaken on one of its bounded decom-
positions. Propositions 1.2 and 4 ensure that the standard interpretation of the
bounded decomposition G1(d, v0

1
) is a simulation of the standard interpretation

of G(d, (v0

1 , v0

2)).

Proposition 5. If d and d′ are decomposable STS then d⊗V d′ is decomposable.

There are several possible decompositions for d ⊗V d′. Note that the STS
synchronous product naturally yields decomposable STS. However, a nontrivial
decomposition is the following. If D = D1 × D2 and D′ = D′

1 × D′
2 then the

data type of d ⊗V d′ is (D1 × D2) × (D′
1
× D′

2
) which is isomorphic to (D1 ×

D′
1
) × (D2 × D′

2
). d and d′ being decomposable, this isomorphism may guide a

new decomposition of d ⊗V d′.

4.2 Application: the Ticket Mutual Exclusion Protocol

We illustrate first the decomposition principle on a mutual exclusion protocol
inspired by the ticket protocol as described in [13]. However, our version differs
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from that one since we deal with distributed components communicating by
messages, and not processes operating on a shared memory. We also distinguish
entering (use) and leaving (end) the critical section. Finally, a counter C and a
guard C=0 are added to the server which computes the number of processes in
their critical section. This counter is used to check the mutual exclusion property.
STS associated to process and server are described in Figure 2. Synchronisations
are summarized in the following vectors: (think,givet), (use,gives), and
(end,end).

[A=S]

/ A := 0 : Natural

end

/ A := T
think ?T : Natural

use ?S : Natural T

E

I
/ S, T, C := 0 : Natural

/ S := S + 1

C := C + 1

end / C := C − 1

S
givet !T

/ T := T+1

[C=0]

gives !S

Fig. 2. STS descriptions: process (left) and server (right)

This system is unbounded since variables S, T, and A can store arbitrary
large values. We split the variables into {} and {A} for the process, and {C} and
{T,S} for the server. With these subsets we can easily check the decomposition
of definition 6. Then, this decomposition produces a partial configuration graph
on the C counter, on which boundedness is checked.

From such a finite system, safety properties like mutual exclusion can be
checked. Mutual exclusion appears as the absence of the situation with more
than one process in state T or as the fact that C≤1. Our prototype succeeds in
generating the global system, checking the boundedness, computing the config-
uration graph and then checking mutual exclusion for up to 8 processes within
about three minutes. The resulting product (for 8 processes and the server) is
made up of 6561 states and 52488 transitions; the configuration graph contains
1280 states and 6656 transitions. However CADP and SPIN, with the default
configuration values and bounded data types, e.g., natural numbers bounded to
256, do not pass 6 processes.

4.3 Application: a Resource Allocator (V2)

This section illustrates the use of bounded decomposition on a more elaborated
variant (Fig. 3) of the Section 3 resource allocator. In this version client iden-
tities are communicated to the allocator which hence knows the client (who)
and the requested quantity. The allocated (GIVEN) and the requested (QUOTA)
amounts are natural number constants (not necessary equal). The constraint
M≥QUOTA≥GIVEN≥1 is assumed. The allocator communicates with the client sys-
tem on the delete event when there are not enough free resources. Whenever



Bounded Analysis and Bounded Decomposition 11

BEG

INIT

WORK

/ size := M
  gauge := M
  who := 0

/ who := id
ask?id

[gauge<GIVEN]

init!size

acquire!who
[gauge>=GIVEN]

release?id
[gauge<size]

/ gauge := gauge−GIVEN

/ who := 0end

/ gauge := gauge+QUOTA

delete 
/ gauge := gauge+QUOTA

BEG

IDLE

ASK OK

total:=total−QUOTA

/ who:=0 id.remove(i)

[i in id] release!i

acq.remove(QUOTA)
total:=total−QUOTA

num:=num−QUOTA
ok / who:=0

id:=[]
acq:=[]

/ who:=0
num:=0

total:=0

init?s / size:=s

/ num:=num+GIVEN

acquire 

[num<QUOTA]

[not i in id] ask!i / who:=i

[num=QUOTA]

new / acq:=acq+[QUOTA]

id:=id+[who]

total:=total+QUOTA

[total>0] delete 

/ id.pop() acq.pop()

Fig. 3. Revisited resource allocator system (left: allocator, right: client system)

this occurs, the client system releases the allocated resources owned by a client.
Variable num stores the current quantity acquired by a client, while total ac-
cumulates the acquired resources for all clients. Variable id is used to store the
client identities and acq the allocated quantities.

The global system is not bounded, and furthermore none of the components
is bounded. A possible decomposition is to separate actions on identities from ac-
tions on quantities as allowed by Proposition 5. Hence, one has on the one hand
variables {size, gauge} and on the other hand the who variable. Regarding the
client, its decomposition is based on a partition between variables {size, num,

total} and variables {who, acq, id}. Figure 4 presents the system decompo-
sition view, which was obtained from the synchronous product of the allocator
and the client system. Guards and actions not related to the variables {size,
gauge} of the allocator and {size, num, total} of the client system are hidden
in the decomposition.

Fixing values for M, QUOTA, and GIVEN, the boundedness is checked to be true
for this decomposition. We have carried out experiments on the system for var-
ious values of size, QUOTA, and GIVEN. As an example with M=1000, QUOTA=2,
and GIVEN=1, a configuration graph of 2503 states and 3004 transitions is built.
Experiments show that if GIVEN does not divide QUOTA the system deadlocks. In
the state (WORD, ASK) only three transitions are possible: (acquire, acquire),
(delete, delete), and (-, new) (see Fig. 4). Since GIVEN does not divide
QUOTA, the condition num>QUOTA will be eventually true and num=QUOTA will
never be true. Note also that the condition gauge<GIVEN which enables delete
becomes false after triggering this transition (since QUOTA≥GIVEN), thus the se-
quence delete ; delete cannot occur. This is an example of a safety property
we have checked on the bounded decomposition.

On the other hand, if GIVEN divides QUOTA then the bounded decomposition
has no deadlock. However, this fact is not sufficient to ensure that the global
system is deadlock free. A thorough look at the bounded decomposition shows
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(INIT, IDLE)

(WORK, OK)(WORK, ASK)

(BEG, BEG)

[(gauge<GIVEN, total>0)]

(delete, delete)

/ (gauge:=gauge+QUOTA, 

[(gauge>=GIVEN, num<QUOTA)]

(acquire, acquire)

/ (gauge:=gauge−GIVEN,

num:=num+GIVEN)

total:=total−QUOTA)

/ (size:=M gauge:=M, 

(init!size, init?s) 

/ ( , size:=s)

 size:=0 total:=0 num:=0)

(ask, ask) / ( , )

[(true, num=QUOTA)]

(−, new)

/ ( , total:=total+QUOTA)

/ ( , num:=num−QUOTA)

(end, ok)

/ (gauge:=gauge+QUOTA, 

total:=total−QUOTA)

(release, release)

[(gauge<size, true)]

Fig. 4. The system decomposition view for {size, gauge} and {size, num, total}

that the guards left to evaluate in the G2 step are [(gauge<size, i in id)]

and [(true, not i in id)]. At least one of these guards is true since either
[not i in id] or [i in id] is true and an allocation has been done thus
gauge<size is true. Therefore the global system is not blocking if GIVEN divides
QUOTA.

Resource availability is an important property in such a system. Generally it
is a mix of safety and liveness properties. However, as stated in [27], availability
properties with bounded waiting time are pure safety properties. Thus, bounded
decompositions can be applied to check them. Assuming that each action has a
maximum duration, we may be interested in the longest logical time sequence
between a client request (ask) and its end (end). The longest sequence has form:
ask ; acquirep ; delete ; acquirer ; new ; ok, where p + r = (QUOTA
% GIVEN). Therefore the global system satisfies the longest sequence property.
However one may expect to prove that: for any client the longest sequence is
ask ; acquirep ; delete ; acquirer ; new ; ok. This is true but actually
it requires an additional analysis observing that the client system freezes the
client identity during the allocation and the system is not blocking as discussed
above.

5 Related Work

Our model of concurrent components can be related to Architectural Descrip-
tion Languages (ADL). It allows one to describe behavioural interfaces of both
atomic and composite components. In addition, components can handle data
types within their protocols, and communicate synchronizing on messages. How-
ever, our focus in this paper is not to provide a new ADL but to tackle analysis
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issues. [25] presents a formal ADL for which analysis is possible using techniques
presented here.

Enumerative model-checking techniques usually bound all the sources of in-
finity. Similarly, bounded model-checking [6] searches for counterexamples in
executions bounded by some length k. Therefore, let us focus on abstraction
techniques and approaches dedicated to the verification of STS or parameter-
ized systems.

Several works use abstraction techniques to verify state-based systems [11,
22, 12, 5]. For instance, in [11], the authors show how to extract abstract finite
state machines from finite state programs using techniques similar to abstract
interpretation. Our notions of abstraction and simulation are close to this work
but our starting point is a state and transition based description of a program.
In addition, our goal is to check if a bounded approximation can be built from
it. Note that Proposition 2.2 in conjunction with a boundedness procedure gives
an automatic way to approximate an infinite system. Most authors try to define
abstractions over LTS (obtained from low level specification or code) and then
address usual verification techniques on these abstracted LTS. We focus on the
use of verification in the design phase and our bounded decomposition automat-
ically builds an abstraction mapping. Components are specified directly with
STS, then we try to unfold them partially to use usual verification techniques.

Many approaches have been proposed for symbolic model-checking of var-
ious kinds of infinite state systems, such as [14, 13, 3, 7]. A formalism similar
to our symbolic system is described in [13]. The authors define a general and
concurrent system with a translation preserving semantics into Constraint Logic
Programming. They also present a method for verifying safety properties which
is relevant to infinite state systems. While the formalism is different, our data
types with positive conditional axioms are known to be equivalent to constraints
written as Horn clauses. Compared to this work, our objectives are slightly
different since rather than replacing model-checking approaches we propose to
complement them for some specific systems (decomposable and bounded). We
also emphasize [3] which computes reachability sets of counter automata. These
sets, defined by Presburger formulae, are represented by automata and the au-
thors propose an algorithm to increase convergence computation. Boundedness
is equivalent to the property of finite reachability set. A counter automata is a
counter STS allowing c ≤ M guards and this provides a general semi-algorithm
for reachability.

6 Concluding Remarks

Behavioural interfaces are required in component based software engineering to
perform analysis and relate efficiently models and implementations. Most pro-
posals in this area deal with LTS models. However, more expressive models such
as STS are needed to take data encapsulation and value passing into account.
A major weakness of such models is the lack of dedicated analysis techniques.
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Direct mapping into standard model-checkers results in state explosion problems
in the presence of unbounded data types and hence is not directly applicable.

In this paper we proposed an analysis framework for STS based on con-
figuration graphs and LTS interpretations. This enables one to use the usual
verification techniques on these LTS. In addition, we have also presented specific
analysis techniques, namely bounded analysis and bounded decomposition, and
demonstrated how they may complement model-checking. We have developed a
prototype in Python (about 4000 lines) which supports STS description, configu-
ration graph computation, product computation and the boundedness checking.
We have already applied successfully our approach (boundedness, decomposition
and model-checking) to several examples: a flight reservation system, several
variants of the bakery protocols, the slip protocol, several variants of a resource
allocator, and a cash point service.

Future work aims at extending our techniques on boundedness checking and
boundedness decomposition. For instance, the selection of counter variables guid-
ing the decomposition should be assisted by slicing techniques [9]. They can be
applied to focus on a property one wants to check (which depends on variables),
and then obtain the set of variables with a direct effect on this formula. Another
perspective is to link our prototype with the verification tools CADP or SPIN.

Acknowledgments. We would like to thank the reviewers for their useful com-
ments and suggestions.
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Available at http://www.emn.fr/x-info/jroyer/rrBounded.pdf.

27. F. B. Schneider. Enforceable Security Policies. ACM Transactions on Information

and System Security, 3(1):30–50, 2000.


