
Adaptation of Open Component-based Systems

Pascal Poizat1,2 and Gwen Salaün3

1 IBISC FRE 2873 CNRS – University of Evry Val d’Essonne, France
2 ARLES project, INRIA Rocquencourt, France

pascal.poizat@inria.fr
3 Department of Computer Science, University of Málaga, Spain

salaun@lcc.uma.es

Abstract. Software adaptation aims at generating software pieces called
adaptors to compensate interface and behavioural mismatch between
components or services. This is crucial to foster reuse. So far, adapta-
tion techniques have proceeded by computing global adaptors for closed
systems made up of a fixed set of components. This is not satisfactory
when the systems may evolve, with components entering or leaving it at
any time, e.g., for pervasive computing. To enable adaptation on such
systems, we propose tool-equipped adaptation techniques for the compu-
tation of open systems adaptors. Our proposal also support incremental
adaptation to avoid the computation of global adaptors.

1 Introduction

Compared to hardware components, software components (or services) are sel-
dom reusable as is due to possible mismatch that may appear at different lev-
els [10]: signature, behaviour, quality of service and semantics. Once detected,
mismatch has to be corrected. However, it is not possible to impact directly on
the components source due to their black-box nature. Software adaptation [27,
10] aims at generating, as automatically as possible, pieces of software called
adaptors which are used to solve mismatch in a non intrusive way. To this pur-
pose, model-based adaptation techniques base upon behavioural component in-
terface descriptions and abstract properties of the adaptation called adaptation
contracts or mappings. Dedicated middleware [2] can be used to put the adap-
tation process into action once an adaptor model (or implementation) has been
obtained, but this is out of scope here.

Existing (global) adaptation approaches [27, 21, 14, 8, 11] proceed by gener-
ating a global adaptor for the whole system which is seen as a closed one. First
of all this is costly. Moreover, when a component uses a service which does not
relate through mapping to the other components’ services, then either its use
is prevented by adaptation (to avoid deadlock), or it is made internal (related
events sent by the component are absorbed by the adaptor). Taking into account
that new components, and hence new services, may be available in the future is
not possible. Global adaptation approaches suffer from the fact that the adap-
tor has to be computed each time something changes in the system and are
therefore not efficient in contexts such as pervasive systems [20], where services

are not fixed or known from scratch. They may evolve, e.g., depending on the
mobility of the user –moving around, different services are discovered and may
be used, or on connectivity or management issues –some services may be tempo-
rary or definitely unavailable. In this paper we address these issues by extending
a previous work for the adaptation of closed systems [11] in order to support
(i) the adaptation of open systems and accordingly, (ii) an incremental process
for the integration and adaptation of open software components. The definitions
and algorithms we present have been implemented in Adaptor [1], our tool for
model-based adaptation.

The paper is structured as follows. Section 2 presents our open systems com-
ponent model and our adaptation techniques for such systems. In Section 3,
we present the incremental adaptation of open systems, addressing the addition
and the removal of components. Incremental adaptation has an added value at
design-time, where the integration of components is known to be a difficult task,
which gets worse when components have not been designed altogether from the
beginning and therefore when adaptation connectors are needed. This typical
use of the incremental adaptation of open systems is illustrated in Section 4. We
end with comparison of related work and concluding remarks.

2 Open Systems Adaptation

In this section we address the adaptation of open systems. We first recall a formal
model for basic sequential components originating from [11]. Then we define an
open composition model on top of it thanks to the definition of (i) compositional
vectors, (ii) open synchronous product and (iii) open component-based systems
and their semantics. In a second step, our adaptation algorithms are presented.

2.1 Components

Alphabets, the basis for interaction, correspond to an event-based signature. An
alphabet A is a set of service names, divided in provided services, A? (elements
denoted as e?), required services, A! (elements denoted as e!) and internal actions
(denoted with τ). The mirror operation on an alphabet element is defined as
e? = e!, e! = e?, and τ = τ . Moreover, for an alphabet A, A = {e | e ∈ A}.

Component interfaces are given using a signature and a behavioural interface.
A signature is a set of operation profiles as in usual component IDLs. This set
is a disjoint union of provided operations and required operations. Behavioural
interfaces are described in a concise way using a sequential process algebra,
sequential CCS: P ::= 0 | a?.P | a!.P | τ.P | P1+P2 | A, where 0 denotes
termination, a?.P (resp. a!.P) a process which receives a (resp. sends it) and
then behaves as P, τ.P a process which evolves with the internal action τ (also
denoted using tau in figures) and behaves as P, P1+P2 a process that acts either
as P1 or P2, and A the call to a process defined by an equation A = P, enabling
recursion. The CSS notation is extended using tags to support the definition
of initial ([i]) and final states ([f]). 0 and 0[f] are equivalent. In order to
define adaptation algorithms, we use the process algebra operational semantics

to retrieve Labelled Transition Systems (LTS) from the interfaces, i.e., tuples
〈A, S, I, F, T 〉 where A is the alphabet (set of communication events), S is the
set of states, I ∈ S is the initial state, F ⊆ S is the set of final states, and
T ⊆ S × A × S are the transitions. The alphabet of a component LTS is built
on this component’s signature. This means that for each provided operation p

in the signature, there is an element p? in the alphabet, and for each required
operation r, an element r!.

2.2 Open Component Systems

Vectors are an expressive mechanism to denote communication and express cor-
respondences between events in different processes. In this work vectors are ex-
tended to take into account open systems and keep track of their structuring.
For this purpose, vectors are defined with reference to an (external) alphabet
which relates component events to composite systems external interfaces (see
Defs. 3 and 4, below).

Definition 1 ((Compositional) Vector). A compositional vector (or vector
for short) v for a set of LTSs Li = 〈Ai, Si, Ii, Fi, Ti〉 , i ∈ {1, . . . , n} and an
(external) alphabet Aext is an element of Aext × (A1 ∪ {ε}) × . . . × (An ∪ {ε}).
Such a vector is denoted e : 〈l1, . . . , ln〉 where e ∈ Aext and for every i in
{1, . . . , n}, li ∈ Ai ∪ {ε}. ε is used in vectors to denote a component which does
not participate in a communication.

The definition of an open synchronous product yields a tree-shaped structure
for labels which makes it possible to keep trace of the structuring of composite
components. When needed we may restrict to the observable part of labels,
defined as obs(e : 〈l1, . . . , ln〉) = e. Moreover, labels of simple LTS can be
related to composite ones using l : 〈l〉 for any label l.

Definition 2 (Open Synchronous Product). The open synchronous product
of n LTSs Li, i ∈ {1, . . . , n} with reference to a set of vectors V (defined over
these LTSs and an external alphabet Aext) is the LTS Π((L1, . . . , Ln) , Aext, V) =
〈A, S, I, F, T 〉 such that: A = Aext × A1 × . . . × An, S = S1 × . . . × Sn, I =
(I1, . . . , In), F = F1 × . . . × Fn, and T contains a transition ((s1, . . . , sn), e :
〈a1, . . . , an〉 , (s′1, . . . , s

′
n)) iff there is a state (s1, . . . , sn) in S, there is a vector

e : 〈l1, . . . , ln〉 in V and for every i in {1, . . . , n}:

– if li = ε then s′i = si and ai = ε,
– otherwise there is a transition (si, ai, s

′
i) with obs(ai) = li in Ti.

Remark. In practice, we reduce S (resp. F) to elements of S (resp. F) which
are reachable from I using T .

Example 1. Let us suppose we have two LTSs, L1 and L2, with one transition
each: (I1, a?, S1) for L1 and (I2, b!, S2) for L2. Different sets of vectors may
express different communication semantics:

– {τ : 〈a?, b!〉} (services a? and b! being synchronised) will produce a product
LTS with a single transition: ((I1, I2) , τ : 〈a?, b!〉 , (S1, S2));

– {a? : 〈a?, ε〉 , b! : 〈ε, b!〉} (services a? and b! left open to the environment)
will produce a product LTS with four transitions:
((I1, I2) , a? : 〈a?, ε〉 , (S1, I2)), ((I1, I2) , b! : 〈ε, b!〉 , (I1, S2)),
((S1, I2) , b! : 〈ε, b!〉 , (S1, S2)), ((I1, S2) , a? : 〈a?, ε〉 , (S1, S2)).

If we take this second case into account and make a product with an LTS L3

with two transitions, (I3, c!, S3) and (S3, d?, S′
3), and vectors {τ : 〈a?, c!〉 , τ :

〈b!, d?〉}, we get a product LTS with two transitions:
(((I1, I2) , I3) , τ : 〈a? : 〈a?, ε〉 , c!〉 , ((S1, I2) , S3)),
(((S1, I2) , S3) , τ : 〈b! : 〈ε, b!〉 , d?〉 , ((S1, S2) , S′

3)).

Composites denote sets of hierarchical connected open components.

Definition 3 (Composite (or Open Component System)). A composite
is a tuple 〈C, Aext, Bint, Bext〉 where:

– C is a set of component instances, i.e., an Id-indexed set of LTS Li, i ∈ Id

(Id usually corresponds to the integers {1, . . . , n}),
– Aext is an (external) alphabet,
– Bint is a set of vectors, with each vector e : 〈l1, . . . , ln〉 in Bint being such that

e = τ , there is some i in {1, . . . , n} such that li 6= ε and there is at most one
j in {1, . . . , n}\{i} such that lj 6= ε. Bint denotes internal (hidden) bindings
between the composite sub-components, When clear from the context, such
vectors can be denoted as couples (li, lj),

– Bext is a set of vectors, with each vector e : 〈l1, . . . , ln〉 in Bext being such
that e 6= τ , there is some i in {1, . . . , n} such that li 6= ε, and for every k in
{1, . . . , n}\{i}, lk = ε. Bext denotes external bindings between the compos-
ite sub-components and the composite interface itself. When clear from the
context, such vectors can be denoted as couples (e, li).

Our structure of composites supports (through model transformation) exist-
ing hierarchical ADLs such as the Fractal one [9] or UML 2.0 component dia-
grams [17]. Note that with reference to these models we have an exact corre-
spondence between their notions of component ports and component interfaces
in what we call alphabets. Our model for bindings is more expressive than the
Fractal ADL or UML 2.0 ones as we enable bindings between services with dif-
ferent names, which is mandatory to support adaptation.

Example 2. Let us take a component system described in an ADL (Fig. 1) where
a batch processing client interacts with a database server to perform SQL re-
quests. Our graphical notation is inspired from Fractal ADL, yet a textual nota-
tion is also supported. This model can be transformed into the following com-
posite structure:

〈 {Client,SQLServer}, {launch?,exitCode!},
{(log!,id?), (request!,sqlQuery?), (reply?,sqlValues!), (reply?,sqlError!), (end!, ε)},
{(launch?,run?), (exitCode!,exitCode!)} 〉.

Open synchronous product is used to give a formal semantics to composites.

id?

sqlQuery?

sqlValues!

sqlError!

SQLServer

SQLServer[i,f] = id?.QueryPerformer
QueryPerformer = sqlQuery? .

(tau.sqlValues!.SQLServer
+ tau.sqlError!.SQLServer)

request!

log!

reply?

end!

exitCode!

exitCode!launch?

run?

Client

Cx = tau.request!.reply?.Cx
Client[i] = run?.log!.Cx

 + tau.end!.exitCode!.0

Fig. 1. The Client and SQLServer Example Architecture.

Definition 4 (Composite Semantics). The semantics of a composite C =
〈C, Aext, Bint, Bext〉 is the LTS L(C) = Π(C, Aext,V) with V = Bint ∪ Bext ∪ Bτ

where Bτ =
⋃

i∈{1,...,n}{bτ,i} and bτ,i = τ : 〈l1, . . . , ln〉 where li = τ and lk = ε

for every k in {1, . . . , n}\{i}.

In presence of several hierarchical levels (composites of composites), compos-
ite sub-components are first translated into LTSs using their semantics (Def. 4),
e.g., the semantics of a composite C = 〈{C1, . . . , Cn}, Aext, Bint, Bext〉 where
some Ci is a composite can be obtained replacing Ci by L(Ci) in C.

2.3 Mismatch and Mappings

Composition correctness is defined in the literature [10] either at the composition
model level – using deadlock freedom – or at the components’ protocols level –
using compatibility or substitutability notions. As we want to use compositions
in finding ways to correct mismatching components, we rely on the first ap-
proach. States without outgoing transitions are legal if they correspond to final
states of the composed components. Therefore, we define deadlock (and hence
mismatch) for a composite with a semantics 〈A, S, I, F, T 〉 as a state s ∈ S of the
composition which has no outgoing transition (6 ∃ (s, l, s′) ∈ T) and is not final
(s 6∈ F). A deadlock is a state of the composition in which respective component
protocols are incompatible, due to signature and/or behavioural mismatch. Note
that if the former one can be solved using correspondences and renaming, the
latter one requires more subtle techniques. This is also the case when correspon-
dences evolve over time (e.g., in Example 4 below, id? in SQLServer corresponds
first to log! in Client and later on to nothing).

Example 3. Let us get back to the composite presented in Example 2. Mismatch
in the example is due first to mismatching names. Moreover, even with an agree-
ment on the service names, the fact that the client works in a connected mode
(sending its log only once and disconnecting with end) while the server works
in a non connected mode (requiring an id at each request) will also lead to be-
havioural mismatch after the first request of the client has been processed by
the server.

We propose regular expressions of open vectors as the means to express adap-
tation contracts. A regular expression (or regex for short) over some basic domain
D is the set of all terms build on: d (ATOM), R1.R2 (SEQUENCE), R1 + R2
(CHOICE), R1∗ (ITERATION) and N (USE), with d ∈ D, R1 and R2 being
regular expressions, and N being an identifier referring to a regex definition
N = R. Such definitions can be used to structure regex but we forbid recursive
definitions for operational reasons.

Definition 5 ((Adaptation) Mapping). An adaptation mapping (or map-
ping for short) for a composite C = 〈C, Aext, Bint, Bext〉 is a couple (V, R) where
V is a set of (compositional) vectors for the LTSs in C and Aext, and R is a
regular expression over V .

Example 4. To work our system out, one easily guesses that the client has first
to be launched, to connect, the system then runs for some time and finally the
client disconnects and exits. This is specified for example using the mapping
M=vlaunch.vcx.Mrun.vdx.vexit with vectors vlaunch=launch?:<run?, ε >, vcx= τ :<log!,id?>,
vdx= τ :<end!, ε >, and vexit=exitCode!:<exitCode!, ε >. Yet, it is more complicated
to know what should be done while the system runs (Mrun), excepted of course
that events are exchanged for requests/results and that somehow a reset (resend-
ing the client identification) should be used. Therefore, one may choose to keep
this part of the mapping abstract: Mrun= (vreq+vres+verr+vreset)* with vectors vreq=

τ :<request!,sqlQuery?>, vres= τ :<reply?,sqlValues!>, verr= τ :<reply?,sqlError!>, and
vreset= τ :< ε,id?>.

Discussion on the mapping notation. Mappings are made up of the def-
inition of possible correspondences (vectors) and a dynamic description over
such correspondences (regex). Several behavioural languages may be used to
this purpose. We have presented regex for their simplicity. However, the only
requirement for the algorithms presented in Section 2.4 to work is to be able to
obtain from the mapping an LTS where transitions are labelled by vectors (Al-
gorithm 1, line 13). Currently, Adaptor supports both regex and the direct use
of LTS. Message Sequence Charts (MSC) where arrows are labelled by vectors
are a user-friendly alternative. LTS can be obtained from MSC using, e.g., [24].
We are also investigating the use of techniques from the composition of Web
services [6] in order to get automatically possible correspondences between ser-
vices (vectors) and ease the user task in the context of end-user composition in
pervasive systems.

2.4 Algorithms

Using a mapping and component behavioural interfaces, an adaptor can be gen-
erated automatically for a closed system following results from, e.g., [21, 14, 8,
11]. Here, our algorithms (Alg. 1 and 2) enable adaptation on open systems. Al-
gorithm 1, works by translating into a Petri net [16] the constraints of a correct
adaptor. This choice is done as Petri nets enable to see messages exchanged be-
tween components as resources of the adaptor, to de-synchronise messages and

Algorithm 1 build PetriNet

inputs mapping M , components C1, . . . , Cn with each Ci = 〈Ai, Si, Ii, Fi, Ti〉
outputs Petri net N

1: N := empty PetriNet() // all remaining actions operate on N
2: for all Ci = 〈Ai, Si, Ii, Fi, Ti〉 , i ∈ {1, . . . , n} do

3: for all sj ∈ Si do add a place [i@s j] end for

4: put a token in place [i@I i] // Ii is the initial state of Ci

5: for all a! ∈ Ai do add a place ??a end for

6: for all a? ∈ Ai do add a place !!a end for

7: for all (s, e, s′) ∈ Ti with l = obs(e) do

8: add a transition with label l, an arc from place [i@s] to the transition and
an arc from the transition to place [i@s’]

9: if l has the form a! then add an arc from the transition to place ??a end if

10: if l has the form a? then add an arc from place !!a to the transition end if

11: end for

12: end for

13: LR = (AR, SR, IR, FR, TR) := get LTS from regex(R) // see [13]
14: for all sR ∈ SR do add a place [R@s R] end for

15: put a token in place [R@I R] // IR is the initial state of LR

16: for all tR = (sR, e : 〈e1, . . . , en〉 , s′R) ∈ TR with ∀i ∈ {1, . . . , n} li = obs(ei) do

17: add a transition with label e, an arc from place [R@s R] to the transition and
an arc from the transition to place [R@s’ R]

18: for all li do

19: if li has the form a! then add an arc from place ??a to the transition end if

20: if li has the form a? then add an arc from the transition to place !!a end if

21: end for

22: end for

23: for all (fr, f1, . . . , fn) ∈ FR × F1 × . . . × Fn do

24: add a (loop) accept transition with arcs from and to each of the tuple elements
25: end for

26: return N

Algorithm 2 build adaptor

inputs mapping M , components C1, . . . , Cn with each Ci = 〈Ai, Si, Ii, Fi, Ti〉
outputs adaptor Ad = 〈A,S, I, F, T 〉

1: N := build PetriNet(M, {C1, . . . , Cn}) // see Algorithm 1
2: if bounded(N) then L := get marking graph(N)
3: else L := add guards(get cover graph(N)) end if

4: Ad :=reduction(remove paths to dead states(L))
5: return Ad

therefore support reordering when required. The encoded adaptor constraints
are as follows. First, the adaptor must mirror each component interface (places
and transitions are generated from component interfaces, lines 2–12). It must
also respect the adaptation contract specified in the mapping (places and tran-
sitions are generated, lines 14–22, from an LTS description of the mapping ob-
tained in line 13). Algorithm 2 works out the building of the adaptor from this

net using several functions. bounded checks if a Petri net is bounded. If so,
its marking graph is finite and can be computed (get marking graph); if not,
then we rely on an abstraction of it, a cover graph (get cover graph), where
the ω symbol abstracts any token number > 0. Due to the over-approximation
of cover graphs, add guards is used on them to add a guard [#??a>1] (#??a
meaning the number of tokens in place ??a) on any a! transition leaving a state
where #??a is ω. remove paths to dead states recursively removes transitions
and states yielding deadlocks. The optimising of resulting adaptors is achieved
thanks to reduction techniques (reduction). Branching reduction [25] is the
most appropriate choice as it does not require a strict matching of τ transi-
tions like strong equivalence. In addition, branching equivalence is the strongest
of the weak equivalences, therefore properties restricted to visible actions (e.g.,
deadlock freedom, but also safety and fair liveness) are preserved by reduction
modulo branching equivalence.

Example 5. We present in Figure 2 the Petri net generated for the Client and
SQLServer example. To help the reader, we present separately the different parts
of the net which are generated for Client (top left), SQLServer (top right) and
the mapping (bottom left). The accept transition and the dashed places are used
to glue the three subnets. The resulting adaptor is also shown (bottom right). It
is more complex than its contract, which demonstrates the need for automatic
adaptation processes as presented here.

Our algorithms are supported by Adaptor which relies on ETS [18] for open
product computation, TINA [7] for the marking and cover graph computation,
and on CADP [12] for adaptor reduction. Due to the computation of mark-
ing/cover graphs for the Petri net encodings, this algorithm is in theory expo-
nential in the size of the Petri net, which in turn is related to the sum of the sizes
of the component protocols and their alphabets (

∑

i∈{1,...,n+1}(|Si|+ |Ai|)). Yet,
in practice, the adapted components are sequential, hence parts of generated
Petri nets are 1-bounded which lowers the complexity. The incremental mecha-
nism for adaptation we present in the next section also helps in minimising the
complexity of computing adaptors.

3 Incremental Adaptation of Open Component Systems

We may now describe an incremental adaptation approach suitable to open sys-
tems. At design-time, it helps in the design and integration of component-based
systems, grounding on automatic adaptor-connector generation. At run-time, it
avoids the computation of global adaptors and supports evolving systems.

3.1 Architectural Style

The definition of an architectural style is the support for the description, rea-
soning and implementation of software architectures. As far as design-time in-
cremental adaptation is concerned, resulting design architectural models will

 run!

 log?

 tau tau

 exitCode?

 reply!

 end? request?

 ??exitCode

 ??end
 ??request

 !!reply

 ??log

 !!run

 accept

 accept

 ??sqlError ??sqlValues

 !!sqlQuery

 !!id

 sqlError? sqlValues?

 tau tau

 sqlQuery!

 id!

 tau tau exitCode! launch?

 accept

 tau

 tau tau

 tau

 ??request

 !!sqlQuery

 ??sqlError

 !!reply

 ??sqlValues

 !!id

 ??end ??log !!run ??exitCode launch?

 log?

 run!

 end? accept

 exitCode! exitCode?

sqlError?

sqlValues?

request?sqlQuery! reply!

id!

id!

reply! reply!
sqlError?

sqlValues?

 sqlQuery!

 id!

 request?

 id!
 request?

Fig. 2. The Client and Server Example Adaptor Generation.

respect our style. As far as run-time incremental adaptation is concerned, com-
munication mechanisms are constrained by it.

Two kinds of entities are distinguished: components and adaptors. Compo-
nents implement the system’s functionalities or services. Adaptors are used as
intermediates to avoid deadlock and enforce different coordination policies whose
properties are specified in an abstract way in mappings. A component is only
connected to its adaptor, and interacts with the rest of the system through it. If
the component does not require adaptation, our approach automatically gener-
ates a no-op adaptor which reproduces from an external point of view exactly the
same behaviour as the component. Adaptors can be connected to other adaptors
in order to ensure the system’s global correctness.

To support implementation or run-time adaptation, two kinds of interactions
have to be distinguished at an adaptor level: with its component and with other
adaptors. Adaptors have to agree on a common implementation communication
protocol to communicate altogether. Mismatch between components which has

been solved thanks to adaptors should not be transferred to a mismatch between
adaptors which should communicate correctly by construction. Prefixing will help
there. Communications with the environment are prefixed by the component
identifier and communications with other adaptors are prefixed by the identifier
of the components these adaptors are in charge of. As far as communication
between adaptors and components is concerned, communications are not prefixed
as adaptation should be transparent for the adapted component. The use of
prefixing is demonstrated in Section 4 on our application.

3.2 Assessment

Adaptors may impose service restriction due to the application of the function
removing paths to dead states in the adaptation algorithm (Alg. 2, line 4). These
are hard to detect by hand and assessment procedures are therefore required to
help the designer (for design-time adaptation) or the end-user (for run-time adap-
tation). We propose tool-supported procedures based on alphabet comparison
and property checking.

Alphabet-based assessment and comparisons may be used either to check
the adapted system for services or more specifically to compare the adapted
component with reference to the original one. In the first case we may check
either successfully synchronised services (obtained hiding in LTSs any transition
e :< l1, . . . , ln > where there is only one i such that li 6= ε) or actions left open to
the environment, possibly new services provided by composites (obtained hiding
in LTSs any transition e :< l1, . . . , ln > where there are at least two different
li 6= ε). Comparison between original and adapted components can be performed
on the same basis (internal or external comparison) through difference between
their respective alphabets.

Property checking is a finer grained technique and may efficiently be used
to detect more subtle architectural flaws. Classical properties such as liveness
properties (e.g., any request will eventually be satisfied, see Sect. 4 for an appli-
cation of this) can be easily formalised reusing patterns [15], and then checked
against the adapted system model (LTS) using model-checkers. An interesting
benefit is that, when the property is unsatisfied, model-checkers return back a
counter-example sequence of service calls that may help modifying mappings.

3.3 Addition and Suppression of Components

In this section, we present the algorithms for the addition and for the suppres-
sion of components. In the addition algorithm (Alg. 3), a component (Cn+1)
is adapted and integrated into an existing composite (possibly empty). Adap-
tation is performed using only the component to be added, a given mapping
and adaptors of components referred to in the mapping. Assessment is used to
check the result of the integration. It is important to note that, as a prelimi-
nary step, automatically built mappings can be proposed. When the system is
empty, a no-op mapping,

(

V, (
∑

v∈V v)∗
)

with V = {(Cn+1:e, e) | e ∈ ACn+1
},

simply wraps the added component. When there are already components to

Algorithm 3 addition

inputs composite C = 〈{C1, AC1, . . . , Cn, ACn}, Aext, Bint, Bext〉, component Cn+1

output new composite Ca = 〈{C1, AC1, . . . , Cn, ACn, Cn+1, ACn+1}, A
a
ext, B

a
int, B

a
ext〉

1: repeat

2: M := get mapping()// designer or end-user given
3: ACn+1 :=build adaptor (M, get cn’ed adaptors from mapping(M)∪{Cn+1})
4: B′

ext := get externals from mapping(M)
5: Aa

ext := Aext ∪ {e | (e, e′) ∈ B′
ext}

6: Ba
int := Bint∪ get internals from mapping(M)

7: Ba
ext := Bext ∪ B′

ext

8: Ca := 〈{C1, AC1, . . . , Cn, ACn, Cn+1, ACn+1}, A
a
ext, B

a
int, B

a
ext〉

9: until assess or stop(Ca)// human-interaction may stop the process
10: return Ca

Algorithm 4 suppression

inputs composite C = 〈{C1, AC1, . . . , Cn, ACn}, Aext, Bint, Bext〉, Ck,k∈{1,...,n}

output new composite C′

1: {C1, . . . , Cm} := reachable(Ck , C,added after(Ck, C))
2: C′ := build composite(added before(Ck , C))
3: for all Ci,i∈{1,...,m} do C′ := addition(C′, Ci) end for

4: return C′

communicate with in the system, a trivial mapping,
(

V, (
∑

v∈V v)∗
)

with V =
{(Ci:e, e) |Ci:e ∈ Aext ∧ e ∈ ACn+1

}, can be tested. In this algorithm, func-
tion get cn’ed adaptors from mapping iterates over the set of vectors V of the
mapping M . For each v in V , if v respects the form given for Bint in Definition 3,
we can obtain a couple (li, lj) and then, looking at the n adaptors alphabets, de-
termine the adaptor li corresponds to. Function get externals from mapping

(resp. get internals from mapping) returns the set of couples (e, li) (resp.
(li, lj)) from the vectors e : 〈l1, . . . , ln〉 of the mapping M that respect the form
given for Bext (resp. Bint) in Definition 3. The suppression algorithm (Alg. 4) first
computes all the components that have been added after the component to be re-
moved, and are reachable (in terms of the architectural graph topology) from it.
The suppression may impact all these components, therefore their corresponding
adaptors are successively updated if needed using the component addition algo-
rithm. In this algorithm we use the following functions. Function added after

(resp. before) returns the ordered set of all components of the composite C
added after (resp. before) the component Ck. Function reachable returns all
components of the composite C present in a given filtering set (added after

results) which are reachable from the component Ck. Finally, build composite

is used to build a composite applying the addition algorithm on an ordered set
of components (result of added before in the algorithm), and reusing mappings
from the former composite construction. Mappings are therefore kept with adap-
tors while building the system. Removing a component induces the suppression
of its adaptor, but also the update of all the adaptors interacting with it. In

the worst case, this corresponds to recompute all adaptors which is as costly as
the regular case in global adaptation approaches where the adaptor is always
recomputed.

4 Application

We have validated our approach on several examples: the dining philosopher
problem, a video-on-demand system, a pervasive music player system, and sev-
eral versions of a library management application. We present here a simplified
version of the latter one. The system manages loans in a library. Components
were chosen non recursive (this corresponds to the notion of transactional ser-
vices) to obtain readable resulting adaptors.

The first component, LIB, tests if a book is available in the library or has
been borrowed by a user.

LIB[i,f] = isBorrowed?. (available!.0 + borrowed!.0)

A no-op adaptor, ALIB, is first computed using a no-op mapping generated
automatically as presented in Section 3.3. Then, a second component, SUB, is
added. It is used as a front-end to the LIB component and checks if a user is
a subscriber of the library. If not, SUB replies with the notAvailable! message,
otherwise it tests if the requested book is borrowed or available.

SUB[i,f] = info?.isRegistered?.(isBorrowed!.SUB_AUX + notAvailable!.0)

SUB_AUX = (notBorrowed?.available!.0 + borrowed?.notAvailable!.0)

It is obvious that the components present both name and protocol mismatch,
therefore the trivial mapping fails assessment. We recall that events are pre-
fixed except for those corresponding to interactions between the adaptor and
its component (see Section 3.1). To work the mismatch out, a mapping M1=

(v1.v2.(v3+v4.(v5.v6+v7.v3)))* is proposed, with vectors

v1 = SUB:info? : <LIB:ε, info?>

v2 = SUB:isRegistered? : <LIB:ε, isRegistered?>

v3 = SUB:notAvailable! : <LIB:ε, notAvailable!>

v4 = τ : <LIB:isBorrowed?, isBorrowed!>

v5 = τ : <LIB:available!, notBorrowed?>

v6 = SUB:available! : <LIB:ε, available!>

v7 = τ : <LIB:borrowed!, borrowed?>

In Figure 3 we present the architecture resulting from our incremental inte-
gration and adaptation process. The left hand part is related to the architecture
after the addition of SUB and its adaptor, ASUB. The overall figure corresponds
to the final architecture (after all components have been added, see BOR below).
The architecture is computed automatically using Algorithm 3.

It was not possible to give all binding names (Aext, Bint, Bext) in the figure
due to lack of place. However, bindings here are between ports of same name
as the architectures are correct by construction using adaptation. The adaptor
ASUB generated from M1 is shown in Figure 4.

A third component, BOR, receives requests for loans and checks if the book
can be borrowed or not (id! stands for identifiers of the user and book).

LIB

step 2 architecture (after adding SUB) step 3 architecture (after adding BOR)

L
IB

:i
sB

o
rr

o
w

ed
?

L
IB

:a
va

ila
b

le
!

L
IB

:b
o

rr
o

w
ed

!

S
U

B
:i

n
fo

?

S
U

B
:i

sR
eg

is
te

re
d

?

S
U

B
:n

o
tA

va
ila

b
le

!

S
U

B
:a

va
ila

b
le

!

B
O

R
:r

eq
u

es
t?

B
O

R
:a

g
re

e!

B
O

R
:r

ef
u

se
!

is
B

o
rr

o
w

ed
?

av
ai

la
b

le
!

b
o

rr
o

w
ed

!

in
fo

?
is

R
eg

is
te

re
d

?

BORSUB

is
B

o
rr

o
w

ed
!

n
o

tA
va

ila
b

le
!

n
o

tB
o

rr
o

w
ed

?
av

ai
la

b
le

!
b

o
rr

o
w

ed
?

n
o

tA
va

ila
b

le
!

re
q

u
es

t?
ch

ec
k!

id
!

u
n

av
ai

la
b

le
?

re
fu

se
!

av
ai

la
b

le
?

ag
re

e!

ALIB ASUB ABOR

Fig. 3. The Library Example Architecture.

 SUB:isRegistered?

 notAvailable?

 available?

LIB:isBorrowed!

 borrowed!
 isBorrowed?

 LIB:borrowed?

SUB:notAvailable!

SUB:available!

notBorrowed!

LIB:available?

notAvailable?

 info! SUB:isRegistered?

 SUB:info?

 info!

isRegistered!

accept

Fig. 4. The Library Example Adaptor.

BOR[i,f] = request?.check!.id!.

(unavailable?.refuse!.0 + available?.agree!.0)

Component BOR can be connected to component SUB using the mapping M2

to make all three components work together. Note in the mapping below that
reordering is needed since BOR sends first the check! message and then informa-
tion about the request id!, whereas SUB accepts first info?, and then the request
message isRegistered?. Therefore, the following sequence belongs to the ABOR

adaptor: check?.id?.SUB:info!.SUB:isRegistered!.

M2 = v1.v2.v3.(v4.v5+v6.v7)*

v1 = BOR:request?:<SUB:ε,request?> v5 = BOR:refuse!:<SUB:ε,refuse!>

v2 = τ:<SUB:isRegistered?,check!> v6 = τ:<SUB:available!,available?>

v3 = τ:<SUB:info?,id!> v7 = BOR:agree!:<SUB:ε,agree!>

v4 = τ:<SUB:notAvailable!,unavailable?>

Now, let us illustrate assessment procedures on the system made up of the
three components, and their corresponding adaptors. This system is quite simple

(33 states, 60 transitions, and 25 labels) since the adaptation process has removed
all incorrect interactions. External alphabet contains messages BOR:request?,
BOR:agree!, BOR:refuse!, and also all the messages left observable in the previ-
ous steps, i.e., LIB:isBorrowed?, LIB:available!, etc. The synchronised alphabet
contains all the remaining messages which are connected internally. In addition,
the system is deadlock-free and verifies the following liveness property:

[true*](["BOR:request?"]

(mu X. (<true> true and [not ("BOR:agree!" or "BOR:refuse!")]X)))

It states that messages BOR:request! are always followed after a finite number
of steps either by a message BOR:agree? or BOR:refuse?. Basically, this means
that all requests are always replied, which corresponds to the classic pattern
“AG request⇒EF reply” encoded in µ-calculus. This property was automati-
cally checked using Evaluator the model-checker of CADP. Consequently, the BOR

adaptor is validated, and the final correct architecture is as presented earlier on.
Let us now remove component SUB. This can be done for update purposes or

just because the loan check is simplified not to take into account that the user
has to be a subscriber. BOR is the only connected component added after SUB.
A new mapping is given for component BOR to connect it directly to component
LIB, M2’ = v1.v2.v3.(v4.v5+v6.v7)* with vectors

v1 = BOR:request?:<LIB:ε,request?> v5 = BOR:refuse!:<LIB:ε,refuse!>

v2 = τ:<LIB:isBorrowed?,check!> v6 = τ:<LIB:available!,available?>

v3 = τ:<LIB:ε,id!> v7 = BOR:agree!:<LIB:ε,agree!>

v4 = τ:<LIB:borrowed!,unavailable?>

The corresponding adaptor is computed, the new system assessed success-
fully, and we end up with a system made up of components LIB, BOR, and their
respective adaptors. To check how the approach integrates in a complete devel-
opment process, the system has been implemented in COM/DCOM using the
adaptor models to obtain their code.

5 Related Work

Since Yellin and Strom’s seminal paper [27], adaptation techniques [21, 14, 8]
have been proposed to correct component mismatch building adaptors. In [11] we
made significant advances with an approach supporting name mismatch, system-
wide adaptation (more than two components) and event reordering. Yet, all these
approaches require the computation of a global adaptor, which is costly, and none
supports open systems, which prevents application to pervasive systems.

In [22], component wrappers are composed to augment connector behaviour.
This has been revisited in [23], providing automation, but still with a centralised
global adaptor as starting point, as for [4] where adaptor distribution is ad-
dressed. Several theoretical works have focused on the incremental construction
of systems and dynamic reconfiguration [5, 3, 26]. However, these proposals only
address syntactic adaptation (via name translation or morphisms) and cannot
be used to solve behavioural mismatch. In [19], we have proposed a methodology

to help designers in the incremental construction of component-based systems
where adaptors are required. The definition of open systems, their composi-
tion and related adaptation algorithms were not supported. Incrementality was
achieved using implicit vectors exporting in adaptors all the component services
in order to make the design process compatible with adaptation as defined in [11].
This limits the application of [19] at design-time where the set of components
to be integrated is known.

6 Conclusion

The integration of software components often requires a certain degree of adapta-
tion. Adaptation approaches have addressed closed systems and the distribution
of global adaptors but to our knowledge, none supports open systems. Thus,
they are not well suited to systems where components or services may enter and
leave at any time, such as pervasive ones. To address this issue, we have pro-
posed here (i) a formalising of component-based open systems which thereafter
supports, (ii) an extension of software adaptation to open systems, and (iii) an
incremental integration process which avoids the computation of global adap-
tors. The adaptation solutions we propose are supported by a tool, Adaptor. In
its current version, Adaptor can deal with both closed systems and open systems.
This tool and its set of validation examples (approx. 70 examples, 25,000 lines
of XML specifications) are freely available from [1].

Our main perspectives concern the application of our model-based adapta-
tion techniques to service oriented architectures for pervasive computing. First,
relations between adaptation models and implementation languages have to be
studied. We have done some experiments using COM/DCOM but Web services
are more relevant in this area. The combination of adaptation with semantic
composition solutions such as [6] is also an interesting perspective to support
not only behavioural but also semantic correctness. To end, end-user composi-
tion is a crucial issue in pervasive computing. The support in Adaptor for the use
of other adaptation contract formalisms, as presented in Section 2.3 is therefore
an interesting perspective.

Acknowledgements. This work has been supported by the French National
Network for Telecommunication Research. Adaptor has been developed with
S. Beauche. We thank M. Tivoli for the COM/DCOM encoding of the case study
and C. Canal for fruitful discussions.

References

1. The Adaptor tool (LGPL licence). Available from P. Poizat’s Webpage.

2. G. Agha. Special Issue on Adaptive Middleware. CACM, 45(6):30–64, 2002.

3. N. Aguirre and T. Maibaum. A Logical Basis for the Specification of Reconfigurable
Component-Based Systems. In Proc. of FASE’03, LNCS 2621. Springer.

4. M. Autili, M.Flammini, P.Inverardi, A.Navarra, and M. Tivoli. Synthesis of Con-
current and Distributed Adaptors for Component-based Systems. In Proc. of
EWSA’06, LNCS 4344. Springer.

5. R. J. Back. Incremental Software Construction with Refinement Diagrams. Tech-
nical Report 660, Turku Center for Computer Science, 2005.

6. S. Ben Mokhtar, N. Georgantas, and V. Issarny. Ad Hoc Composition of User
Tasks in Pervasive Computing Environments. In Proc. of SC’05, volume 3628 of
LNCS. Springer.

7. B. Berthomieu, P.-O. Ribet, and F. Vernadat. The tool TINA – Construction of
Abstract State Spaces for Petri Nets and Time Petri Nets. International Journal
of Production Research, 42(14), 2004.

8. A. Bracciali, A. Brogi, and C. Canal. A Formal Approach to Component Adapta-
tion. Journal of Systems and Software, 74(1):45–54, 2005.

9. E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, , and J.-B. Stefani. The Fractal
Component Model and Its Support in Java. Software Practice and Experience,
36(11-12), 2006.

10. C. Canal, J. M. Murillo, and P. Poizat. Software Adaptation. L’Objet., 12(1):9–31,
2006. Special Issue on Software Adaptation.

11. C. Canal, P. Poizat, and G. Salaün. Synchronizing Behavioural Mismatch in Soft-
ware Composition. In Proc. of FMOODS’06, LNCS 4037. Springer.

12. H. Garavel, F. Lang, and R. Mateescu. An Overview of CADP 2001. EASST
Newsletter, 4:13–24, 2002.

13. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison Wesley, 1979.

14. P. Inverardi and M. Tivoli. Deadlock Free Software Architectures for COM/DCOM
Applications. Journal of Systems and Software, 65(3):173–183, 2003.

15. Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer, 1995.

16. T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE, 77(4):541–580, 1989.

17. Objet Management Group. Unified Modeling Language: Superstructure. version
2.0, formal/05-07-04, August 2005.

18. P. Poizat. Eclipse Transition Systems. RNRT project STACS deliverable, 2006.
19. P. Poizat, G. Salaün, and M. Tivoli. An Adaptation-based Approach to Incremen-

tally Build Component Systems. In Proc. of FACS’06.
20. M. Satyanarayanan. Pervasive Computing: Vision and Challenges. IEEE Personal

Communications, 6(8):10–17, 2001.
21. H. W. Schmidt and R. H. Reussner. Generating Adapters for Concurrent Compo-

nent Protocol Synchronization. In Proc. of FMOODS’02. Kluwer.
22. B. Spitznagel and D. Garlan. A Compositional Formalization of Connector Wrap-

pers. In Proc. of ICSE’03. ACM Press.
23. M. Tivoli and M. Autili. SYNTHESIS, a Tool for Synthesizing Correct and

Protocol-Enhanced Adaptors. L’Objet., 12(1):77–103, 2006.
24. S. Uchitel, J. Kramer, and J. Magee. Synthesis of Behavioural Models from Sce-

narios. IEEE Transactions on Software Engineering, 29(2):99–115, 2003.
25. R. J. van Glabbeek and W. P. Weijland. Branching Time and Abstraction in

Bisimulation Semantics. Journal of the ACM, 43(3):555–600, 1996.
26. M. Wermelinger, A. Lopes, and J. L. Fiadeiro. A Graph Based Architectural

(Re)configuration Language. In Proc. of ESEC/FSE’01. ACM Press.
27. D. M. Yellin and R. E. Strom. Protocol Specifications and Components Adaptors.

ACM Transactions on Programming Languages and Systems, 19(2):292–333, 1997.

