

Hauke Pribnow

Leveraging Propositional Logic-Based Model Checking to

Enable Convenient Analysis of Process Models in

Arbitrary Graph-Based Process Modeling Languages

Master Thesis

at the Chair for Information Systems and Information Management

(Westfälische Wilhelms-Universität, Münster)

Supervisor: Prof. Dr. Patrick Delfmann

Presented by: Hauke Pribnow

Averkampstraße 9

48151 Münster

+49 151 21149084

hauke.pribnow@uni-muenster.de

Date of Submission: 2017-12-19

II

Content

Figures ... V

Tables ... VI

Listings .. VII

Abbreviations ... IX

1 Introduction ... 1

2 Basic Concepts .. 3

2.1 Concepts around Analysis of Meta Model-Backed Business Process Models 3

2.2 Concepts around Model Checking ... 5

3 Model Checking for Meta Model-Backed Business Process Models 10

3.1 Towards Specifying Execution Semantics for Process Modeling Languages 10

3.1.1 Discussion of Existing Approaches .. 10

3.1.2 Idea of Assigning Behaviors to Model Elements .. 11
3.1.3 Moving Behaviors to the Meta-Level of Process Models 12

3.2 Making Model Checking Results More Understandable ... 14
3.2.1 Responsibility-Explaining Model Element Sequences 14
3.2.2 Ability to Map Analysis Results Back to Conceptional Process Models 16

3.3 High-Level Process Logic Transformation and Evaluation Process 17

4 Introducing “Meta Semantics” Languages for Specifying Semantics of Process Models on

the Meta Model Level .. 19

4.1 [em]’s Data Model for Representing Meta Models and Models 19

4.2 Languages’ Data Types and Default Values .. 21

4.3 Formulaic Expression Language .. 24

4.3.1 Informal Introduction .. 24
4.3.2 Syntax.. 27

4.4 Execution Semantics Description Language .. 29

5 Foundations for Implementing the Theoretical Approach .. 35

5.1 Searching and Selecting a Suitable Model Checker ... 35

5.1.1 Model Checker Requirements ... 35
5.1.2 Surveying Model Checkers ... 37

5.2 Generating Formal Processes from [em] Data and Behaviors 38
5.2.1 Translation of [em] Data to LNT .. 40

5.2.2 Translation of Formulas to LNT ... 43
5.2.3 Translation of Behaviors to LNT .. 45

5.3 Making the Model Checker’s Property Specification Language Support Macros 49
5.3.1 Our Macro Extension for the Property Specification Language MCL 50

5.3.2 Translating from Macro-Extended MCL to Plain MCL 51

5.4 User-Perspective Requirements for an Implementation ... 52

6 Implementing the Approach and Integrating it into [em] .. 53

6.1 Basic Details on Plugin Implementation .. 53

6.2 Overview of Plugin Architecture, Persistent Data, and Data Flow 54

6.3 Details on Plugin’s Persistent User Data .. 55

6.4 Details on Plugin’s Core Components ... 56
6.4.1 Temporal Property Specification Wizard ... 56

III

6.4.2 Formulaic Expression Processor ... 58

6.4.3 Process Model Translator .. 62
6.4.4 Evaluation Preparer ... 63

6.4.5 Evaluation Runner... 65

6.5 Usability Considerations .. 66

7 Demonstration ... 69

7.1 Case Study 1 ... 69
7.1.1 Introduction into Simple Linear Process Language (SLPL) 69

7.1.2 Specification of Behavior Sequences for SLPL .. 70
7.1.3 Model Checking with SLPL Models .. 73

7.2 Case Study 2 ... 75

7.2.1 Basic Highly Simplified EPC without Interfaces (HSPEC) 75
7.2.2 Model Checking with HSEPC .. 80

7.3 Case Study 3 ... 83

8 Discussion, Outlook and Summary ... 86

8.1 Comparison with Model Structure-Based Process Model Analysis Approaches 86

8.2 Discussion and Outlook on Our Process Model Analysis Approach 89

8.2.1 Non-Functional Improvement Potentials .. 89

8.2.2 Functionality-Extending Improvement Potentials .. 91
8.2.3 Conceptual Future Work ... 93

8.3 Summary ... 95

References .. 96

Appendix A Semantics of Formulaic Expression Language... 102

Appendix B ESDL Formal Specification .. 105

B.a Assignment of Behavior Sequences to Element Occurrences and Models 105

B.b Introduction into Our Abstract Machine .. 105

B.c Behavior Types ... 107

B.d Deriving an LTS using Our Abstract Machine ... 110

Appendix C Reference on Data Types in Our Languages .. 112

C.a Boolean ... 112
C.a.a Properties .. 112
C.a.b Functions ... 112

C.b Integer ... 112
C.b.a Properties .. 112

C.b.b Functions ... 113

C.c Double .. 113
C.c.a Properties .. 113
C.c.b Functions ... 114

C.d String .. 114

C.d.a Properties .. 114
C.d.b Functions ... 114

C.e Collection<T> .. 115
C.e.a Properties .. 115

C.e.b Functions ... 115
C.e.c Lambdas .. 115

C.f [em] Data Types ... 116
C.f.a Templates for Main Properties .. 116

IV

C.f.b Additional Element Properties .. 117

C.f.c Additional ElementOccurrence Properties .. 117
C.f.d Additional ElementType Properties .. 117

C.f.e Additional ElementType, ObjectType and RelationshipType Functions 117

C.g Runtime-relevant Types ... 117
C.g.a Custom Type Properties .. 118

C.g.b Custom Type Functions .. 118

Appendix D Source Code of Plugin .. 119

V

Figures

Figure 1 An exemplary LTS .. 7

Figure 2 A reduced version of the LTS as in Figure 1 .. 8

Figure 3 An exemplary process model .. 11

Figure 4 The process model as in Figure 3 with highlighted elements 15

Figure 5 The high-level workflow of our approach ... 18

Figure 6 Our perspective on [em]’s data model as an UML Class Diagram 20

Figure 7 Process models for demonstrating unnecessary LTS size increase that occurs

when not releasing unused RuntimeInstances ... 33

Figure 8 Two LTS that can be derived from the process models in Figure 7...................... 34

Figure 9 LNT generation workflow ... 39

Figure 10 A simple sequence of behaviors as displayed by our implementation 48

Figure 11 The plugin architecture and its high-level data flow ... 54

Figure 12 Screenshot of our plugin’s Temporal Property Specification Wizard................... 57

Figure 13 Workflow of the Formulaic Expression Processor .. 58

Figure 14 Screenshot showing our implementation’s autocomplete suggestion feature 60

Figure 15 Screenshot showing how a declaration hint is displayed by our plugin 60

Figure 16 The Process Model Translator’s workflow ... 62

Figure 17 The Evaluation Preparer’s workflows ... 63

Figure 18 The Evaluation Runner’s workflow .. 66

Figure 19 Screenshot showing our temporal property specification cheat sheet 67

Figure 20 An exemplary business process for the build preparation of a nuclear reactor 70

Figure 21 Exemplary SLPL model containing a loop ... 73

Figure 22 Two exemplary counterexample and witness event chains 74

Figure 23 Exemplary highlighting of element occurrences in a witness event chain 75

Figure 24 An exemplary HSEPC model .. 77

Figure 25 Property Scope page of our Temporal Property Specification Wizard 80

Figure 26 Property Behavior page of our Temporal Property Specification Wizard 81

Figure 27 Event Specification page of our Temporal Property Specification Wizard 81

Figure 28 Counterexample stack for the second case study .. 82

Figure 29 Highlighted elements relevant for the counterexample of the second case

study .. 82

Figure 30 Section of an exemplary HSEPCwI model with highlighted elements 83

Figure 31 An exemplary SDTL model with highlighted elements .. 84

Figure 32 Fragment of the witness information of case study 3 .. 84

Figure 33 BPMN model with compensations .. 87

VI

Tables

Table 1 Exemplary assignments of behaviors to elements of the model in Figure 3 12

Table 2 Exemplary assignment of behaviors to model elements on their meta level 13

Table 3 Informal description of ESDL behavior types .. 31

Table 4 Members of the default environment for formulaic expressions........................... 32

Table 5 Chunks of LNT code to be generated for [em] classes and their instances 42

Table 6 Notable aspects on the translation of behaviors to LNT 47

Table 7 Behavior sequence for occurrences of SLPL Nodes ... 71

Table 8 Behavior sequence for occurrences of SLPL Node Connections 72

Table 9 Behavior sequence for SLPL models .. 72

Table 10 Behavior sequence for occurrences of HSEPC XOR .. 78

Table 11 Partial behavior sequence for occurrences of HSEPC AND 79

VII

Listings

Listing 1 Formula evaluating to an integer value ... 24

Listing 2 Formula evaluating to a double value ... 25

Listing 3 Formula evaluating to a string value ... 25

Listing 4 Formula evaluating to a Boolean value ... 25

Listing 5 Formula consisting of an identifier ... 25

Listing 6 Formula with an application of a property accessor on a string 25

Listing 7 Formula with an application of a property accessor on an integer 25

Listing 8 Formula with an application of a single-argument function accessor on an

integer .. 26

Listing 9 Formula with an application of a double-argument function accessor on a

string .. 26

Listing 10 Formula with an application of a lambda accessor ... 26

Listing 11 Formula with an application of a lambda accessor, using a different

parameter name ... 26

Listing 12 Formula with an accessor chain .. 26

Listing 13 Formula possibly resulting in 𝑛𝑢𝑙𝑙 result .. 27

Listing 14 Extension of Listing 13 with a following accessor ... 27

Listing 15 Formula syntax rule ... 27

Listing 16 Base syntax rule ... 27

Listing 17 Syntax rules for Bases ... 28

Listing 18 Accessor syntax rule ... 28

Listing 19 PropertyAccessor syntax rule ... 28

Listing 20 FunctionAccessor and its ArgumentList syntax rule .. 28

Listing 21 LambdaAccessor and its LambdaParameterList syntax rule 28

Listing 22 Exemplary LNT type declaration for representing [em] Objects 40

Listing 23 LNT type declaration for a nullable list of instances of the [em] Object class 40

Listing 24 LNT function yielding an exemplary list of all [em] Object class instances 41

Listing 25 Exemplary LNT function yielding the value of an Object’s Caption attribute 41

Listing 26 Exemplary LNT helper functions yielding instances linked via the

“Followers” association for three [em] Objects .. 42

Listing 27 Exemplary LNT getter function yielding instances linked via the

“Followers” association for [em] Objects ... 42

Listing 28 Formulaic expression to determine the existence of outgoing Relationships

from the current ObjectOccurrence ... 43

Listing 29 LNT expression corresponding to the formulaic expression in Listing 28 44

Listing 30 custom_count function for a list of RelationshipOccurrences 44

Listing 31 > function for two nullable integers .. 44

VIII

Listing 32 LNT translation of the “Report Event” behavior of Figure 10 48

Listing 33 LNT translation of the “If/Then/Else” behavior of Figure 10 with a

placeholder for the LNT translation of its Then Behaviors 49

Listing 34 LNT translation of the “Enable Element Occurrence” behavior of Figure 10 49

Listing 35 Regular expression to capture a macro as introduced by our MCL extension 50

Listing 36 Template of CADP’s string encoding of a LTS transition label entailed by

our implementation’s LNT code ... 51

Listing 37 Substitute template for occurrences of the macro pattern 51

Listing 38 Temporal property in MCL that describes the existence of a cycle in the

LTS .. 74

Listing 39 Formula to check for an incoming relationship of a specific type 76

Listing 40 Event content formula for HSEPC Functions with associated Competent

Body ... 78

Listing 41 Exemplary property generated by the Temporal Property Specification

Wizard ... 81

IX

Abbreviations

AC Autocomplete

AST Abstract Syntax Tree

BCG Binary Coded Graph

BNF Backus–Naur form

BPMN Business Process Modeling Language and Notation

CADP Construction and Analysis of Distributed Processes

EBNF Extended Backus–Naur form

EPC Event-Driven Process Chain

ESDL Execution Semantics Description Language

HSEPC Highly Simplified EPC

HSEPCwI Highly Simplified EPC with Interfaces

LOTOS Language of Temporal Ordering Specification

LTS Labeled Transition System

MCL Model Checking Language

mCRL2 micro Common Representation Language 2

OMG Object Management Group

RM Model Checker Requirement

RU User-Perspective Requirement

SDTL Simple Decision Tree Language

SLPL Simple Linear Process Langauge

UC Usability Consideration

UML Unified Modeling Language

1

1 Introduction

Models of business processes capture events that may occur and activities that need to be

performed within the context of an organization, often represented in a graphical form. Relying

on models of business processes can be risky if these models entail invalid or even harmful

sequences of activities.

One such risk is causing injuries to people involved in sectors requiring high security, for

example railroad systems (International Union of Railways (UIC) et al. 2009), or nuclear

facilities (Lahtinen et al. 2012). Another type of risk is legal prosecution, for example because

of violation of regulatory requirements (compliance), e.g. in financial institutions (Becker et al.

2014). Yet another kind of risk is suffering financial losses, e.g. because fraud was not properly

prevented or confidentiality was not guaranteed (Arsac et al. 2011), or because of unreasonably

handling “edge cases” that were not properly considered during process design. To give an

example for such edge cases: An analysis of the SAP reference process models in 2007 found

that the models entail activities that possibly lead to financial losses: In the context of

procurements, the models elicit payments for goods that were never received. In the context of

subcontracting, the process models allow to issue a second payment for some invoice when an

identical copy is received a second time. (van Dongen et al. 2007)

When people rely on models of business processes, they may want to reduce or even rule out

risks resulting from models entailing invalid or harmful activities. To reduce these risks, users

of business process models may want to ensure that the used process models fulfill specific

properties that characterize correct and safe processes. We call checking whether a business

process model fulfills such properties “business process analysis”. One approach for performing

business process analysis is a manual one: A person or a group of people manually reviews

process models to identify aspects that cause relevant properties to be violated. This may be a

feasible solution when a low number of small business processes needs to be analyzed. With

higher numbers and larger models, manual analysis may not be feasible anymore. A computer-

supported analysis approach may be required in such cases.

Model checking is a concept that may allow supporting business process model analysis with

automatic computations. Given a temporal property stated as a temporal logic formula and

given a labeled state-transition system, the model checking problem asks to find all states of

the system that fulfill the property. Algorithms exist for solving the model checking problem

automatically. (Clarke 2008)

Multiple standardized languages exist for representing business process models. For some of

such standardized business process modeling languages, model checking approaches were

presented, e.g. for BPMN (Raedts et al. 2007) and BPML (Brambilla 2005), or for EPC (van

2

Dongen et al. 2007). A survey in the financial industry however indicates that a non-negligible

amount of processes in practice is modeled with proprietary notations. (Becker et al. 2010)

Meta modeling is an approach that allows to specify conceptual modeling languages (e.g.

process modeling languages) and to create models in these languages. (Becker et al. 2004) Since

the concept of meta modeling allows to specify custom modeling languages, the concept is not

restricted to a specific set of business process modeling languages. Tools exist implementing

the concept of meta modeling, for example the tool [em]. (Delfmann et al. 2008)

In this thesis, we present an approach that allows to translate business process model analysis

problems into model checking problems and to solve these problems in such a way that the

computed results are useful for a business process model analyst. We describe an

implementation of our approach as a plugin for [em]. We demonstrate the application of our

approach and our implementation in exemplary case studies. We compare our approach with

other meta model-based process model analysis approaches, and derive ideas for potential

future work from a discussion of the applicability of our approach. The core idea of our

approach is defining behaviors for models and elements in a generic fashion on the language

level. Generic formulaic expressions describe the conditions which elements should be enabled

and which behaviors should be triggered. These conditions are formulated over the attributes

of and relationships between models and their elements.

With our approach and our implementation, we provide a solution that easily allows a business

process model analyst 1) to specify formal execution semantics for business process models of

arbitrary process modeling languages on the language level, 2) to define properties that models

with defined execution semantics can be checked for, 3) to automatically solve model checking

problems derived from selected properties and models with defined execution semantics, and

4) to derive information from the model checking results that allows understanding which

model elements were responsible for the computed result.

The remainder of this thesis is structured as follows. In the second chapter, we introduce basic

concepts in detail that form the foundations of our work. In the third chapter, we introduce our

general idea and the resulting high-level approach by explaining in natural language how to

translate a business process model analysis problem into a model checking problem. In the

fourth chapter, we formalize our approach and make it more concrete by introducing additional

concepts and languages for describing models’ formal execution semantics on a meta-level in

an automatically processable form. In the fifth chapter, we lay the foundations for an

implementation of our theoretical approach. In the sixth chapter, we describe how we

implemented our approach as a plugin for [em]. In the seventh chapter, we demonstrate the

applicability of our approach by describing how a set of exemplary artificial case studies can

be solved with the implementation of our approach. In the eight chapter, we discuss our results,

give an outlook and summarize our work.

3

2 Basic Concepts

In this chapter, we introduce basic concept that our work is based on. We describe which aspects

we put our focus on and in what regard we restrict our perspective. We give definitions and

name basic assumptions. Where necessary, we explain why a concept or an assumption is

important for our work.

In the first section, we introduce concepts from the domain of meta model-based business

process model analysis. In the second section, we introduce concepts from the domain of model

checking.

2.1 Concepts around Analysis of Meta Model-Backed Business Process Models

Meta Modeling, Modeling Languages, and Models. “Meta modeling” means using a model

to formally define relevant aspects of a modeling language in which models can then be created.

A modeling language captures common aspects of the models that are created in this language.

(Becker et al. 2004)

Meta modeling provides a way to specify types of elements that a model in the respective

language may contain. Among these types may be “object types” and “relationships types”. An

instance of an object type is called an “object”. An instance of a relationship type is called a

“relationship”. Collectively, objects and relationships are called “elements”.

Relationships represent connections between elements in a model. Relationship types specify

what and how instances of element types can be put into a relationship with each other. On this

basis, we define a model as a subset of the set of elements where each object is an instance of

an object type, and relationships are restricted according to the language’s relationship type

specifications.

The structure of a model as defined here with elements and relationships resembles a graph

with nodes and edges, respectively. We therefore call modeling languages that follow our

definition “graph-based modeling languages”.

The Meta Modeling Tool “[em]”. The concept of meta modeling was implemented in

software. An example for such an implementation is “[em]”. (Delfmann et al. 2008) [em] is a

meta modeling tool that allows a user to create a definition of a modeling language and then

use this language definition to create models in the defined language. The implementation of a

model checking plugin in [em] being one of the core intentions of our work, we focus on [em]

in our thesis.

Business Process. The term “business process” has been defined in different ways, for example

as a “collection of activities that takes one or more kinds of input and creates an output that is

4

of value to the customer” (Hammer and Champy 1993), as a “a specific ordering of work

activities across time and place, with a beginning, an end, and clearly defined inputs and

outputs: a structure for action” (Davenport 1993) or as a “a completely closed, timely and

logical sequence of activities which are required to work on a process-oriented business object”

(Becker and Schütte 2004) as cited and translated in (Mendling 2007).

For our purposes however, we use a highly simplified definition for a business process: We

define it as a sequence of observable events. While most of the aspects that express relevance

towards a business need are lost in our definition, we nevertheless use the term “business

process” to allow a clear differentiation from other terms containing the word “process” that

are introduced and used later, especially “formal process specifications” and LNT processes.

In subsection 8.2.3, we discuss impacts of this simplification.

Business Process Model. Following (Wikipedia contributors 2017c), we define a business

process model as a description of business processes of the same nature that are classified into

a model. In other words, a business process model describes or entails possibly occurring

sequences of observable events. In this context, an instantiation or an “execution” of a business

process model is some business process that is entailed by that model.

Process Modeling Languages. To create business process models in a standardized fashion,

various process modeling languages have been proposed, e.g. Business Process Modeling

Language and Notation (BPMN) as specified in (Object Management Group 2011), Event-

Driven Process Chains (EPC, “Ereignisgesteuerte Prozessketten” in German) as specified in

(Keller et al. 1992) or Unified Modeling Language (UML) Activity Diagrams as specified in

(Object Management Group 2015), to name just a few. Process modeling languages introduce

standardized concepts that process models can be created with, for example the concept of an

“activity” or of a “sequence flow”.

We call a business process model “meta model-backed” if its process modeling language can

be described with a meta model according to our definition. In our work, we focus only on

process models in such languages.

Execution Semantics. By itself, a process model is just a graphic or a concept. To give meaning

to a process model, “execution semantics” or “operational semantics” is required. Execution

semantics describe implicitly or explicitly how a process model must be interpreted, i.e.

execution semantics specify what processes are entailed by a process model. As such, execution

semantics provides a means to systematically derive possible processes (i.e. possible series of

events) from the structure of a process model. (Bolognesi and Brinksma 1987) Formally we

define execution semantics as a function with the set of business process models as its domain

and the set of sets of sequences of observable events as its codomain.

5

Some process modeling language specifications explicitly provide execution semantics

specifications for models in their respective language – in various degrees of precision and

formalism. For all process modeling languages with explicitly given execution semantics

known to us, a large part of the execution semantics is defined on the element type level. For

example, BPMN’s “Activity” element type or EPC’s “Function” element type roughly

characterizes things that are to be done, and BPMN’s “Sequence Flow” element type or EPC’s

connecting line element type introduce the concept of “flow order” into the process.

For some process modeling languages, it may even possible to define the execution semantics

entirely on the element type level of the language. This is not universally true however: BPMN

for example allows to define some aspects of models using a natural-language descriptive text,

e.g. to annotate under which conditions a Process Flow is to be triggered. This is shown to be a

challenge later in this thesis, leading to some restrictions with regard to what process models

can meaningfully be checked using our approach.

Process Model Analysis. We define process model analysis as checking if a business process

model fulfills given properties. There are several motivational drivers for process model

analysis, such as compliance checking, weakness identification, or “semantic soundness”

checking. (Becker et al. 2014; Delfmann, Steinhorst, et al. 2015)

Different kinds of properties can be relevant for process model analysis. For example, the

number of process model elements or their degree of connectivity might be relevant to estimate

the complexity of a process model. The average length of characters in labels might be relevant

to estimate its easiness to understand. The positions and sizes of the elements in a graphical

model might be relevant to check its well-formattedness.

In our thesis, we focus on temporal properties formulated over the sequences of events entailed

by a process model through its execution semantics. We give a more detailed introduction into

temporal properties in section 2.2.

2.2 Concepts around Model Checking

Temporal Properties. When referring to process model analysis in our work, we focus on

checking the fulfilment of temporal properties. Temporal properties are expressions evaluating

to a Boolean value that are formulated over the sequences of events entailed by a business

process model.

To make it easier to understand what such a temporal property might be, we give an example:

Following (Delfmann and Hübers 2015) we use a provision of the German Geldwäschegesetz

(Money Laundering Act) to derive a potentially interesting property from it that one might want

a process model to be checked for its fulfillment. Translated from German to English, the first

6

paragraph of the Geldwäschegesetz reads: “In the context of this law, [the process of]

identification consists of (1) the determination of the identity by data collection and (2) the

check of the identity.” This provision can be interpreted as: Whenever identification data of a

person (e.g. a customer of a bank) is collected, this data must be verified before the data may

be used in any other action.

We attempt to re-formulate the exemplary informal legal provision as a temporal property. In

natural language the property could be specified as: “In any execution of the process model that

is to be checked, the ‘Identification data is used’ event may not occur after the ‘Identification

data collected’ event, until an ‘Identification data was successfully verified’ event occurs.”

Formulating the property in this way is later shown to be easily formalizable and therefore

becomes automatically checkable with our implementation.

From a more general perspective, it is possible to put temporal properties into different classes.

Two important basic classes are “liveness properties” and “safety properties”. A liveness

property states that an event is required to happen, whereas a safety property states that an event

is required to not happen. (Lamport 1977) To give examples for these two classes, we consider

the operation of a nuclear reactor. A safety property could be: “Executing the nuclear reactor

operation process model should never lead to the occurrence of the event ‘A person near the

reactor received a radiation of more than 50,000 μSv’.” A liveness property on the other hand

could be: “If the auxiliary feed-water pumps fail, the reactor will shut down within 10 minutes.”

Temporal Property Algebras. To allow for algorithmic processing of temporal properties, a

formal way of expressing them is required. Different temporal property algebras were suggested

that allow to formally express temporal properties. Notable early temporal algebras were Linear

Temporal Logic (LTL) (Pnueli 1977), Computational Tree Logic (CTL) (Clarke and Emerson

1981) and the modal µ-calculus (Kozen 1982; Stirling 1996).

The modal µ-calculus was identified to have a higher expressivity than other proposed algebra

and was even described as subsuming “virtually all other temporal logics defined in the

literature”. (Mateescu and Thivolle 2008) This high level of expressivity comes with a price:

Solving a model checking problem with properties expressed with the modal µ-calculus has a

high computational complexity. However, when restricting the modal µ-calculus to an

“alternation-free” fragment, model checking problems can be solved in polynomial time

without losing expressive power as required in practice. (Emerson and Lei 1986)

Labeled Transition System. A labeled transition system (LTS) is a concept that allows

capturing business processes in a formal way. We follow (Mateescu and Thivolle 2008) and

define a labeled transition system as a tuple consisting of a set of states 𝑆, of a set of labels 𝐿,

of a set of transitions 𝑇 where 𝑇 is a subset of 𝑆 × 𝐿 × 𝑆, and of an “initial” state 𝑠0 where 𝑠0

is an element of 𝑆.

7

Figure 1 An exemplary LTS

A LTS can be interpreted as a directed graph. In Figure 1, we give a visualization for an LTS

that captures the meaning of an exemplary process model that describes how a received invoice

needs to be handled. The boxes in the figure represent states and the labeled directed arrows

between two boxes represent transitions. The initial state s0 is highlighted in blue.

To “extract” the underlying business processes from this LTS, we can now start at the initial

state and record all series of labels we encounter when recursively following transitions from

there. By interpreting each series of labels as a series of events, we have a set of business

processes according to our definition.

LTS can be used as a finite description for business processes with sub-sequences of events that

are repeated infinitely often. Such processes can be described as an LTS by introducing cycles

in the transitions, i.e. sequences of transitions that start at some state and finally return to the

same state again.

Reduction of LTS. When working with an LTS in the context of model checking, its number

of states and transitions can become an important complexity driver. Therefore, it can be helpful

to reduce the number of states and transitions while keeping the captured semantics intact. This

can be realized by “reducing” an LTS according to some equivalence relation. Reducing an

LTS formally means generating a new LTS so that the new LTS is equivalent to the original

LTS according to the given equivalence relation and the new LTS has at most the same number

of states and/or of transitions as the original one.

Assuming an equivalence relation that considers two LTS to be equal if they produce the same

result when recursively following all possible transitions from the start event and recording the

encountered labels, Figure 2 shows the representation of a reduced version of the LTS from

Figure 1 according to the equivalence relation. While the original LTS has eight states and eight

transitions, the reduced LTS only has five states and seven transitions.

s1 s0

s2

s4

s3

s5

s6

s7

Receive

invoice

Determine invoice

sum ≤ 10k

Determine invoice
sum > 10k

Pay invoice

Check invoice

as ok

Check invoice

as not ok

Pay invoice

Inform supplier

8

Figure 2 A reduced version of the LTS as in Figure 1

Multiple equivalence relations have been proposed for LTS. The interested reader is suggested

to refer to (CADP manual authors 2017d) for more information on some relevant relations.

Formal Process Algebras. When working with business processes that have a lot of parallelism

or with business processes requiring an infinite number of states, it may be impractical to work

with LTS directly. Formal process algebras were suggested as formal mathematical structures

for modeling LTS, i.e. representing an LTS in an abstract form. According to (Technische

Universiteit Eindhoven 2017, chap. History), notable formal process algebras were Calculus of

Communicating Processes (Milner 1980), Algebra of Communicating Processes (Bergstra and

Klop 1984), and Communicating Sequential Processes (Hoare 1978, 1980).

Model Checking and Counterexample / Witness Graphs. Given a model of an LTS and

given a temporal property, the “model checking problem” asks to determine if the property is

fulfilled by the LTS model. (Clarke 2008) On this basis, model checking is defined as an

automatic, cost-effective method for verifying a temporal property of an LTS model, i.e. a

method to solve the model checking problem. (Mateescu and Thivolle 2008) An important

verification result is a Boolean value that indicates if the temporal property is fulfilled by the

model. A “counterexample graph” or a “witness graph” is a second result that can be of interest

for some applications.

A counterexample graph is a subgraph of the checked LTS consisting of states and transitions

that allow explaining the non-fulfillment of a temporal property. A witness graph is a subgraph

of the checked LTS consisting of states and transitions sufficient for explaining the fulfilment

of a temporal property. Counterexample graphs can be interpreted as a proof for the model’s

violation of the property, whereas witness graphs can be interpreted as a proof that something

“exists” in the model that was required to exist. Some model checking approaches and

implementations allow to compute such counterexample or witness graphs.

Model Checker. A model checker is a tool for solving the model checking problem. In our

work, we focus on two model checkers: the Construction and Analysis of Distributed Processes

s1 s0

s2

s3

s4

s5

Receive

invoice

Determine invoice

sum ≤ 10k

Determine invoice
sum > 10k

Pay invoice

Check invoice
as ok

Check invoice

as not ok
Inform supplier

9

(CADP) model checker and the micro Common Representation Language 2 (mCRL2) model

checker. We describe them in more detail in subsection 5.1.2. The CADP model checker is part

our implementation’s foundation.

Formal Process Specifications and Formal Process Specification Languages. To make

models of LTS automatically processable by a computer, various formal process specification

languages based on formal process algebras were proposed. We call a model of an LTS in such

a language a “formal process specification”.

As one of such languages, the “Language of Temporal Ordering Specification” (LOTOS) was

created with the intention to be a formally well-defined standard language that is unambiguous,

precise, complete, and implementation-independent. (Bolognesi and Brinksma 1987) LOTOS

was further revised in the following years and new languages were created based on different

revisions of LOTOS and their underlying concepts. One of these languages is “LNT”, originally

an abbreviation for “LOTOS New Technology”. (Champelovier et al. 2017)

As the CADP model checker accepts models specified in the formal process specification

language LNT, we primarily focus on LNT in the remainder of this thesis. In its current

implementation, the model checking framework automatically translates LNT to LOTOS and

uses the generated LOTOS code for further processing. As such, we also refer to LOTOS to

some extent.

Temporal Property Specification Languages. To make temporal properties available for

computer-based processing, multiple temporal property specification languages based on

temporal property algebras were proposed. In our work, we focus on languages that are based

on the modal µ-calculus or a derivative of it because of high expressivity.

One of these temporal property specification languages is the Model Checking Language

(MCL) that is supported by the CADP model checker. MCL was proposed as an extension of

the alternation-free fragment of µ-calculus with the goal to improving conciseness, readability,

and expressiveness of temporal formulas. (CADP manual authors 2017f; Mateescu and Thivolle

2008) We use MCL as the basis for temporal properties that are to be checked with our

implementation.

10

3 Model Checking for Meta Model-Backed Business Process

Models

In this chapter, we introduce our general idea in natural language and develop our high-level

approach to reach our goal: Given a model, its meta model, and given some temporal property,

we want to use model checking to determine if the model fulfills the property and to get a hint

why the property is fulfilled or why it is not, respectively. Starting from a model, its meta model

and a property, we develop additionally required inputs required to reach the goal.

In the first section, we introduce the foundation of our idea for enabling model checking with

meta model-backed business process models. In the second section, we introduce our idea for

making the results of model checking more understandable in the context of business process

models. In the third section, we bring our ideas together and present our combined overall high-

level approach.

3.1 Towards Specifying Execution Semantics for Process Modeling Languages

As introduced in section 2.2, model checking requires two inputs: an LTS and a temporal

property. To apply model checking, it is therefore required to derive an LTS from a given model

and its meta model. In this section, we review existing approaches for deriving such an LTS

and develop our idea behind our approach.

In the first subsection, we discuss the applicability of existing approaches in the context of meta

model-backed business process models. In the second subsection, we introduce our idea of

assigning behaviors to model elements for describing the model’s execution semantics. In the

third subsection, we generalize our idea and describe how behaviors can be assigned to elements

of a model’s meta model.

3.1.1 Discussion of Existing Approaches

One type of approaches to derive a LTS from a business process model is based on pre-defined

static language-specific rules for translating a process model into a formal process specification.

For some popular process modeling languages, corresponding formal semantics were specified

by the language creators. This applies to BPMN (Object Management Group 2011) and UML

Activity Diagrams (Object Management Group 2015) for example. Static pre-defined

transformation rules to transform process models into forma process specifications have been

proposed and applied at least for BPMN. (Raedts et al. 2007)

For some other popular process modeling languages, only informal semantics were specified

by the language authors. This applies to EPC for example. (Keller et al. 1992) For informally

11

specified semantics it can be difficult to find formal semantics. For EPC it was even shown to

be impossible to define sound formal semantics that is fully compliant with the informal

semantics. (van der Aalst et al. 2002)

For other process modeling languages, neither formal nor informal semantics may be specified

yet. Also, meta modeling allows to create new process modeling languages with new execution

semantics that cannot be anticipated in pre-defined rules. The approach of using pre-defined

static rules therefore does not work well with the flexible concept of meta modeling.

For this reason, we develop a more flexible approach in our thesis that allows the creation and

modification of custom execution semantics.

3.1.2 Idea of Assigning Behaviors to Model Elements

At the core of our approach towards specifying execution semantics we introduce the concept

of a “behavior”. We further introduce the idea that each model element can be enabled, leading

to some behaviors to be triggered. Types of behaviors include “report some event”, “enable

some model element”, “check if some condition is met and – if it is – trigger another behavior”,

or “choose between multiple behaviors”. By assigning behaviors to model elements, the model

of LTS is implicitly specified: The events that are reported by behaviors triggered through

enablements of model elements become the LTS transitions.

We give an intuition for this concept with an example. Consider Figure 3 for an exemplary

process model in EPC where an “XS” element represents an XOR split and an “XJ” represents

an XOR join. Each model object has an identifier given in black text next to the respective

model element. A sketch of what behaviors could be assigned for this process model is given

in Table 1.

Figure 3 An exemplary process model

Lower Event

Some Event Some Function XS
1

Upper Event

XJ Some Function Some Event

E1 F1

E2a

E2b

F2 E3

XS XJ

12

Element Assigned Behaviors

E1 1. Report event “Some Event”

2. Enable element F1

F1 Enable element XS

XS Choose between the following two behaviors:

a. Enable element E2a

b. Enable element E2b

E2a 1. Report event “Upper Event”

2. Enable element XJ

E2b 1. Report event “Lower Event”

2. Enable element XJ

XJ Enable element F2

F2 Enable element E3

E3 Report event “Some Event”

Table 1 Exemplary assignments of behaviors to elements of the model in Figure 3

Using the model elements and the behaviors, we can now follow the sequence of behaviors that

are to be triggered when enabling model elements. For now, we assume that we always enable

the model element that does not have any “incoming” relationships first, i.e. the one that does

not have any predecessors. We lose this assumption later during the design of our actual

implementation.

When starting with enabling E1, the event “Some Event” will be reported, followed by enabling

the element F1. When F1 is enabled, XS will be enabled next. When XS is enabled, a choice

will be made to either enable the element E2a or the element E2b. When enabling E2a or E2b,

an event according to the element’s label will be reported, followed by enabling the element

XJ. This chain is continued until E3 is enabled and finally the event “Some Event” is reported

again, this time without any other element enabling following.

From the possible chains of triggerings, two event sequences can be derived: (“𝑆𝑜𝑚𝑒 𝐸𝑣𝑒𝑛𝑡”,

“𝑈𝑝𝑝𝑒𝑟 𝐸𝑣𝑒𝑛𝑡”, “𝑆𝑜𝑚𝑒 𝐸𝑣𝑒𝑛𝑡”) and (“𝑆𝑜𝑚𝑒 𝐸𝑣𝑒𝑛𝑡”, “𝐿𝑜𝑤𝑒𝑟 𝐸𝑣𝑒𝑛𝑡”, “𝑆𝑜𝑚𝑒 𝐸𝑣𝑒𝑛𝑡”). This

demonstrates that introducing behaviors and assigning them to model elements allows to

implicitly describe a set of event sequences and therefore fulfills one requirement for model

checking.

3.1.3 Moving Behaviors to the Meta-Level of Process Models

Directly assigning concrete behaviors to model elements as proposed in the last section has

disadvantages: When analyzing multiple models using model checking, each model would

require explicit specification of behaviors for each model element. Simply put, each model

would have to be prepared individually, causing a high preparation effort.

Also modifying models would result in additional effort: Assume that a new event model

element and a new function model element should be inserted in the process model of Figure 3

“in between” the elements F1 and XS. To get a correct behaviors assignment that fits to the new

model, not only new behaviors need to be explicitly specified and assigned to the new elements

13

but also the existing behavior that is assigned to F1 needs to be updated so that it does not

enable XS anymore but the newly introduced event model. Generally speaking, changing a

model requires the behavior assignments to be explicitly updated when using the approach of

assigning behaviors directly to model elements.

This additional effort would make this naïve approach impractical. A more generic approach

would therefore be helpful that involves less effort when changing models or their elements.

To create such an approach, we generalize our behavior-based approach in two ways: Instead

of specifying a behavior with concrete input data (like E1, F1, E2a, “Some Event”, “Some

Function” etc.), we use formulaic expressions to describe the required input data for behaviors

in a more generic way (e.g. “successor of current element”, “label of current element”). And

instead of assigning behaviors directly to model elements, we associate behaviors with model

element types, thereby making use of the meta model to define behaviors in a more generic

fashion. With this meta model-based approach, the enablement of a model element of some

type now means that those behaviors are to be triggered that are associated with this type.

To give an intuition for this new approach, we pick up the exemplary process model in Figure

3 again and now specify behaviors using generic formulas on meta model level. We give a

possible behavior assignment in Table 2. We use curly brackets to indicate generic formulaic

expressions (stated in natural language) that play the role of placeholders.

Model Element Type Assigned (Generic) Behaviors

Event 1. Report event {label of current element}

2. If {number of successors of current element greater than 0} then:

 Enable element {first successor of current element}

Function Enable element {successor of current element}

XOR Split 1. Choose any one of {successors of current element} and designate it as ‘e’

2. Enable element {e}

XOR Join Enable element {successor of current element}

Table 2 Exemplary assignment of behaviors to model elements on their meta level

It is left to the reader to verify that recording reported events from enabling model elements

based on the given assignment would result in the same event sequences as given at the end of

section 3.1.2 for the model in Figure 3.

Having defined this assignment of behaviors to model element types once, we can now create

new or modify existing well-formed EPC models that make use of only the specified four

element types without the need for any adjustments to make such models analyzable with model

checking.

So far, we have specified the formulaic expressions in natural language. To allow a computer

to automatically process such formulaic expressions, a formalized expression language is

required that a computer can read and interpret.

14

As the core idea of our approach, we introduce meta model-based execution semantics as a new

input parameter and can now rephrase our overall goal: Given a model, given its meta model,

given meta model-based execution semantics specified through behaviors using generic

formalized formulas, and given a formal temporal property, we want to use model checking to

determine the fulfillment of the given temporal property by the given model, and to get a hint

why the property is fulfilled or why it is not, respectively.

3.2 Making Model Checking Results More Understandable

As established in our goal description, we want to use model checking to find out if a property

is fulfilled or not and to get a hint why a property is fulfilled or why it is not. Until now we did

not specify explicitly what we mean with “getting a hint why a property is fulfilled or why it is

not”. In this section, we explain what such a hint may be, why it can be useful, and how our

approach must be adjusted to be able to produce it.

In the first subsection, we establish the reasons why a hint for a fulfillment or non-fulfilment of

a property can be helpful and explain how such a hint may be represented. In the second

subsection, we extend the idea developed in section 3.1 to allow deriving such a hint from

model checking of meta model-backed business process models.

3.2.1 Responsibility-Explaining Model Element Sequences

The helpfulness of understanding why a property is fulfilled or not fulfilled can be motivated

with an example: Take a property that specifies that the event “Upper Event” needs to happen

at least once in every process entailed by a given process model. Now assume the exemplary

process model from section 3.1 as given in Figure 3 should be analyzed if it satisfies this

property.

We have shown earlier that “Upper Event” does not occur for one of the two event sequences

entailed by the process model. We therefore already know that the process model does not

satisfies the property. Also, in this simple example it may become clear simply from looking at

the model why the property is not fulfilled: There is no model element whose enablement would

result in a report of the event “Upper Event” on the lower path that branches off from the XOR

split in the model. Finding out the reason why a property is not satisfied can however become

more difficult for larger and more complex models and properties.

We assume that business process model analysis is usually done to identify needs for changing

a model: If an analyzed model does for example not fulfill some property, a business process

model analyst may want to change or fix the model so that the new model version does fulfill

the property, for example because of legal requirements.

15

Fixing our exemplary model could be done by inserting a model element in the lower branched-

off path that would report “Upper Event” when enabled. So, while it is already helpful to know

that the property is not fulfilled, it might be even more helpful to get information that is helpful

for fixing the model.

We propose that a sequence of enabled model elements that are “responsible” for the violation

(or fulfillment) of the given property may be of help in such situations.

In our example, this can be the sequence (𝐸1, 𝐹1, 𝑋𝑆, 𝐸2𝑏, 𝑋𝐽, 𝐹2, 𝐸3) or – if restricted to event-

reporting model elements only – the sequence (𝐸1, 𝐸2𝑏, 𝐸3). When following one of these two

sequences, the model creator can identify a path through the model where a model element that

reports “Upper Event” is missing. In Figure 4, we give a version of the process model as in

Figure 3 where the event-reporting model elements that are “responsible” for the violation of

the given property are highlighted. Using this visualization, the model analyst can see visually

elements that are involved and not involved in the non-fulfillment of the property. This allows

easy identification of “problematic” paths.

Figure 4 The process model as in Figure 3 with highlighted elements

For some properties, sequences of elements responsible for their violation or fulfillment may

not be finite. This applies for example to a property describing the existence of an infinite loop

of some event reported by some element. We therefore generalize our proposal to provide

sequences of enabled model elements: Instead of providing sequences of elements, we propose

to provide subgraphs of elements based on the model’s LTS: If a LTS entailed by a process

model contains a subgraph that explains the fulfillment or violation of the property, then we

assume that a graph of elements corresponding to the LTS subgraph may be helpful for fixing

the model according to the requirements that the property is based on.

We assume such graphs of model elements to be of more help for business process analysts

than just Boolean values indicating property fulfillment or nonfulfillment. We further assume

visualizing the elements in the graph by highlighting them in the model to be even more helpful

for such analysts. We call such a graph of model elements and its visualization in the model

collectively “counterexample information” or “witness information”, respectively.

Lower Event

Some Event Some Function XS
1

Upper Event

XJ Some Function Some Event

E1 F1

E2a

E2b

F2 E3

XS XJ

16

3.2.2 Ability to Map Analysis Results Back to Conceptional Process Models

In the last subsection, we have established that it can be helpful for a business process analyst

to get a graph of model elements that are “responsible” for the model checking result. In this

subsection, we explain how our approach from section 3.1 needs to be adjusted to produce such

a graph.

As introduced in section 2.2, some model checking approaches and implementations allow to

derive counterexample or witness graphs. We pick up our example of section 3.1 again and

assume to check our exemplary model given in Figure 3. We check if it satisfies a property that

requires “Upper Event” to occur in every execution of the model. If the used model checking

approach supports the generation of counterexample and witness graphs, the respective

resulting graph would be the path (“Some Event”, “Lower Event”, “Some Event”) as this is the

path of events that shows the violation of the property.

If we now want to derive the “responsible” model element sequence from this event sequence,

we face a problem with the approach established so far: The events reported through our

approach miss any connotation of the model elements that the events were reported for. In our

example, a possible solution for the problem of deriving model elements from the events would

be identifying a model element from an event by comparing the label of each element with the

event. The solution of such an naïve approach could however be ambiguous. We can show this

with our example: The event “Some Event” could have been reported both from E1 and from

E3. Therefore, this naïve approach is not a generally applicable solution.

We propose an alternative solution. Assume that we have a model element ME that can uniquely

identified by identifier 𝑖. Further assume that an event 𝐸 is to be reported for ME. We call 𝐸

the “public” event. Instead of reporting 𝐸, we ensure in our solution that the derived LTS

actually reports the “private” event (𝑖, 𝐸), i.e. a tuple event consisting of a value that allows

identification of both the model element and the original event.

Picking up our example once again using this solution, the respective resulting counterexample

graph would now be the path ((𝐸1, “𝑆𝑜𝑚𝑒 𝐸𝑣𝑒𝑛𝑡”), (𝐸2𝑏, “𝐿𝑜𝑤𝑒𝑟 𝐸𝑣𝑒𝑛𝑡”),

(𝐸3, “𝑆𝑜𝑚𝑒 𝐸𝑣𝑒𝑛𝑡”)). With the model element identifiers included in the counterexample

graph, it now becomes trivial to derive the graph of “responsible” model elements from it.

By “rewriting” events in the described way, we introduce the requirement of placeholder

support for the underlying specification language. Assume that we want to formulate a property

that the public event “Some Event” needs to happen twice in every process entailed by a given

process model. If this property should now be used in model checking based on a model with

rewritten events, the property needs to be rewritten so that it uses private events. A rewritten

version of our example property could now read like this: At some point the private event

17

(𝑖1, “𝑆𝑜𝑚𝑒 𝐸𝑣𝑒𝑛𝑡”) needs to occur, and then at some later point, the private event

(𝑖2, “𝑆𝑜𝑚𝑒 𝐸𝑣𝑒𝑛𝑡”) needs to occur, for any 𝑖1 and for any 𝑖2 in every process entailed by a

given process model, 𝑖1 and 𝑖2 being the two placeholders.

When rewriting events from public to private versions in a specification language, the model

element in each private event needs to be a placeholder. Consequently, the used specification

language needs to support such placeholders.

While private events can be helpful to get insight when analyzing a model checking result, we

assume them to be of little use during property creation. We assume a property creator to

consider public events as more interesting than the private ones. To give an intuition for this

assumption: It may be more interesting to check if the event “Money was received” will always

occur after “Invoice is sent” instead of checking if model element 123 will always be enabled

after model element 456.

As such, it may be helpful for property creators if the specification language supports a “macro”

that rewrites a given public event to a construct that matches a private event corresponding to

the public event and a placeholder for any model element. In our implementation, we provide

such an extension for the language supported by the model checker that we use.

3.3 High-Level Process Logic Transformation and Evaluation Process

In section 3.1, we have presented an idea that allows us to specify execution semantics for a

model on its meta-level in such a way that we can derive an LTS from a model, its meta model

and the specified execution semantics that can be used for model checking. In 3.2 we have

presented an event rewriting approach as an extension of our initial idea that allows a user to

understand a model checking result better.

In this section, we derive abstract mechanisms from these ideas that process the described inputs

to finally generate the wanted outputs. By putting these mechanisms together, we develop our

overall abstract approach.

Our overall approach requires the following inputs: 1) A model and its meta model. 2) Formal

execution semantics for the meta model. 3) A temporal property formulated in some

specification language that might use of event rewriting macros as introduced in subsection

3.2.2.

At the core of operationalizing our approach, we need a model checker that takes in a

description of an LTS in a supported specification language and a temporal property in a

supported specification language. This model checker needs to generate a Boolean result

indicating if the given property is fulfilled by the given model and should generate a

counterexample or witness graph.

18

To generate the LTS description for the model checker, we need a transformer that takes in a

model, its meta model and the meta model-based execution semantics. The transformer needs

to generate a LTS description in a formal process specification language that is supported by

the model checker.

To generate the temporal property, we need a macro expander that takes in a temporal property

in a model checker-supported specification language that was extended with a macro construct

as introduced in subsection 3.2.2. The macro expander should expand each macro so that the

generated property formulation complies with the non-extended, standard version of a

specification language that is supported by the model checker.

Figure 5 The high-level workflow of our approach

With the employed mechanisms introduced, our overall abstract data processing approach can

now be explicitly stated: Provide a model, its meta model and meta model-based execution

semantics to the transformer. Provide a temporal property that can contain unexpanded macros

to the macro expander. Provide the formal process generated by the transformer and the macro-

expanded temporal property to the model checker. The final results of our approach are the two

model checker’s outputs.

A graphical representation of the overall data processing approach is given in Figure 5. We use

boxes with rounded corners to represent data, and ovals to represent components that process

data. Connections with open arrows represent that the source element is an input for the target

element. Connections with closed arrows represent that the source element provides the target

element as output.

Macro expander

Temporal property

(possibly with

macros)

Temporal property in

supported language

Boolean result
Counterexample /

witness information

Model checker

Model with

modeling language
Execution semantics

Transformer

Formal process

specification in

supported format

19

4 Introducing “Meta Semantics” Languages for Specifying

Semantics of Process Models on the Meta Model Level

In this chapter, we formalize our high-level approach and refine details of it by describing and

introducing formal concepts that can be used in an implementation. We introduce “meta

semantics” languages, i.e. languages allowing to define execution semantics for a model on its

meta-level.

The idea behind our meta semantics languages is based on assigning information to instances

of types in a data model that allows to represent meta models (i.e. modeling languages) and

their instances (i.e. models). The general idea behind our languages is not dependent on a

specific data model and we expect it to be implementable with different data models that allow

representing modeling languages and models.

We nevertheless base the descriptions and specifications of our languages specifically on the

data model of [em], for two reasons: 1) The descriptions and specifications are more concise

when reducing the level of abstraction, especially because the domain of meta modeling is filled

with many abstractions already. 2) Our work has the goal of implementing our approach in a

plugin for [em], so selecting [em]’s data model as the base of our languages makes them more

directly implementable. If our approach should be implemented with a different base data model

than [em]’s one, it would have to be adopted accordingly.

In the first section, we present the [em] data model that allows representing meta models and

models. In the second section, we introduce the data types supported by our languages. In the

third section, we introduce our formulaic expression language that allows to formulate model

checking-relevant values in an abstract way. In the fourth section, we introduce our Execution

Semantics Description Language that allows to formulate behavior sequences that can be

assigned to models and their elements on a meta-level to describe a model’s execution

semantics.

Since this section introduces formalisms that may be difficult to understand without examples,

it may be helpful to read this chapter in parallel to chapter 7 where we present examples through

our case studies.

4.1 [em]’s Data Model for Representing Meta Models and Models

In this section, we present the data model of [em] for representing meta models (i.e. modeling

languages) and their instances (i.e. models).

An abstract description of this data model is given in (Delfmann et al. 2008). The

concreteimplementation of [em] however diverges from this abstract description to some extent.

20

As our intended implementation of our approach needs to operate with [em] data as provided

by the implementation of [em] and not by its abstract description, we adopt a perspective for

our description that is closer to the implementation of the tool.

We present our perspective on [em]’s data model as an UML Class Diagram as given in Figure

6. All composition and aggregation associations in the diagram are to be interpreted as one-to-

many relationships, whereas all other associations are to be interpreted as many-to-many

relationships. In the remainder of this section, we explain the shown aspects shortly.

Figure 6 Our perspective on [em]’s data model as an UML Class Diagram

Project

Name

Model

Name

Language

Name

ElementOccurence

RelationshipOccurence

Relationship

ElementModels

Project

ElementOccurences

Model
RelationshipOccurencesWithMeAsSource

SourceElementOccurence

RelationshipOccurencesWithMeAsTarget

TargetElementOccurence

Occurences

Relationship

Refiners

Refinements

Elements

Project

RelationshipsWithMeAsTarget

TargetElement

RelationshipsWithMeAsSource

SourceElement

Instances

 Type

ElementType

Name
RelationshipType

Role

Name

 Roles

ElementType

OwningLanguages

ElementTypes

RefiningLanguages

Refiners

Models

Language

Occurences

Object

RelationshipTypesWithMeAsTarget

Target

RelationshipTypesWithMeAsSource

Source

ObjectOccurence

Object

ObjectType Instances

Type

Caption

ParentType ChildTypes

21

A Language in [em] consists of ElementTypes. An ElementType is either a ObjectType or a

RelationshipType. ObjectTypes can be used to form an object inheritance hierarchy using the

association “ChildTypes”/“ParentType”.

ObjectTypes and RelationshipTypes can be instantiated as Objects and Relationships,

respectively. Collectively, Objects and Relationships are Elements. Each Element belongs to

some Project.

An Element can play different Roles as defined for its type. On this basis, a RelationshipType

is specified in such a way that its instances can only be formed between Elements whose types

agree with the specified Roles.

Models can be created in a Project. A Language is specified for each Model. A Model contains

ElementOccurrences of the instantiated Elements in the Model’s Project. An

ElementOccurrence is either an ObjectOccurrence or a RelationshipOccurrence that is an

occurrence of some Object or Element, respectively. It is possible to refer to the same Element

multiple times in the same Model by having multiple occurrences of the respective Element.

An ObjectType can allow its instances to be “refined” by Models in specific Languages. An

instance of an ObjectType allowing refinements can then be associated with Models of the

allowed Languages. The idea behind refinements can be explained with an example: Consider

two process models where the first is an abstract, generic description how to work in word

processing applications, and the second one is a detailed description what mouse clicks and key

strokes must be performed to execute the “save” command in the application. Assume one

object in the first process model refers to saving the document. Assume that this object is

labelled with “Save document”. Then the second process model can be said to “refine” the

“Save document” object of the first model because the whole second model provides a more

detailed view on the respective single object of the first model.

The full data model of [em] allows Objects to not just carry a name but also additional values

of specific types. For simplicity, we do not take values carried by Objects into account in our

work; such value-carrying Objects are not required for demonstrating that our idea can

successfully be implemented and used. In section 8.2.2, we explain that it would be possible to

extend our approach and our implementation to also support values carried by Objects.

4.2 Languages’ Data Types and Default Values

In this section, we introduce and formally define the data types that are supported by our

languages. First, we define several data types that we call “primitive types”. Second, we specify

the set of [em] data types. Third, we introduce data types that ElementTypes of an [em]

22

Language can be referenced with. Fourth, we introduce a set of data types that we call “runtime-

relevant types”. Finally, we introduce the concept of default values for several of the data types.

Primitive Types. Primitive types of our language are Boolean, integer, double, string, and

collection.

Boolean values in our language are elements of the set 𝐵𝑜𝑜𝑙 = { 𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒, 𝑛𝑢𝑙𝑙 }.

Integer values are elements of the set 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 = { −(2𝑏), −(2𝑏) + 1, … , (2𝑏) − 1, 𝑛𝑢𝑙𝑙 }

where 𝑏 is the bit length that the underlying system is set to use. In our current implementation,

𝑏 is set to 16.

Double values in our implementation are floating-point numbers as realized by the double

implementation of the underlying C compiler, or 𝑛𝑢𝑙𝑙. The C11 standard promotes the double

format as presented in (International Organization for Standardization 1989) to realize double.

(International Organization for Standardization 2011) Assuming modern C compilers

compiling for modern hardware follow this proposal, double values in our implementation are

typically 64-bit floating-point values or 𝑛𝑢𝑙𝑙. We denote the set of all possible double values

with 𝐷𝑜𝑢𝑏𝑙𝑒.

String values are elements of the set 𝑆𝑡𝑟𝑖𝑛𝑔 = ⋃ 𝐶𝑛
𝑛 ∈𝑁0

∪ {𝑛𝑢𝑙𝑙} where 𝐶 is the set of all

characters supported by the underlying architecture. The underlying model checker of our

implementation supports the ASCII character set as specified in (American National Standard

for Information Standards 1986). (Champelovier et al. 2017, pp. 25–26)

Collection values for a type 𝑇 are elements of the set that encompasses 𝑛𝑢𝑙𝑙 and all sequences

of elements in 𝑇. We denote the set of all possible collection values for a type 𝑇 with

𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛〈𝑇〉. We use the term “members” to refer to the elements in a collection’s element

sequence.

[em] Data Types. Each class in the data model of [em] as introduced in section 4.1 becomes

an [em] data type of our language. Instances of these classes become elements of the respective

type sets in our language together with the element 𝑛𝑢𝑙𝑙. We denote the set of instances of an

[em] class and 𝑛𝑢𝑙𝑙 with its [em] class name in italics. For example, the set

𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 encompasses 𝑛𝑢𝑙𝑙 and all [em] Element Occurrences that are available

in [em] when model checking processes start.

Runtime-relevant types. Runtime-relevant types of our language are RuntimeInstance,

CustomEnablementData, and CustomStorageData.

RuntimeInstance values are elements of the set 𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 = {𝑟𝑖0, 𝑟𝑖1, … }. Intuitively,

a RuntimeInstance is a storage frame for a set of behaviors that need to keep their stored

23

information separate from other behaviors. This is especially helpful for languages that use

model-overarching behavior chains: If a behavior of a model element in one model enables an

element in another model, then it might be required for the two models to keep the data stored

for their elements separated from one another. In such a case, both models could maintain their

individual RuntimeInstances. The concept of RuntimeInstances is described in more detail in

section 4.4.

The other two additional runtime-relevant types, namely CustomEnablementData and

CustomStorageData, are to be specified by a user before model checking processes start.

CustomEnablementData is a type for data that is passed to an [em] element’s or model’s

behavior when it is enabled as described in section 4.4. Passing data to an [em] element for

example allows to keep track over some source element in case this element must be enabled

again later. This is especially helpful for implementing jumps from one process model to

another and back.

Intuitively, CustomEnablementData is a struct, i.e. a collection of fields. A language user

specifies its fields, each with a name and a type. Our current implementation allows to specify

fields of the types Boolean, integer, double, string, RuntimeInstance, Model, and Element

Occurrence.

Formally, 𝐶𝑢𝑠𝑡𝑜𝑚𝐸𝑛𝑎𝑏𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎 is the product of types as selected by a language user

from the list 𝐵𝑜𝑜𝑙𝑒𝑎𝑛, 𝐼𝑛𝑡𝑒𝑔𝑒𝑟, 𝐷𝑜𝑢𝑏𝑙𝑒, 𝑆𝑡𝑟𝑖𝑛𝑔, 𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒, 𝑀𝑜𝑑𝑒𝑙,

𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒. The fields names can be captured as a sequence of identifiers that has

equal length equal as the number of terms in the type product.

CustomStorageData is a type of data that is to be temporarily stored for a RuntimeInstance and

an ElementOccurrence. Storing data for example allows to keep track over the number of times

an ElementOccurrence has already been enabled. This is especially helpful for implementing

the Simple Merge workflow pattern as specified in (van der Aalst and ter Hofstede 2017; van

der Aalst et al. 2003).

CustomStorageData can be interpreted as an extension of CustomEnablementData. Its

definition is equal to CustomEnablementData with the exception that it also allows to specify

CustomEnablementData as field type.

Default Values. For data types that can be used for fields in CustomEnablementData types and

CustomStorageData types, we define a default value. When one of these two types is

instantiated, its fields will have their types’ respective default value. We define the default

values in the function 𝐷𝑒𝑓𝑎𝑢𝑙𝑡 that maps a data type to its default value:

𝐷𝑒𝑓𝑎𝑢𝑙𝑡(𝐵𝑜𝑜𝑙𝑒𝑎𝑛) = 𝑡𝑟𝑢𝑒,

24

 𝐷𝑒𝑓𝑎𝑢𝑙𝑡(𝐼𝑛𝑡𝑒𝑔𝑒𝑟) = 0,

 𝐷𝑒𝑓𝑎𝑢𝑙𝑡(𝐷𝑜𝑢𝑏𝑙𝑒) = 0.0,

 𝐷𝑒𝑓𝑎𝑢𝑙𝑡(𝑆𝑡𝑟𝑖𝑛𝑔) = ””,

 𝐷𝑒𝑓𝑎𝑢𝑙𝑡(𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒) = 𝑟𝑖0,

 𝐷𝑒𝑓𝑎𝑢𝑙𝑡(𝐶𝑢𝑠𝑡𝑜𝑚𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐷𝑎𝑡𝑎) = (𝑓0, … , 𝑓𝑛) where 𝑓𝑖 = 𝐷𝑒𝑓𝑎𝑢𝑙𝑡(𝑓𝑡𝑖) and 𝑓𝑡𝑖 is

the type of the 𝑖th CustomStorageData

field.

4.3 Formulaic Expression Language

In subsection 3.1.3 we have established that a formulaic expression language can be helpful to

specify inputs for behaviors. In this section, we introduce a concrete expression language that

can be used for this purpose.

In the first subsection, we give an informal introduction into the language. In the second

subsection, we specify the language’s syntax. Due to space constraints, we give a formal

specification for the language’s semantics only in Appendix A.

4.3.1 Informal Introduction

In this subsection, we informally introduce our formulaic expression language. We first give

general information explaining the design of our language. We then give example formulaic

expressions and explain their meaning to convey a “feeling” for the language.

Early during our work, we realized that we needed to create a custom parser for a formulaic

expression language. We give reasons for this need in subsection 6.4.2. Custom parser

implementation is a time-consuming task. We needed a language with an expressivity that is

powerful enough to reach the project’s goal. Because of time constraints for our work, we had

to do a compromise between conciseness of formula language and of easiness of

implementation.

We therefore created a language that has a very simple syntax with only few constructs. For a

user of the language, the simple syntax can both be considered an advantage and a disadvantage.

As an advantage, the simple syntax makes the language arguably easy to learn. As a

disadvantage, the lack of concise constructs requires the user to express some aspects more

verbose than it might be necessary in other languages.

-1234

Listing 1 Formula evaluating to an integer value

25

{4.34e1}

Listing 2 Formula evaluating to a double value

"This is a string"

Listing 3 Formula evaluating to a string value

true

Listing 4 Formula evaluating to a Boolean value

Our language natively supports syntactic constructs to describe integers, doubles, strings and

Boolean values. Listing 1 evaluates to the integer −1234, Listing 2 evaluates to the double

43.4, Listing 3 evaluates to the string enclosed within the two quotation marks, and Listing 4

evaluates to the Boolean value for truth.

exampleValue

Listing 5 Formula consisting of an identifier

Each formulaic expression is evaluated in a so-called “environment”. An environment is a

construct that allows mapping identifiers to values. Assuming Listing 5 is evaluated in an

environment that maps the identifier exampleValue to the integer 3, then the formula evaluates

to the integer 3.

Values of additional types other than the presented four ones can be accessed through an

environment if provided by it. In some of the following examples, we make use of the generic

type called “collection” that allows to represent sequences of values of a single pre-defined

type.

To describe the deviation of a new value from some other value, our formulaic language

introduces the syntactic construct “accessor”. The notation of accessors in our language is

inspired from the dot notation often used by object-oriented programming languages like Java

or C#. Our language supports three types of accessors: property accessors, function accessors

and lambda accessors.

"demo".Length

Listing 6 Formula with an application of a property accessor on a string

-1234.Negation

Listing 7 Formula with an application of a property accessor on an integer

A property accessor yields information that is directly derivable from the base value. For

example, appending the property accessor .Length to an expression that evaluates to a string

26

describes the length of that string. As such, Listing 6 evaluates to the integer 4 because the word

“demo” consists of four characters. Listing 7 evaluates to negation of the integer −1234, i.e. to

the integer 1234.

-1234.Plus(234)

Listing 8 Formula with an application of a single-argument function accessor on an

integer

"This is a string".Substring(0, 4)

Listing 9 Formula with an application of a double-argument function accessor on a string

A function accessor yields information that can be derived from the base value and from

arguments that are provided with the function accessor. For example, appending the accessor

.Plus(2) to an expression that evaluates to an integer describes the summation of the base value

and the integer 2. As such, Listing 8 evaluates to the sum of −1234 and 234, i.e. to the integer

−1000. Listing 9 evaluates to the substring consisting of the first four characters of the provided

string, i.e. to This.

exampleCollection.All[member | member.GreaterThan(3)]

Listing 10 Formula with an application of a lambda accessor

A lambda accessor yields information that can be derived from the base value and from a

parametrized formulaic sub-expression that is provided with the lambda accessor. For example,

if an expression evaluating to a collection of integers is appended with the accessor .All[

member | member.GreaterThan(3)], the resulting expression describes the truth of all integers

in the collection being greater than three. As such, assuming the environment maps

exampleCollection to a collection of the integers 5, 4, 3 and 2, then Listing 10 evaluates to

𝑓𝑎𝑙𝑠𝑒 because the collection members 3 and 2 are not greater than three.

exampleCollection.All[item | item.GreaterThan(3)]

Listing 11 Formula with an application of a lambda accessor, using a different parameter

name

Parameter names can be chosen freely in lambda accessors (under the syntactic constraints as

introduced in subsection 4.3.2), so Listing 10 and Listing 11 are equivalent.

"This is a string".Substring(0, 4).Equals("This").Inverse

Listing 12 Formula with an accessor chain

Accessors can be chained: Listing 12 evaluates to the inverse of the truth of the first four

characters of This is a string being equal to This, i.e. to false.

27

exampleCollection.First

Listing 13 Formula possibly resulting in 𝒏𝒖𝒍𝒍 result

Our language uses a notion of nullable types as described in (Wikipedia contributors 2017b) so

that each type does not just encompass primitive values but also a special 𝑛𝑢𝑙𝑙 value. This 𝑛𝑢𝑙𝑙

value is typically used to denote an evaluation error. As such, assuming the environment maps

emptyCollection to an empty integer collection, then Listing 13 evaluates to 𝑛𝑢𝑙𝑙 because there

is no first element in an empty collection.

emptyCollection.First.Plus(1)

Listing 14 Extension of Listing 13 with a following accessor

When applying an accessor to a 𝑛𝑢𝑙𝑙 value, the result will always be a 𝑛𝑢𝑙𝑙 value again. As

such, if Listing 13 results in 𝑛𝑢𝑙𝑙, then Listing 14 evaluates to 𝑛𝑢𝑙𝑙 as well.

Note that even though the language contains “lambda accessor”, it is not equivalent to Lambda

calculus. In particular, functions are not first-class values in our language. As such, it is not a

Turing-complete language.

All available accessors are documented in Appendix C.

4.3.2 Syntax

In this section, we formally introduce the syntax of our formulaic expression language. We

specify elements of the syntax as Extended BNF (International Organization for

Standardization 1996) syntax rules and informally explain the syntactic constructs.

Formula = Base | Formula, ".", Accessor

Listing 15 Formula syntax rule

The root syntactic element of our language is a Formula as specified in Listing 15. A Formula

either is a Base or consists of a dot-prefixed Accessor following a Formula.

Base = Boolean | Integer | String | Double | Identifier

Listing 16 Base syntax rule

A Base allows to instantiate some of the language’s primitive types and to refer to an identifier

of the environment. As specified in Listing 16, a Base is either of Boolean, Integer, String,

Double, or Identifier. We call non-Identifier Bases “constants”.

Boolean = "true" | "false”
Integer = /([+-]?[0-9]+)/
String = /("(?:[^"\\]|\\"|\\\\)*")/

28

Double = /({[+-]?[0-9]+\.[0-9]*(e[+-]?[0-9]+)?})/i
Identifier = /([A-Za-z_][A-Za-z_0-9]*)/

Listing 17 Syntax rules for Bases

The syntax rules for the Bases are collectively specified in Listing 17. For the Bases different

from Boolean we deviate slightly from the Extended BNF notation for improved conciseness:

In the respective syntax rules we make use of regular expressions as specified in (.NET Docs

contributors 2017). To further improve the reader’s reading experience, we show these regular

expressions with highlighted syntax through colorization.

A Boolean is either of the strings true or false. An Integer is a non-empty sequence of

numeric digits, optionally prefixed with a plus or a dash sign. A String is a sequence of

arbitrary characters enclosed in double quotes. If a " or \ character is to be used within the

sequence of arbitrary characters of a String’s value, it needs to be escaped with a prefix \. For

the Double syntax rule we give an intuitive description: A Double equals a curly bracket-

enclosed string representation of a double value in a C-like language. An Identifier starts with

a character of the basic Latin alphabet or an underscore, and continues with a sequence of

further basic Latin alphabet characters, underscores, and numeric digits.

Accessor = PropertyAccessor | FunctionAccessor | LambdaAccessor

Listing 18 Accessor syntax rule

As specified in Listing 18, an Accessor is either a PropertyAccessor, a FunctionAccessor or a

LambdaAccessor.

PropertyAccessor = Identifier

Listing 19 PropertyAccessor syntax rule

Each PropertyAccessor has an identifier. To avoid duplicate specifications, the

PropertyAccesor’s specification as given in Listing 19 reuses the Identifier specification.

FunctionAccessor = Identifier, "(", ArgumentList, ")"
ArgumentList = Formula | ArgumentList, "," Formula

Listing 20 FunctionAccessor and its ArgumentList syntax rule

A FunctionAccessor consists of an identifier followed by a round bracket-enclosed list of

arguments. The formal specification is given in Listing 20.

LambdaAccessor = Identifier, "[", LambdaParameterList, "|", Formula, "]"
LambdaParameterList = Identifier | LambdaParameterList, ",", Identifier

Listing 21 LambdaAccessor and its LambdaParameterList syntax rule

29

A LambdaAccessor consists of an identifier followed by an opening square bracket, followed by

a list of lambda parameters, followed by a vertical bar, followed by a Formula, and finally

followed by a closing square bracket. The formal specification is given in Listing 21.

4.4 Execution Semantics Description Language

In section 3.1, we have established that business process models can be made accessible for

model checking by assigning sequences of behaviors to such models and to model elements. In

this section, we introduce the Execution Semantics Description Language (ESDL), a language

that we developed to specify execution semantics of a process model in a standardized and

automatically processable way.

First, we give explain the design of ESDL. Next, we give an informal introduction into the

language and its behaviors. Due to space constraints, we give a formal specification for the

language only in Appendix B.

ESDL is based on the concept of assigning sequences of “behaviors” to Models on the level of

their modeling Language, and to ElementOccurrences on the level of their Elements’

ElementTypes. On this basis, we say that a Model or an ElementOccurrence can be “enabled”,

thereby triggering the execution of the assigned behaviors. A LTS can be specified based on

sequences of outputs of relevant behaviors that can be triggered when enabling some initially

selected Model.

We designed our language primarily with usability requirements in mind. The language should

be user-friendly in such a way that a human user can easily specify sequences of behaviors and

assign them to ElementOccurrences and Models on the ElementType and Langauge level,

respectively. Our language is not intended to be written in text. Instead, its behaviors are

intended to be put together in a building block-like fashion using a graphical user interface. We

therefore do not specify a text-based syntax for ESDL.

In ESDL we assume that enablements of Models and of ElementOccurrences can be

“scheduled”. If an enablement is scheduled, it is put into a multiset that we call “task list”. If

execution of a sequence of behaviors completes, an element in the task list will be enabled. The

LTS is derived in such a way that all possible execution orders for tasks in task lists are

considered.

Behaviors of ESDL allow storing data, accessing stored data, and deleting stored data. Data is

stored as instances of CustomStorageData for RuntimeInstances and ElementOccurrences. In

this regard, a RuntimeInstance functions as a dictionary that contains mappings from

ElementOccurrences to CustomStorageData values.

30

We define nine behavior types for ESDL, each with their own parameters. For some of these

parameters, the respective argument is to be specified as a formula in our formulaic expression

language as introduced in section 4.2. For other parameters, the argument is to be specified as

sequences of behaviors. Other arguments are to be specified as plain strings or as Booleans.

We introduce these behaviors and their parameters informally in Table 3. In the first column,

we give the name of the behavior type. In the second column, we list the parameters for the

behavior. For each parameter, we give its name followed by its type. For parameters taking a

formulaic expression argument, we write “Formula”, followed by an arrow pointing to the data

type that the formulaic expression needs to evaluate to. In the third column, we give an

information description of the behavior’s semantic.

Behavior

Type Name

Parameters Informal Description

Enable

Element

Occurrence

Runtime Instance:

Formula → 𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒

Element Occurrence:

Formula → 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒

Data to pass on:

Formula → 𝐶𝑢𝑠𝑡𝑜𝑚𝐸𝑛𝑎𝑏𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎

Perform now instead of scheduling it:

Boolean

If triggered, the ElementOccurrence will be

enabled with the RuntimeInstance and the

CustomEnablementData as specified in the

respective arguments. If the Boolean flag is

set, then the enablement will take place

directly; if it is not set, then the enablement

will be scheduled.

Enable

Model

Create new runtime instance:

Boolean

Runtime Instance:

Formula → 𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒

Model:

Formula → 𝑀𝑜𝑑𝑒𝑙
Data to pass on:

Formula → 𝐶𝑢𝑠𝑡𝑜𝑚𝐸𝑛𝑎𝑏𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎

Perform now instead of scheduling it:

Boolean

If triggered, the respective Model will be

enabled with the CustomEnablementData as

specified in the respective arguments. If the

Boolean flag is set, the enablement will take

place directly; if it is not set, the enablement

will be scheduled. If the “Create new

runtime instance” flag is set, then the

enablement will take place with a newly

created RuntimeInstance; if it is not set, then

the enablement will take place with the

RuntimeInstance as specified in the

respective argument.

For one item

in a

collection

Item Variable Name:

String

Collection:

Formula → 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛〈𝑇〉 for any

allowed Type 𝑇

Child Behaviors:

Sequence of Behaviors

If triggered, the Child Behaviors will be

triggered sequentially for some member of

the Collection as specified in the respective

argument. The LTS will be specified in such

a way that all members of the collection will

be selected once. Formulas in the Child

Behaviors will be evaluated in an

environment that maps the Item Variable

Name to the selected member and that maps

all other identifiers of the current

environment to the respective values of the

current environment.

31

Behavior

Type Name

Parameters Informal Description

For each

item in a

collection

Item Variable Name:

String

Collection:

Formula → 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛〈𝑇〉 for any

allowed type 𝑇

Child Behaviors:

Sequence of Behaviors

If triggered, the Child Behaviors will be

triggered sequentially, once for each

member of the Collection as specified in the

respective argument. Each time the Child

Behaviors are triggered, Formulas in them

will be evaluated in an environment that

maps the Item Variable Name to the

respective current member and that maps all

other identifiers of the current environment

to the respective values of the current

environment.

If/Then/Else Condition:

Formula → 𝐵𝑜𝑜𝑙𝑒𝑎𝑛

Then Behaviors:

Sequence of Behaviors

Else Behaviors:

Sequence of Behaviors

If triggered when the Condition evaluates to

𝑡𝑟𝑢𝑒, the Then Behaviors are triggered

sequentially. If triggered when the Condition

evaluates to 𝑓𝑎𝑙𝑠𝑒, the Else Behaviors are

triggered sequentially.

Load Data Runtime Instance:

Formula → 𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒

Element Occurrence:

Formula → 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒

Variable Name:

String

Child Behaviors:

Sequence of Behaviors

If triggered, the Child Behaviors will be

triggered sequentially. Formulas in the Child

Behaviors will be evaluated in an

environment that maps the Variable Name to

the CustomStorageData that was stored for

the ElementOccurrence and the

RuntimeInstance as specified in the

respective arguments. If no

CustomStorageData had been stored for

them before, then the environment will map

to the default value for CustomStorageData.

All other identifiers of the current

environment will be mapped to the

respective values of the current environment.

Release

Runtime

Instance

Runtime Instance:

Formula → 𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒

If triggered, all data that was stored for the

Runtime Instance will be deleted.

Report

Event

Element Occurrence:

Formula → 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒

Event Content:

Formula → 𝑆𝑡𝑟𝑖𝑛𝑔

If triggered, an event will be reported as

output. The LTS will be specified based on

sequences of this kind of reports. The output

is a tuple consisting of the Element

Occurrence and the Event Content as

specified in the respective arguments.

Store Data Runtime Instance:

Formula → 𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒

Element Occurrence:

Formula → 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒

Data to be stored:

Formula → 𝐶𝑢𝑠𝑡𝑜𝑚𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐷𝑎𝑡𝑎

If triggered, the CustomStorageData value as

specified in “Data to be stored” will be

stored for the tuple of ElementOccurrence

and RuntimeInstance as specified in the

respective arguments.

Table 3 Informal description of ESDL behavior types

For all formulaic expressions used as arguments in behaviors, a default environment is defined.

We list and explain its members in Table 4. The CurrentLanguageElementTypes is a special

identifier that does not have a true data type in the context of our specification. It allows easy

referencing to ElementTypes of the current [em] Language and behaves like an object with two

properties: ObjectTypes and RelationshipTypes. The result of the ObjectTypes and the

32

RelationshipTypes properties behave like they have a property for each ObjectType or

RelationshipType of the current [em] Language, respectively.

Identifier Type Informal Description

CurrentRuntimeInstance 𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 The RuntimeInstance that the current

ElementOccurrence or model was enabled

with.

EnablementData 𝐶𝑢𝑠𝑡𝑜𝑚𝐸𝑛𝑎𝑏𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎 The data that the current ElementOccurrence

or Model was enabled with.

NewStorageDataInstance 𝐶𝑢𝑠𝑡𝑜𝑚𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐷𝑎𝑡𝑎 The default instance of

𝐶𝑢𝑠𝑡𝑜𝑚𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐷𝑎𝑡𝑎, i.e.

𝐷𝑒𝑓𝑎𝑢𝑙𝑡(𝐶𝑢𝑠𝑡𝑜𝑚𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐷𝑎𝑡𝑎).

NewEnablementDataInstance 𝐶𝑢𝑠𝑡𝑜𝑚𝐸𝑛𝑎𝑏𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎 The default instance of

𝐶𝑢𝑠𝑡𝑜𝑚𝐸𝑛𝑎𝑏𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎 , i.e.

𝐷𝑒𝑓𝑎𝑢𝑙𝑡(𝐶𝑢𝑠𝑡𝑜𝑚𝐸𝑛𝑎𝑏𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎).

CurrentLanguageElementTypes (special construct) (See description in main text.)

CurrentModel Model The currently enabled Model; only available

for behaviors assigned to a Model.

CurrentObjectOccurrence ObjectOccurrence The currently enabled ObjectOccurrence;

only available for behaviors assigned to a

ObjectOccurrence.

CurrentRelationshipOccurrence RelationshipOccurrence The currently enabled RelationshipOccur-

rence; only available for behaviors assigned

to a RelationshipOccurrence.

Table 4 Members of the default environment for formulaic expressions

We assume most behavior types to be directly understandable from the descriptions in Table 3,

except for the behaviors “For one item in a collection” and “Release Runtime Instance”. We

therefore try to facilitate a better understanding for these behaviors and their background by

giving further information and intuitions.

We start with an intuition behind the “For one item in a collection” behavior: Assume a process

model contains an element with three other following elements, and the process flow may

continue from the first element to either one of these three elements. Then it can be desirable

that every possible element sequence from the first element to a follower is considered in the

derived LTS. This situation is an instance of the Exclusive Choice workflow pattern as specified

in (van der Aalst and ter Hofstede 2017, sec. “Pattern 4 (Exclusive Choice)”; van der Aalst et

al. 2003).

The behavior “For one item in a collection” is especially helpful for implementing this pattern.

In the described situation, a formula specifying the collection of the three followers could be

used as the behavior’s Collection argument. Then an “Enable Element Occurrence” behavior

with its Element Occurrence argument set to the Item Variable Name could be used as the only

child behavior of the “For one item in a collection”. This way, it is ensured that the resulting

LTS contains all possible sequences from the first element to a follower.

33

We continue with an intuition behind the “Release Runtime Instance” behavior. Consider the

two BPMN-like process models in Figure 7. The second activity in Process Model I “calls” the

Process Model II. Activities in Process Model II stores data and later make use of it. Once

Process Model II was processed, execution returns to the third activity in Process Model I.

Assume that each of the two Process Models work with their own RuntimeInstance.

Figure 7 Process models for demonstrating unnecessary LTS size increase

that occurs when not releasing unused RuntimeInstances

We can distinguish between two scenarios: In the first scenario, data stored for the

RuntimeInstance of Process Model II is not deleted when returning the third activity in Process

Model I. In the second scenario, the stored data is deleted when returning. The two different

LTS that can be derived from the two scenarios are shown in Figure 8, the first one on the left,

the second one on the right. The boxes with the dashed lines indicate in which states the data

stored for Process Model II’s RuntimeInstance is kept.

From inspection of the process models in Figure 7 it can be shown that data stored for Process

Model II’s RuntimeInstance is not required after execution returns to Process Model I.

However, generalizing such an analysis is non-trivial and for some situations possibly

impossible. A LTS is therefore derived in a naïve way: Derivation bases on the assumption that

data stored for a RuntimeInstance might be used at any point during process model execution.

Process Model I

Report “A”
Enable Process

Model II, then

enable follower
Report “D” Report “E”

Process Model II

Report “B”
Report “C” +

stored data for

this element

Store “X” as

data for

follower

Store “Y” as

data for

follower

Store “Z” as

data for

follower

34

As such, all states where data is stored for a RuntimeInstance must be kept on their own LTS

paths. When data stored for a RuntimeInstance is released however, LTS paths might merge

again.

0

1

2 3 4

65 7

A

B

BB

CY CZCX

D DD

1211 13

E EE

98 10

Data = YData = X Data = Z

0

1

2 3 4

5

A

B

BB

CY

CZCX

D

7

E

6

Data = YData = X Data = Z

Figure 8 Two LTS that can be derived from the process models in Figure 7

This explains the two different LTS sizes: Comparison of the two LTS shows that keeping data

stored for Process Model II’s Runtime instance instead of deleting it leads to a larger LTS.

Since smaller LTS allow faster processing, it can be considered good practice to add a “Release

Runtime Instance” behavior when data is not required anymore that was stored for some

RuntimeInstance.

35

5 Foundations for Implementing the Theoretical Approach

In this chapter, we describe the gathering of information and the development of further

concepts that are required to implement our abstract approach. While the two previous chapters

remained mostly on the theoretical level, this chapter considers primarily practical problems.

In the first section, we describe how we searched for model checkers and why we picked the

Construction and Analysis of Distributed Processes (CADP) model checker for our

implementation. In the second section, we introduce our approach for translating [em] data and

assigned behavior sequences into a formal process specification that can be processed by the

CADP model checker. In the third section, we introduce a CADP-supported temporal property

specification language modification that extends the language with macros as described in

subsection 3.2.2. In the fourth section, we collect requirements that an implementation of our

approach must fulfill to be usable for a user.

5.1 Searching and Selecting a Suitable Model Checker

An implementation of the theoretical approach requires a component that performs model

checking based on the user’s inputs. Such a component could either be implemented from

scratch or an existing model checker could be integrated into the final implementation.

To avoid the effort of implementing a complete model checker, we decided to use an existing

one for our implementation. In this section, we describe how we searched a suitable model

checker and why we selected the CADP model checker as the basis for our implementation.

In the first subsection, we describe the requirements we laid down for a model checker to be

used by our implementation. In the second subsection, we describe the approach we took to

select a suitable model checker.

5.1.1 Model Checker Requirements

In this subsection, we introduce our model checker requirements (RM).

In section 2.2, we have established that temporal property specification languages vary w.r.t.

their expressivity. Less expressive languages cannot describe temporal properties of a certain

complexity. We assume that the usability of an implementation of our approach is higher if it

enables users to check their models for the fulfillment of more complex temporal properties.

From this assumption, we derive the first model checker requirement:

RM 1. The model checker must accept temporal properties that are formulated in an expressive

temporal property specification language.

36

In subsection 5.1.2, we go into more detail on what we consider an expressive temporal

specification language.

In subsection 3.2.2, we have established that a temporal property description language must

support placeholders. This leads to the second model checker requirement:

RM 2. It must be possible to introduce placeholders in temporal properties as described in

subsection 3.2.2 in a way that the model checker accepts these properties.

As established in section 3.2, our approach relies on the availability of counterexample or

witness graphs. This leads to another model checker requirement:

RM 3. The model checker must return a counterexample or witness graph as part of its model

checking result that allows inference of result-explaining model element sequences as

described in section 3.2.

In section 3.3, we have established that a transformer is required to transform models,

information about modeling languages used by the models, and execution semantics defined

for these languages, into a formal process described in a formal process specification language

that the model checker accepts. Many model checkers only accept formal processes specified

in their respective custom process specification languages and custom file formats. Some of

these languages and file formats are complex and make generation of the required inputs

difficult. To complete the work around this thesis within the allocated timeframe, we

established as a requirement:

RM 4. The model checker must accept formal processes that are specified in a process

specification language and in a file format that is designed in such a way that developing

and implementing a transformer as described in section 3.3 is easily possible.

Model checkers differ with regards to the systems and platforms they can be run on. If a model

checker is to be controlled from a tool running on a system that is not supported by the model

checker, a cross-system or cross-platform communication protocol between the controlling tool

and the model checker must be developed. In section 8.2.1, we discuss how such a

communication protocol might make computations faster in future implementations. For our

work, we decided to save the effort of developing such a protocol. We therefore established as

a requirement:

RM 5. The model checker must be runnable on the host system, i.e. the system that the tool

runs on that controls the model checker.

During initial research we found several model checkers that were not maintained anymore and

could not be run on modern machines without investing additional work. Further we assumed

37

that it would be helpful to get support from the model checker developers or maintainers when

integrating the selected model checker into an implementation and when generating the first

model checking problems to be solved by it. During our evaluation of model checkers, we

consequently established as a soft requirement:

RM 6. The model checker should be actively maintained.

5.1.2 Surveying Model Checkers

In this section, we describe our process of finding model checker candidates that we considered

to use in our implementation, and of selecting a suitable model checker from the candidates.

To find model checker candidates, we performed an internet search. We used the Google search

engine with the terms “model checker” and “model checking tool”. Initial searches brought us

to a list of model checking tools on the English Wikipedia (Wikipedia contributors 2017a). In

further searches, we did not find any other tools fulfilling our requirements and not being listed

on the Wikipedia page. We therefore used the entries on the Wikipedia page as our main source

for candidate model checkers.

We evaluated the found candidates w.r.t. fulfillment of our requirements as described as

follows.

To determine if a model checker supports expressive temporal property specification languages,

we checked if µ-calculus or similar expressive derivatives from µ-calculus (like alternation free

µ-calculus) were amongst its supported algebras. To determine if a model checker supports

placeholders and if it could generate counterexample or witness information as one of its results,

we checked its documentation.

We also checked the model checker’s documentation to evaluate the formal process

specification languages and file formats it accepts w.r.t. simplicity of implementing a

transformer as described in section 3.3. We assumed that integration of model checkers would

be difficult if they used binary formats, or formats based on graphical formal process

specification languages. We assumed that text-based specification languages and file format

would make our implementation simpler.

To determine a model checker’s degree of maintenance, we checked the age of the latest

released version of the respective tool and the age of the newest entries on the maintainer’s

official communication channels like mailing lists or forums.

In our evaluation we identified two candidates that we found most interesting: The micro

Common Representation Language 2 (mCRL2) toolset and the Construction and Analysis of

Distributed Processes (CADP) software tools. Being Unix-targeted tools, the CADP tools can

38

be run on Windows only in a non-native environment (e.g. using Cygwin or a virtualized Linux

operating system). Running them on Windows in such an environment makes them operate

slowly. The mCRL2 toolset on the other hand has the advantage of running natively on

Windows without negative impacts on model checking speed.

In the end, we still had to abandon mCRL2 as a candidate because the counterexample and

witness information generated by it were provided in a way that did not allow inference of

result-explaining model element sequences as described in section 3.2. Consequently, we

selected the CADP model checker as the foundation of our implementation. We still consider

mCRL2 an interesting candidate and further discuss its potential applicability for future

implementations in section 8.2.

5.2 Generating Formal Processes from [em] Data and Behaviors

As established in section 3.3, an [em] Model and further relevant information must first be

tranformed into a formal process specification before it can be processed by a model checker.

CADP primarily supports the formal process specification languages LOTOS and LNT.

LOTOS is a ISO-standardized formal process specification language to describe

communication protocols and distributed systems. (Bolognesi and Brinksma 1987) LOTOS is

a complicated language and it can be difficult and laborious to write or generate formal process

specifications in it. To make specifying LTS models less tedious, LNT was developed as a

replacement for LOTOS that is equally expressive as LOTOS but easier to use. (Champelovier

et al. 2017) Being the formal process specification language that was easier to generate code in,

we picked LNT as our translation target language.

This section contains some LNT code. LNT resembles a procedural programming language like

Pascal. For brevity, we do not give a detailed introduction into LNT. An interested reader is

referred to (Champelovier et al. 2017) for a detailed reference.

We developed an approach to generate a formal process specification in LNT from a set of [em]

projects, from custom types specifications for our formulaic expression Language, and from

sequences of behaviors that are assigned to Models on the level of their modeling Language,

and to ElementOccurrences on the level of their Elements’ ElementTypes. We present the

detailed LNT generation approach in the following. A visualization of its workflow is given in

Figure 9 that follows our notation as introduced in section 3.3.

The formal process specification is generated as multiple units that are finally assembled as one

LNT specification.

The unit “static code” contains foundational LNT specifications that remaining code builds

upon. It especially contains an LNT implementation of nullable types, of a LNT process to

39

launch a Model’s sequence of behaviors, of another LNT process to launch an

ElementOccurrence’s sequence of behaviors, and of LNT types and functions required for data

storage management as well as for scheduling.

The unit “[em] data” contains a LNT representation of the given [em] Projects with their Models

and the Languages they use. We explain how the translation of [em] data works and how the

generated unit is built up in subsection 5.2.1.

The unit “entry points for [em] Models” contains a LNT root process for each given [em]

Model. Such a root process can be considered a model checking entry point for the respective

[em] Model and corresponds to the initial state of a formal process entailed by it.

The unit “custom types” contains a LNT representation for the custom types that were specified

for our formulaic expression language.

The unit “behaviors” contains the LNT representation of the sequences of behaviors specified

for the ElementOccurrences and Models. As behaviors contain formulaic expressions,

translating behaviors also involves translating formulaic expressions. We explain how the

translation of formulaic expression works and how the resulting LNT code is built up in

subsection 5.2.2. On this basis, we explain the same for the translation of sequences of behaviors

in subsection 5.2.3.

Figure 9 LNT generation workflow

[em] Projects with

Models and their

Languages

Behaviors for [em]

Languages used by

Models in Project

[em] data [em] to LNT

Custom types

Entry points for

[em] Models

LNT entry point

generator

Custom type

specs to LNT
Custom types

Behaviors to

LNT

Static code

Behaviors

LNT code

40

5.2.1 Translation of [em] Data to LNT

A set of [em] Projects is required as input for the translation of [em] data to LNT. From this

input, a set of Elements and a set of Models in these Projects can be derived. These sets allow

deriving remaining required information, especially the set of Languages used by the Models

and the set of ElementOccurrences in the Models.

Based on the input and its derived information, the five chunks of LNT code in Table 5 are to

be generated for each class of [em] data model as introduced in section 4.1.

Chunk 1. A LNT type declaration corresponding to the [em] data model class.

type TYPE_ID_EM_OBJECT is
 NULL_VAL !implementedby "NULL_VAL_TYPE_ID_EM_OBJECT",
 ID_EM_OBJECT_26738691,
 ID_EM_OBJECT_26738706,
 ID_EM_OBJECT_26738697
 with "==", "!=", "<"
end type

Listing 22 Exemplary LNT type declaration for representing [em] Objects

For each instance of the class, the LNT type corresponding to it must contain a parameter-

less constructor that represents the respective instance. An additional constructor is required

represent 𝑛𝑢𝑙𝑙. Our LNT code requires each constructor identifier to be unique. Introducing

the name of the class and [em]’s instance ID into the identifier ensures fulfilment of this

requirement. We give an example of an LNT type declaration for the [em] Object class with

three exemplary instances in Listing 22.

Chunk 2. A LNT type declaration corresponding to a nullable list of instances of the class.

type TYPE_IDLIST_EM_OBJECT is
 list of TYPE_ID_EM_OBJECT
 with "head", "tail", "length", "append", "union", "empty"
end type
type TYPE_NULLABLE_IDLIST_EM_OBJECT is
 NULL_VAL !implementedby "NULL_VAL_TYPE_NULLABLE_IDLIST_EM_OBJECT",
 THE_VAL(VALUE : TYPE_IDLIST_EM_OBJECT)
 with "get"
end type

Listing 23 LNT type declaration for a nullable list of instances of the [em] Object class

Specifications for a list of instances for some [em] class are represented as two LNT types:

A native LNT list type for instances of the [em] class, and a nullable type that allows storing

an instance of the native LNT list type. We give the LNT type specifications for a list of

instances of the [em] Object class in Listing 23.

41

Chunk 3. A function that yields a list of all instances of the respective class.

function GET_ALL_EM_OBJECT_IDS : TYPE_NULLABLE_IDLIST_EM_OBJECT is
 return THE_VAL({
 ID_EM_OBJECT_26738691,
 ID_EM_OBJECT_26738706,
 ID_EM_OBJECT_26738697
 })
end function

Listing 24 LNT function yielding an exemplary list of all [em] Object class instances

We give the function yielding a list of all three Object instances of our previous example in

Listing 24. Note that LNT uses curly braces to specify instances of list types.

Chunk 4. For each attribute of the class: An “attribute getter function” that allows retrieving

the value of the attribute. We consider a relationship member end to also be an attribute if its

target multiplicity is at most one, i.e. if it links to at most one associated target instance.

function GET_CAPTION(ID : TYPE_ID_EM_OBJECT) : NULLABLE_STRING is
 case ID in
 ID_EM_OBJECT_26738691 -> return THE_VAL("Open file")
 | ID_EM_OBJECT_26738706 -> return THE_VAL("Do work")
 | ID_EM_OBJECT_26738697 -> return THE_VAL("Close file")
 | any -> return NULL_VAL
 end case
end function

Listing 25 Exemplary LNT function yielding the value of an Object’s Caption attribute

Each of the getter functions accepts an instance of the LNT type corresponding to respective

class. Its implementation contains a case-based control mechanism that returns the value of

the attribute of the [em] class instance for the constructor that it represents. We give an

example of an attribute getter function that yields the Caption attribute’s value of a given

[em] Object in Listing 25.

Chunk 5. For each member end of an association of the class with a target multiplicity greater

than one: A function that that allows retrieving a list of instances that are linked via the

respective association to a given instance of the respective class.

This is implemented using two types of functions: a parameter-less helper function for each

of the respective class’ instances and a non-helper getter function taking an instance of the

respective argument.

42

function GET_EM_OBJECT_26738691_RELATIONSHIPS_WITH_ME_AS_SOURCE_MEMBER_IDS :
TYPE_NULLABLE_IDLIST_EM_RELATIONSHIP is
 return THE_VAL({
 ID_EM_RELATIONSHIP_26738723
 })
end function

function GET_EM_OBJECT_26738706_RELATIONSHIPS_WITH_ME_AS_SOURCE_MEMBER_IDS :
TYPE_NULLABLE_IDLIST_EM_RELATIONSHIP is
 return THE_VAL({
 ID_EM_RELATIONSHIP_26738726
 })
end function

function GET_EM_OBJECT_26738697_RELATIONSHIPS_WITH_ME_AS_SOURCE_MEMBER_IDS :
TYPE_NULLABLE_IDLIST_EM_RELATIONSHIP is
 return THE_VAL({
 })
end function

Listing 26 Exemplary LNT helper functions yielding instances linked via the

“Followers” association for three [em] Objects

We give such exemplary helper functions for our previous example’s Objects in Listing 26.

function GET_RELATIONSHIPS_WITH_ME_AS_SOURCE(ID : TYPE_ID_EM_OBJECT) :
TYPE_NULLABLE_IDLIST_EM_RELATIONSHIP is
 case ID in
 ID_EM_OBJECT_26738691 -> return
 GET_EM_OBJECT_26738691_RELATIONSHIPS_WITH_ME_AS_SOURCE_MEMBER_IDS
 | ID_EM_OBJECT_26738706 -> return
 GET_EM_OBJECT_26738706_RELATIONSHIPS_WITH_ME_AS_SOURCE_MEMBER_IDS
 | ID_EM_OBJECT_26738697 -> return
 GET_EM_OBJECT_26738697_RELATIONSHIPS_WITH_ME_AS_SOURCE_MEMBER_IDS
 | any ->
 return NULL_VAL
 end case
end function

Listing 27 Exemplary LNT getter function yielding instances linked via the

“Followers” association for [em] Objects

The non-helper getter function yields the result of the correct helper function, using a case-

based control mechanism like introduced above in the context of attributes. We give an

example of such a getter function in Listing 27.

Table 5 Chunks of LNT code to be generated for [em] classes and their instances

Some classes of the [em] data model have an inheritance hierarchy. While not presented here

in detail for brevity, our generated LNT code contains additional concepts to convert between

the different inheritance levels of these classes.

43

5.2.2 Translation of Formulas to LNT

Several behavior types have formulaic expression parameters. When behaviors of these types

are to be transformed to LNT, their formulaic expressions must be translated as well. In this

subsection, we present our translation approach.

As first step, the given formulaic expression must be parsed, yielding an Abstract Syntax Tree

(AST) that corresponds to the expression. The AST must then be traversed to generate the

required outputs. The primary output is an LNT expression that can be inserted into a LNT

process. A secondary output is a set of LNT helper functions that need to be referred to in the

primary output’s LNT expression. We describe how the AST needs to be traversed to generate

both the LNT expression and the code of the additionally required helper functions.

A mapping of identifiers to LNT expressions is kept in memory during AST traversal. Initially,

this mapping contains LNT expressions that correspond to the entries of the environment in

which the formula is evaluated. This mapping is extended as required, especially when

generating code for the helper functions.

If a constant node is visited during tree traversal, a LNT representation of the constant is added

to the primary output. If an Identifier node is visited during tree traversal, an expression is added

to the primary output according to the mapping of identifiers as described above.

If a PropertyAccessor node, a FunctionAccessor node, or a LambdaAccessor node is visited

during tree traversal, an LNT expression is added to the primary output that invokes a LNT

function yielding a result according to the accessor’s specification. For all three accessor types,

the respective accessor’s Base is visited to generate the LNT code for one of the arguments of

the LNT function invocation.

For FunctionAccessor nodes, also the Argument nodes are visited to generate LNT code for

further arguments of the LNT function invocation. For LambdaAccessor nodes, a recursive

helper function is added to the secondary output and an invocation of this function is added to

the primary output. The helper function contains the LNT translation result of visiting the

accessor’s sub-Formula.

CurrentObjectOccurrence.RelationshipOccurrencesWithMeAsSource.Count.GreaterThan(0)

Listing 28 Formulaic expression to determine the existence of outgoing Relationships

from the current ObjectOccurrence

To exemplarily demonstrate results of our approach of translating formulaic expressions to LNT

code, we give a typical expression, then show the LNT code that it translates to, and explain

relevant aspects of the result. The formulaic expression for our demonstration is given in Listing

28.

44

(custom_count(OBJECT_OCCURRENCE_ID.RELATIONSHIP_OCCURRENCES_WITH_ME_AS_SOURCE)) >
(THE_VAL(+0))

Listing 29 LNT expression corresponding to the formulaic expression in Listing 28

Assuming the identifier CurrentObjectOccurrence maps to the LNT expression

OBJECT_OCCURRENCE_ID, we give the translation of the exemplary formulaic expression into

LNT in Listing 29.

The identifier CurrentObjectOccurrence translates directly into the mapping’s LNT

expression. The RelationshipOccurrencesWithMeAsSource property accessor translates into a

LNT getter function call using dot notation.

function custom_count(VAL : TYPE_NULLABLE_IDLIST_EM_RELATIONSHIP_OCCURRENCE) :
NULLABLE_INT is
 case VAL in
 NULL_VAL ->
 return NULL_VAL
 | any ->
 return THE_VAL(NatToInt(length(VAL.VALUE)))
 end case
end function

Listing 30 custom_count function for a list of RelationshipOccurrences

For the Count property accessor working on lists of RelationshipOccurrences, a helper function

custom_count is required that yields a 𝑛𝑢𝑙𝑙 output for a 𝑛𝑢𝑙𝑙 input and the number of items in

the collection otherwise. The LNT code for this helper function is given in Listing 30. It would

be possible to include a function of this kind in the “static code” unit for each class of the [em]

data model. However, LNT code processing time can be saved when generating this function

only if some formula requires it for some class. It therefore makes sense to let this function

become one of the secondary output’s helper functions.

function _>_(VAL1 : NULLABLE_INT, VAL2 : NULLABLE_INT) : NULLABLE_BOOL is
 case VAL1 in
 NULL_VAL -> return NULL_VAL
 | any ->
 case VAL2 in
 NULL_VAL -> return NULL_VAL
 | any -> return THE_VAL(VAL1.VALUE > VAL2.VALUE)
 end case
 end case
end function

Listing 31 > function for two nullable integers

With custom_count generated as a helper function, the Count property accessor translates into

a call to this function. A helper function > that compares two nullable integers is required for

the GreaterThan function accessor, similar to the custom_count function introduced above. We

45

give this helper function in Listing 31. With the helper function > generated, the GreaterThan

function accessor translates into a call to this function using infix notation.

The constant 0 translates into the corresponding instantiation of the nullable data type with the

respective value. The + sign is required in LNT to indicate that the number should be interpreted

as an integer instead of a natural number. Surrounding a function name with two underscores

in LNT makes the function an infix function, i.e. it can be invoked using infix notation.

Some helper function may be required by multiple formulaic expressions. If such a function

was generated multiple times, the required time to process the LNT files processing would be

longer. To avoid long processing times, we recommend keeping track over the generated helper

function and add such a function to the secondary output only if it had not been generated

before. To apply this idea to the given example: If further translations of LNT formulas require

any of the functions custom_count and >, neither of them should be generated a second time.

Instead, the existing helper functions should be re-used.

5.2.3 Translation of Behaviors to LNT

The translation of behavior sequences assigned to Models and ElementOccurrences on the

meta-level comprises the core of the LNT code specifying formal processes that can be checked

with CADP’s model checker. We describe how the translation works in our approach.

Our approach assumes that behaviors are available as a tree-like structure: To an

implementation of our approach, a behavior containing a sequence of other behaviors needs to

be available as a node with a child node for the sequence of other behaviors. Like in our

approach of translating formulas to LNT, the tree-like behavior structure needs to be traversed

to generate the LNT code that corresponds to the behavior sequences. The primary output of

our translation is a sequence of LNT statements that can be inserted into a LNT process. A

secondary output is LNT helper processes and functions that need to be referred to in the

primary output expression.

Many behaviors can be translated to LNT in a straightforward way. For some behaviors, more

complicated translations are required. We explain notable aspects of our approach’s translations

for different behavior types in Table 6.

If/Then/Else: If a “If/Then/Else” node is visited, the “Condition” argument’s formulaic

expression needs to be translated to LNT and the behaviors in the sequences provided in the

other two arguments “Then Behaviors” and “Else Behaviors” need to be visited for

translation to LNT. The resulting LNT code pieces are to be assembled in a suitable LNT

conditional statement like if or case. This statement finally needs to be added to the primary

output.

46

Enable Element Occurrence: If a “Enable Element Occurrence” node is visited, the

formulaic expressions in the arguments “Runtime Instance”, “Element Occurrence”, and

“Data to pass on” need to be translated to LNT. The resulting expressions need to be

assembled in a LNT statement. The way how the expressions are assembled depends on the

value of the “Perform now instead of scheduling it” argument. If this argument is 𝑡𝑟𝑢𝑒, the

statement must instantiate the “static code” unit’s LNT process that launches a given

ElementOccurrence’s sequence of behaviors. If the argument is 𝑓𝑎𝑙𝑠𝑒, the statement must

schedule it, i.e. to add a task to the task list to launch the ElementOccurrence’s sequence of

behaviors later.

Report Event: A “Report Event” behavior must introduce the respective event into the LTS

that is entailed by the process model. We use LNT’s concept of “gates” to introduce events

into the LTS. For brevity, we do not go into detail how this concept works but only give a

rough description of how event reporting is realized in our approach. An interested reader is

referred to (Bolognesi and Brinksma 1987) for an introduction into the concept of gates and

to (Champelovier et al. 2017) how LNT implements this concept.

Each of the LNT root processes in the unit “Entry points for [em] Models” needs to contain

a declaration of a gate that is used for reporting events. In our implementation, we named this

gate REPORT_EVENT. All other LNT processes that potentially report events need to be

synchronized with this gate. If any such process offers a communication label via

REPORT_EVENT, the LTS entailed by the overall formal process contains a transition with a

label that corresponds to the gate name and the offered communication label.

In our implementation, we established a convention for communication labels that

implements the concept of “private” events as introduced in subsection 3.2.2: By our

convention, each communication label offered via REPORT_EVENT needs to be a pair of

1. an LNT constructor that corresponds to the ElementOccurrence as specified in the

formulaic expression of a behavior’s “Element Occurrence” argument, and

2. a nullable string corresponding to this behavior’s Event Content argument.

When visiting a “Report Event” behavior during tree traversal, the formulaic expressions in

the arguments “Element Occurrence” and “Content” need to be translated to LNT. The two

resulting translations must become the “arguments” of a LNT statement that offers the

arguments on the REPORT_EVENT gate. This statement needs to be added to the primary output.

For one item in a collection: There are different ways to implement the “For one item in a

collection” behavior in LNT. As one approach, LNT’s “non-deterministic assignment” (using

the any wildcard construct) can be used to select any number smaller than the collection’s

47

length that then serves as an index to retrieve the respective collection’s member at the index.

As another approach, recursive helper processes can be implemented that iterate through the

collections, offering at each item if the current item or some next item should be selected.

We established the advantages and disadvantages in the context of (Pribnow 2016a). Our

current implementation uses non-deterministic assignments because it is easier to implement

and it results in a smaller state space during evaluation, thereby increasing evaluation speed.

For each item in a collection: When visiting a “For each item in a collection” behavior

during tree traversal, a recursive helper process needs to be generated that iterates through

the collection. This helper process must contain the LNT translation of the behavior’s Child

Behaviors. A statement invocating this helper process needs to be added to the primary

output.

Table 6 Notable aspects on the translation of behaviors to LNT

A behavior’s argument might contain a formulaic expression resulting in a value of a type that

does not match the type that is expected for the behavior’s argument. In such a case, the

generated LNT code might be invalid and could lead to later error messages that are hard to

understand. To find such errors early and to be able issue understandable error message, we

recommend checking the result types of formulaic expressions in behavior arguments during

translation of behaviors to LNT. We further recommend stopping translation of behaviors if a

formula resulting in an invalid type is found. Our implementation follows this recommendation.

During model checking, a formulaic expression might evaluate to 𝑛𝑢𝑙𝑙. As handling of null is

not defined for most behaviors, we recommend adding for each formulaic expression LNT

statements that check if the expression evaluates to 𝑛𝑢𝑙𝑙. If it does, the statements should

indicate such a situation as an error in a suitable way. Again, our implementation follows this

recommendation.

To demonstrate our approach for translating behaviors to LNT, we give an example behavior

specification and show its LNT translation.

The exemplary sequence of behaviors is given in Figure 10. It contains a “Report Event”

behavior, followed by a “If/Then/Else” behavior that contains an “Enable Element Occurrence”

behavior in its “Then Behaviors” argument.

48

Figure 10 A simple sequence of behaviors as displayed by our implementation

The LNT code for the example’s “Report Event” behavior is given in Listing 32. The code

declares variables for capturing the results of the formulaic expressions in the behavior’s

arguments. It assigns the results of these formulaic expressions to the variables. The right-hand

side of each assignment statement is the translation of the respective formulaic expression to

LNT. Next, the code contains a check of the variables for a 𝑛𝑢𝑙𝑙 value. If any of them has a

𝑛𝑢𝑙𝑙 value, an error is reported and further processing stops. Otherwise, the values of the

variables are offered on the REPORT_EVENT gate.

var elementOccurrence_1 : TYPE_ID_EM_ELEMENT_OCCURRENCE,
 theContent_1 : NULLABLE_STRING in
 elementOccurrence_1 := OBJECT_OCCURRENCE_ID.AS_ELEMENT_OCCURRENCE;
 theContent_1 := OBJECT_OCCURRENCE_ID.OBJECT.CAPTION;
 if((elementOccurrence_1 == NULL_VAL) or_else
 (theContent_1 == NULL_VAL)) then
 ERROR("A null value was provided to a Report Event behavior.");
 stop
 end if;
 REPORT_EVENT(elementOccurrence_1, theContent_1)
end var

Listing 32 LNT translation of the “Report Event” behavior of Figure 10

The LNT code for the example’s “If/Then/Else” behavior is given in Listing 33. The code is

based on a case-based control mechanism that checks the result of the formulaic expression in

the behavior’s “Condition” argument. The control expression of the case statement is the

translation of the respective formulaic expression to LNT. If the formulaic expression results

in 𝑛𝑢𝑙𝑙, an error is reported and further processing stops. If it results in 𝑓𝑎𝑙𝑠𝑒, nothing is done

due to the Else Behaviors being an empty sequence. If it results in 𝑡𝑟𝑢𝑒, the LNT translation of

the Then Behaviors will be run. In Listing 33, we indicate the LNT translation of the Then

49

Behaviors with the placeholder ThenBehaviors. In our example, the Then Behaviors is a

sequence containing a single “Enable Element Occurrence” behavior.

var condition0 : NULLABLE_BOOL in
 condition0 := ((custom_count(OBJECT_OCCURRENCE_ID.
 RELATIONSHIP_OCCURRENCES_WITH_ME_AS_SOURCE)) > (THE_VAL(+0)));
 if (condition0 == NULL_VAL) then
 ERROR("The if formula of an if behavior resulted in NULL."); stop
 elsif (condition0 == THE_VAL(TRUE)) then
 ThenBehaviors
 end if
end var

Listing 33 LNT translation of the “If/Then/Else” behavior of Figure 10 with a placeholder

for the LNT translation of its Then Behaviors

The LNT code for the example’s “Enable Element Occurrence” behavior is given in Listing 34.

Like in the “Report Event” translation, variables for the two behavior arguments are declared,

assigned with the results of the respective formulaic expressions, and checked for null. If no

null value is found, the list in the variable task_list will be extended with a new item that

corresponds to a task of enabling the given ElementOccurrence with the given Event Content.

The variable task_list maintains the scheduler’s list of tasks. It is available to all LNT

processes generated from behavior specifications.

var RuntimeInstance_3 : RUNTIME_INSTANCE_TYPE,
 elementOccurrence_3 : TYPE_ID_EM_ELEMENT_OCCURRENCE in
 RuntimeInstance_3 := INSTANCE_NUMBER;
 elementOccurrence_3 := custom_head(OBJECT_OCCURRENCE_ID.
 RELATIONSHIP_OCCURRENCES_WITH_ME_AS_SOURCE).AS_ELEMENT_OCCURRENCE;
 if((RuntimeInstance_3 == NULL_VAL) or_else
 (elementOccurrence_3 == NULL_VAL)) then
 ERROR("A null value was provided to a Enable Element Occurrence behavior.");
 stop
 end if;
 task_list := append(ELEMENT_OCCURRENCE_TASK(RuntimeInstance_3,
 elementOccurrence_3, ENABLEMENT_DATA), task_list)
end var

Listing 34 LNT translation of the “Enable Element Occurrence” behavior of Figure 10

5.3 Making the Model Checker’s Property Specification Language Support Macros

In subsection 3.2.2, we established that it may be helpful for a temporal property specification

language to support “macro” that allow easy element-independent event specifications. In this

section, we introduce a modification of the CADP-supported temporal property specification

language. Our modification extends the language with the described macros.

In the first section, we present our macro extension from a user perspective. In the second

section, we show how we internally expand macros written with our extension.

50

5.3.1 Our Macro Extension for the Property Specification Language MCL

CADP’s supported temporal property description language is MCL. (CADP manual authors

2017f; Mateescu and Thivolle 2008) Based on the ideas described in subsection 3.2.2, we

wanted our plugin’s users to work with a temporal property specification language that supports

macros for rewriting public events into their private equivalents. As such, we defined a slightly

extended version of MCL that introduces the wanted macro support. For realizing this macro

support, our MCL extension introduces a pattern that can easily be found and replaced using a

regular expression and replacement of some special characters.

To refer to a public event in our MCL extension, a user surrounds the relevant event content in

a triple of curly braces. For example, if a temporal property should refer to a public event with

the content Some Event, then the public event can be specified as {{{Some Event}}}. We wanted

to avoid our pattern conflicting with the syntax of plain MCL. We therefore designed out pattern

so that it was unlikely that it would need to appear in a temporal property. Since MCL does not

have any syntactic construct involving three curly braces, we considered our pattern to be “safe

enough” in this regard.

This design choice results in public events with an Event Content that contains three closing

curly braces not being specifiable with a macro as described here. We assume however that, in

practice, Event Contents do not contain three closing curly braces. Therefore, we do not

consider this restriction to be relevant for practical use. And even if Event Contents with three

curly braces were relevant, there would be alternative ways to handle Event Contents with three

curly braces. For example, a user could adjust the behavior specifications to escape character

sequences of three closing curly braces in Event Contents. Alternatively, a user could write a

relevant temporal property directly in the expanded version, i.e. without using macros.

\{\{\{((?:[^}]|\}(?!\}\}))*)\}\}\}

Listing 35 Regular expression to capture a macro as introduced by our MCL extension

The pattern for a macro as introduced here is given in Listing 35 as a regular expression

according to the specification in (.NET Docs contributors 2017). To further improve the

reader’s reading experience, we show the regular expression with highlighted syntax through

colorization. The pattern matches a string consisting of 1) three opening curly braces, followed

by 2) a sequence of characters that are each either a) no closing curly brace or b) a closing curly

brace that is not followed by two additional closing curly braces, and finally ended with 3) three

closing curly braces. The macro’s Event Content is captured as a “regular expression subgroup”

between the initial three opening curly braces and the three closing curly braces. A captured

subgroup is used when expanding the macro.

51

5.3.2 Translating from Macro-Extended MCL to Plain MCL

CADP’s model checker requires an input temporal property to be specified in plain MCL. A

temporal property that is specified in our extended version of MCL therefore needs to be

converted into plain MCL before it can be used for model checking with CADP.

We convert from extended MCL to plain MCL by “expanding” macros. Expansion means to

replace each macro instance with a plain MCL construct that matches the given public event.

In subsection 5.2.3, we have introduced our approach of using a gate REPORT_EVENT to entail an

event as a transition in the modeled LTS. So, when using our approach, the MCL construct we

want our macros to substitute should match a suitable transition label generated through a

communication offer via REPORT_EVENT.

CADP offers a text-based encoding for transition labels. In we Listing 36 give a template of a

transition label’s encoding in an LTS entailed by a formal process specified as LNT code that

is generated by our implementation. In this template, ElementOccurrenceConstructor and

EncodedEventContent serve as placeholders for the identifier of the LNT constructor

corresponding to an ElementOccurrence and for the encoded value of the nullable string

corresponding to an Event Content of some “Report Event” behavior, respectively.

REPORT_EVENT !ElementOccurrenceConstructor !THE_VAL (EncodedEventContent)

Listing 36 Template of CADP’s string encoding of a LTS transition label entailed by our

implementation’s LNT code

Thanks to this text-based encoding, we can leverage MCL’s regular expression feature for

matching suitable communication labels. When enclosing a string in single quotes (') in MCL,

the quote-enclosed string is interpreted as a regular expression as specified in (CADP manual

authors 2017h) for matching a communication label. (CADP manual authors 2017f) Note that

the regular expressions used in MCL that are specified in (CADP manual authors 2017h) are

significantly different from the ones used by C#/.NET as specified in (.NET Docs contributors

2017).

 ('REPORT_EVENT !.* !THE_VAL (PreparedEventContent)')

Listing 37 Substitute template for occurrences of the macro pattern

Following this idea, we replace each pattern instance with the plain MCL construct given in

Listing 37 where PreparedEventContent is a placeholder that needs to be substituted with the

result of the following preparation process:

1. Take the Event Content string as captured by the regular expression subgroup in Listing 35.

52

2. Normalize it according to CADP’s bcg_write normalization rules for string values as

specified in (CADP manual authors 2017b).

3. Escape sequences of characters that have a special meaning in regular expressions

according to the specification in (CADP manual authors 2017h), i.e. prepend each

occurrence of the characters \, [, *, and . with a backslash.

4. Escape each occurrence of a single quote character (') by prepending it with a backslash.

Once the placeholder is substituted with a string according to these rules, the overall resulting

MCL expression describes a regular expression-based “action predicate”. This predicate is

satisfied by a transition of the respective given LTS if its string representation matches the

regular expression within the two single quotes at the start and the end of the expression.

5.4 User-Perspective Requirements for an Implementation

We describe user-perspective requirements (RU) for an implementation of the theoretical

approach described in previous sections. An implementation must fulfill these requirements to

enable users to apply our theoretical approach in practice. Our requirements assume that an

implementation of an [em]-like meta modeling tool with the data model as described in section

4.1 exists as a foundation for the implementation of our approach. The requirements are as

follows:

RU 1. A user must be able to specify sequences of behaviors with our ESDL as described in

section 4.4 for Models and ElementOccurrences on the level of the meta modeling tool’s

Languages and their ElementTypes, respectively.

RU 2. A user must be able to specify the fields of the formulaic expression language’s custom

types, i.e. of CustomStorageData and of CustomEnablementData.

RU 3. A user must be able to initiate checking the fulfillment of temporal properties by the

meta modeling tool’s Models in Languages and with ElementTypes for that sequences

of behaviors have been defined.

RU 4. Once model checking is completed, the user must be informed about its result, both as

a Boolean value representing fulfillment or non-fulfillment of the given property, and

as a graph of model elements that are “responsible” for the result as described in section

3.2.

Additionally, an implementation of our approach should have a good usability, i.e. users should

be able to easily apply our approach in practice with the implementation. We recognize that this

is not a strict or precise requirement. To illustrate our point of view on usability, we outline our

usability considerations for our implementation in section 6.5.

53

6 Implementing the Approach and Integrating it into [em]

In this chapter, we describe our implementation of the approach developed in the previous

chapters as a plugin for [em].

In the first section, we give basic information on our plugin’s functionality and implementation.

In the second section, we introduce the plugin’s architecture. In the third section, we give details

about user-relevant data persisted by the plugin. In the fourth section, we introduce the main

components of our plugin and describe them in detail. In the fifth section, we name aspects of

our plugin that should ensure good usability.

6.1 Basic Details on Plugin Implementation

In this section, we give an overview over the functionality offered by our plugin and explain

general aspects about its implementation.

Our plugin implementation fulfills the requirements from section 5.4. It allows defining formal

temporal properties in our macro-extended version of MCL and storing these properties. It

transforms models, their meta models and the assigned behaviors into LNT. It transforms

macro-extended temporal properties into plain MCL properties. It launches CADP tools,

especially the CADP model checker to perform model checking with the LNT specification and

the MCL property. It translates model checking results back into a format that allows

highlighting element occurrences that events relevant for proving the fulfillment or

nonfulfillment of a property were reported for.

The provided functionality is available from our plugin’s easy-to-use user interfaces that are

integrated accessibly into the main [em] user interface.

The meta modeling tool [em] is implemented in C#. While plugins for [em] can be implemented

in any .NET language, we decided to implement our plugin in C# as well because we were most

familiar with this language.

Multiple parts of our implementation rely on the “visitor pattern”. We give a brief description

of this pattern. An implementation of visitor pattern defines an abstract visitor interface that

provides a method signature for each kind of class whose instances may be “visited”. Each of

such instance may be asked to accept a visitor. When asked to accept such a visitor, the instance

calls the visitor’s method that corresponds to its class. This pattern allows to implement class-

specific external behavior in an object-oriented way. A more detailed description of this pattern

is available in (Gamma et al. 1994, pp. 331–344) .

For the architecture behind the user interface of our implementation we made use of the “Model-

View-ViewModel” pattern. (Smith 2009)

54

6.2 Overview of Plugin Architecture, Persistent Data, and Data Flow

In this section, we describe the architecture of our plugin and explain how it integrates into [em]

by describing its high-level data flow through its components. A visualization of the

architecture and the high-level data flow is given in Figure 11. For the visualization, we extend

our notation as introduced in 3.3: We use boxes with sharp corners to represent high-level

components. Dotted connections with a black circle as target connector represent that the source

element is attached to the target element. Green elements are native [em] components, blue

elements are components we developed in our plugin, and orange elements (used in later

figures) are CADP components.

Figure 11 The plugin architecture and its high-level data flow

Our plugin is composed of five main components: the Properties Manager, the Configurator,

the Process Model Checker, the Result Visualizer and the Formulaic Expression Processor.

The Properties Manager component provides a user interface for specifying temporal properties

and storing their specifications. It also provides the Temporal Property Specification Wizard

sub-component (abbreviated with “Propert. Wizard” in Figure 11) that allows a user to generate

specifications of selected temporal properties by filling out a questionnaire.

The Configurator component provides a user interface for specifying the two custom types

CustomEnablementData and CustomStorageData and for defining behavior sequences for [em]

Models and Element Occurrences on the Language level. It loads the [em] Languages to provide

information for the user interface that are required during the definition of behavior sequences.

[em]

Process Model

Checking Plugin

Proc. Model Checker

Properties Manager Configurator

[em] Project/Model

Editor

[em] Projects

with Models

Behaviors for

[em] Languages

Custom type

specifications

[em] Language

Editor

[em] Languages

Temporal

Properties

Result Visualizer

Propert. Wizard

Translator

Eval. Preparer

Eval. Runner
Formulaic Expression

Processor

Eval. Results

55

The Process Model Checker (abbreviated with “Proc. Model Checker” in Figure 11) is the core

component of our plugin. It provides a user interface for creating and issuing model checking

tasks. A model checking task consists of a reference to an [em] Model, a temporal property

specification, and additional parameters. When a model checking task is to be performed, the

Process Model Checker’s sub-components Process Model Translator (abbreviated with

“Translator” in Figure 11), Evaluation Preparer (abbreviated with “Eval. Preparer”), and

Evaluation Runner (abbreviated with “Eval. Runner”) perform the required work. They read

the referenced [em] Model, its parent Project and all other Models in the Project, their

Languages, their assigned behaviors, and the specified custom types. From these pieces of

information, they prepare LNT code for the CADP model checker, and start the model checking

process for the respective model checking task. Once a model checking task completes, the

Process Model Checker passes its Evaluation Results (abbreviated with “Eval. Results” in

Figure 11) to the Result Visualizer component. To avoid unnecessary re-computations, the

Process Model Checker orders model checking tasks in such a way that the CADP tools can re-

use data that was generated for the respective previous task.

The Result Visualizer component receives model checking results from the Process Model

Checker to visualize the counterexample or witness information as a tree in a sidebar of [em]’s

Model Editor and by highlighting Element Occurrences in the Editor itself. To display the tree

and to highlight Element Occurrences, the Result Visualizer attaches itself to [em]’s Model

Editor.

The Formulaic Expression Processor processes formulaic expressions to return data that can be

used to assist the user in expression specification and to convert formulaic expressions into

LNT. The formulaic expression processer is used within the Configurator to provide user

assistance, and within the Process Model Checker to provide data required for LNT translation.

6.3 Details on Plugin’s Persistent User Data

In this section, we introduce the types of user-relevant data that our plugin persists. We describe

the classes and their structure we created for data that is to be persisted.

Temporal Properties. To represent temporal properties, we created the class ModelProperty.

This class has three string properties: one for a name for the property, one for its description,

and one for the property specification as specified in our macro-extended version of MCL as

described in subsection 5.3.1.

Custom Types. To represent the specifications for a Custom Type, we created the classes

CustomDataType and CustomDataTypeEntry. We store names of custom type fields and their data

types as string properties in CustomDataTypeEntry. We store a collection of

CustomDataTypeEntry instances and a timestamp of the latest change in CustomDataType.

56

Behaviors. To represent ESDL behaviors, we created a class for each ESDL behavior type. We

wanted our software architecture to ensure that all behavior types would be handled by relevant

components, such as the user interface or the LNT Generator as described in subsection 6.4.3.

As such, we implemented a visitor pattern with a IBehaviorVisitor interface that contains one

method signature for each behavior type. Code that needs to handle behaviors is consequently

forced to implement all methods of this interface. This reduces the risk of forgetting to

implement the logic for some of the behavior types.

Behaviors Carriers. To represent an assignment of behavior sequences to models and their

elements on the language level, we created the class BehaviorsCarrier. Our plugin allows to

maintain a set of BehaviorCarriers for each language. In instances of this class, we store the

name of the assignment’s type as a string value, a modification date, and an ordered collection

that represents the sequence of behaviors. To assign a behavior sequence to the model of the

respective language, the type name needs to be set to 𝑛𝑢𝑙𝑙.

Formulaic Expressions. Our behavior objects store formulaic expressions as string properties.

These formulaic expressions are only parsed into a better processable representation when

necessary, e.g. when editing them in the user interface and when translating them for the formal

process specification for the underlying model checker. This design decision allows a user to

store a syntactically incorrect formulaic expression. The ability of storing an incorrect formulaic

expression can be convenient for cases where a user must interrupt her work on a complex

formulaic expression and wants to store the current progress to continue working on it later.

6.4 Details on Plugin’s Core Components

In this section, we describe the core components and sub-components of our plugin in detail.

For the order of introduction, we roughly follow a workflow that a user might perform when

using our plugin and its components. We use our workflow visualization notation as introduced

in section 6.2 for visualizing workflows in this section.

In the first subsection, we introduce the Temporal Property Specification Wizard. In the second

subsection, we describe how we implemented processing of formulaic expressions in the

Formulaic Expression Processor. In the third, fourth and fifth subsection, we introduce the

Process Model Translator, the Evaluation Preparer, and the Evaluation Runner, respectively.

6.4.1 Temporal Property Specification Wizard

In (Remenska 2016, chap. 5), a “property assistant tool” called “PASS” was introduced to

simplify specification of requirements for event-based systems. “PASS guides users through

the elicitation process by asking questions, and providing a set of alternative answers to choose

57

from, narrowing down the scope of the questions to those relevant in the context of the

previously provided answers in each subsequent step.” (Remenska 2016, p. 74)

PASS outputs temporal properties in a property specification language that is very similar to

MCL. This lead us to the realization that we could easily adapt the concept of PASS to

implement a Temporal Property Specification Wizard in our plugin, allowing users of our

plugin to easily specify temporal properties through PASS’ questionnaire and its temporal

property patterns.

Daniala Remenska, the creator of PASS, gave us permission to adopt the PASS questionnaire

with its patterns in our work. While the property specification language used for PASS’

temporal property patterns is similar to MCL, not all PASS patterns would yield valid MCL

properties. As such, we had to adjust some patterns in our implementation so that they yield

valid MCL properties. To clearly separate her work from ours, we put our final adaptation into

its own library and only referenced to it from our other libraries.

Figure 12 Screenshot of our plugin’s Temporal Property Specification Wizard

Our plugin’s Temporal Property Specification Wizard provides a user interface that displays

the questions in the external library’s questionnaire and guides the user through these questions.

58

A screenshot demonstrating how this user interface is presented to a user is given in Figure 12.

Once a user answers all questions and completes the questionnaire, the Wizard uses the

adaptation library to translate the answers into a temporal property that corresponds to the user

inputs.

6.4.2 Formulaic Expression Processor

Our Formulaic Expression Processor processes expressions in our formulaic expression

Language as introduced in section 4.2. This component takes a formulaic expression in our

language as its main input. As output, it yields information that further components of our

plugin require, especially an abstract syntax tree (AST) corresponding to the input expression.

In this section, we explain why we implemented our lexer/parser on our own instead of

leveraging existing implementations, e.g. libraries or parser generators, and describe the

detailed processing workflow of the Formulaic Expression Processor.

Figure 13 Workflow of the Formulaic Expression Processor

As one of our usability considerations, we wanted our implementation to support the user in

specifying formulaic expression with an autocompletion (AC) feature. We give more details on

our usability considerations and on the AC feature in section 6.5. With the intention of avoiding

implementation work for a lexer/parser combination, we did an online search for solutions that

would allow easy creation and integration of AC-supporting lexers/parsers. We also posted a

question on the StackExchange community “Software Recommendations”. (Pribnow 2016b)

Formulaic

expression

Parsing errors AST

Token stream

Lexer

Parser

AC information

record
Declaration hints

Offset where to give

AC suggestion and

declaration hint

Optional

input

Parsing

Environment

59

Neither our online search nor the posted question yielded a suitable solution. We therefore

implemented a custom lexer/parser combination on our own.

The resulting lexer/parser combination forms the core of our Formulaic Expression Processor.

We describe the component’s processing workflow in the following. A visualization of this

workflow is given in Figure 13.

Initially, the lexer splits a formulaic expression into a sequence of tokens. A token is either a

literal (Boolean, double, integer, or string), an opening or closing parenthesis, a full stop, a

comma, a whitespace, an opening or closing pointy bracket, a vertical line (also referred to as

“pipe symbol”), an identifier, or an unknown token. We implemented the visitor pattern for

tokens: In our implementation, each token object can accept a token visitor. When a token is

requested to accept a token visitor, it calls a method of the token visitor corresponding to the

token’s type. This design forced us to handle all token types during further processing steps,

thereby lowering the risk of bugs in our implementation.

Next in the workflow, the parser takes as input a “parsing environment” and a sequence of

tokens from the lexer, and optionally an offset of a token within the formulaic expression for

which an autocomplete suggestion and a type hint should be returned. We explain the parser’s

outputs and the “parsing environment” concept further below.

The parser’s state is mainly managed using a stack of parser token visitors. Such a parser token

visitor is for example “expect a new Base”, “have a valid formulaic expression, so expect a full

stop for an Accessor”, or “just got a full stop, so expect the Accessor’s identifier”. The parser

iteratively asks the input tokens from left to right to accept the respective topmost token visitor

on the stack. When a token visitor visits a token, it modifies the stack so that it reflects a new

state.

For example, an “expect a new Base” visitor handles a literal or an identifier to produce a

corresponding node in the AST and to replace the topmost visitor on the stack with a “have a

valid formulaic expression, so expect a full stop for an Accessor” visitor. An “expect a new

Base” visitor would pass handling of any other type of token than a literal and an identifier to

the next deeper visitor on the stack. Similar, a “have a valid formulaic expression, so expect a

full stop for an Accessor” visitor only handles a full stop token on its own, replacing the topmost

visitor again, and falls back to the next deeper visitor on the stack for all other token types.

A visitor may be requested to handle an unexpected token. For example, an expression requiring

autocompletion for example might not agree with our language specifications completely and

would result in an unexpected token sequence. We wanted our parser to allow for AC and for

meaningful errors for parts of the input expression that come after the first unexpected token.

We therefore required our parser to be somewhat “forgiving” when encountering unexpected

60

tokens. As such, we designed our parser as follows. If a visitor visits an unexpected token, it

will produce an error message and will replace the topmost visitor on a stack with a “invalid

token handling” visitor. Such a visitor silently skips most tokens. When visiting a token that

indicates syntactic correctness being restored from that token on, the visitor replaces the

topmost visitor on stack again with a suitable “normal” visitor, allowing for normal continuation

of parsing.

The parser generates as output: an AC information record, a list of declaration hints, a list of

parsing errors, and – if the input formulaic expression is error-free – an AST corresponding to

the input expression. We explain these results in the following.

An AC information record consists of AC suggestions, the user inputs that are to be

autocompleted, and further information required for replacing these user inputs if some

suggestion is accepted. An AC suggestion contains information with what the respective part

of the user inputs should be replaced. It also contains additional information that further

explains the AC suggestion to a user, like usage information for the suggestion and information

on its result type. These additional pieces of information can be displayed together with the

suggestion to a user as exemplarily shown in Figure 14 .

Figure 14 Screenshot showing our implementation’s autocomplete suggestion feature

A declaration hint allows a user to quickly find out how a part of a formulaic expression can

be used and what type it would result in. When a user hovers with the mouse over an identifier,

a constant or an accessor, she will be shown a tooltip window displaying the result type or the

whole declaration of the respective part of the formulaic expression. This feature was inspired

by code editors of modern integrated development environments like Visual Studio that support

such a feature for their main supported computer languages.

Figure 15 Screenshot showing how a declaration hint is displayed by our plugin

61

A screenshot demonstrating how a declaration hint is displayed in our implementation is given

in Figure 15. For function accessors, we display the base type name, accessor identifier,

function parameter information, and return type information. For lambda accessors, we display

the base type name, accessor identifier, lambda parameter information, expected lambda sub-

formula result type, and information on the return type of the overall lambda accessor

application. For property accessors, we display the base type name, the accessor identifier and

the result type name. For base identifiers, we display the identifier name and their type.

A parsing error allows to inform the user on errors that occurred during parsing, typically

indicating a malformed expression. To allow users to quickly find reasons for parsing errors

and fix them, we wanted to make it possible to automatically select a part of the expression in

a user interface for editing formulaic expressions that caused some parsing error to occur. In

our implementation, we therefore also keep track of the offset and length of the respective input

expression’s part causing the parsing error.

To provide declaration hints and meaningful AC suggestions, knowledge of a formulaic

expression’s result type is required. We found it easiest to implement the generation of these

pieces of information in the parser. However, introducing type information into our parser

would have violated the separation of concerns design principle. So instead of directly

integrating them into our parser, we defined the abstract class “parsing environment” whose

implementation’s instances are used by the parser to retrieve information required for

generating an AC information record and for declaration hints. We realized that we can save

further implementation effort by delegating also the generation of AST nodes to the parsing

environment. This way, we avoided implementing another post-processing step to derive result

type information from the AST for further processing. In the final implementation, the parser

itself consequently does not generate any nodes for an output AST. Instead, it delegates this

task to the parsing environment, thereby yielding an AST with type-rich nodes.

Like in our implementation of behaviors of tokens, we implemented the visitor pattern for data

types and for their members that can be referred to using accessors in formulaic expressions.

We wanted to ensure handling all types and all their members to reduce the risk of bugs in our

implementation, especially during development of the LNT Generator as described in

subsection 6.4.3 that implements the process outlined in section 5.2.

To manage types for formulaic expressions in our language, we defined a multi-level type

hierarchy that has a set of the primitive types as its root. On higher levels of this hierarchy we

implemented the [em] types and the runtime-relevant types. The multi-level type hierarchy

design allows extending the type system without having to modify lower hierarchy levels if a

newer version of our formulaic expression language requires new types.

62

6.4.3 Process Model Translator

The Process Model Translator takes as input a set of [em] Projects with their Models and their

Languages, user-defined custom type specifications, and user-defined behaviors assigned to

ElementOccurrences and Models on the meta model level. From these inputs, it generates a

formal process specification in a language that the underlying model checker can work with.

Our theoretical approach does not limit the number of Projects that could be processed in one

model checking task. In practice however, working with many Projects with many Models and

many Languages causes long processing times. Lacking support for cross-project links on the

level of Elements or Models, the [em] data model suggests that everything in a project is to be

considered conceptually separate from other projects. In our final implementation we therefore

allow the Process Model Translator to only process a single Project per model checking task.

Consequently, it generates one set of formal process specifications per Project as output.

We describe the detailed translation workflow of the Process Model Translator in the following.

A visualization of this workflow is given in Figure 16.

Figure 16 The Process Model Translator’s workflow

As first step of translation, the three inputs get passed to our LNT Generator component. The

LNT Generator is an implementation of the process outlined in section 5.2. It yields a translation

of our input process models as files containing formal processes specifications in LNT. Since

[em] supports the Unicode character set, but CADP’s LNT implementation only supports the

[em] Project with

Models and their

Languages

Behaviors for [em]

Languages used by

Models in Project

Custom type

specifications

LNT code

LNT Generator

lnt.open

(to translate)

LOTOS code

63

ASCII character set, our implementation must replace all non-ASCII characters in fields of the

[em] data model’s classes with a placeholder. We use a question mark as our placeholder.

As of writing this thesis, a formal process specified in LNT needs to be translated to LOTOS

before the CADP toolkit can perform model checking on the formal process. In the next step,

our translator subsequently translates these LNT-specified formal processes into files that

contain formal processes specified in LOTOS by executing CADP’s lnt.open tool, using its

pre-processing and translation operations. This tool internally calls CADP’s lpp and lnt2lotos

tools for the actual pre-processing and translation. The resulting LOTOS files are the main input

of the Evaluation Preparer’s workflow.

6.4.4 Evaluation Preparer

Given an [em] Model that should initially be enabled in a model checking task, the Evaluation

Preparer takes as input the [em]-internal ID of this Model, and the LOTOS files for the Model’s

Project as generated by the Process Model Translator. The Evaluation Preparer generates an

Evaluator Executable file that can be called to perform the actual model checking operations

for the given Model. We describe the detailed executable generation workflows in the

following. A visualization of these workflows is given in Figure 17.

Figure 17 The Evaluation Preparer’s workflows

caesar.open

(evaluator4)

LOTOS code

ID of [em] Model to

start model checking

with

bcg_io

(evaluator4)

Formal Process BCG

caesar.open

(reductor)

Evaluator

Executable

a) On-the-Fly b) Bisimulation

Reduction

64

The Evaluation Preparer can be run in two different modes: the On-the-Fly mode and the

Bisimulation Reduction mode.

In the On-the-Fly mode, the LOTOS files are processed directly, i.e. only so much of the LTS

of the formal processes is computed during evaluation as required to prove or disprove the

fulfillment of the property. This can save a significant amount of otherwise required pre-

processing time and should lead to getting results fast, especially when asked to disprove that

some chain of events is never to occur. On the other hand, the generated counterexample or

witness information can be hard to read for a user because of its complexity in models with a

lot of branching.

In the Bisimulation Reduction mode, the LTS are reduced with respect to CADP’s “safety”

equivalence as specified in (CADP manual authors 2017d). To perform the reduction, the whole

LTS of the formal process must be generated. This can increase the pre-processing time

significantly but might make the generated counterexample or witness information more

readable in models with a lot of branching. For some combinations of Model and temporal

property, the evaluation may run faster on a pre-reduced LTS.

The workflows executed by the Evaluation Preparer depend on the given mode.

When using the On-the-Fly mode (indicated with a small letter ‘a’ in Figure 17), the Evaluation

Preparer executes CADP’s caesar.open tool with the input LOTOS files, with an entry point

specification derived from the given input Model ID, and with a reference to the evaluator4

OPEN/CAESAR tool (CADP manual authors 2017e) that provides CADP’s model checking

functionality. caesar.open internally calls CADP’s caesar.adt and caesar tools as well as the

configured C compiler, thereby generating the Evaluator Executable.

When using the Bisimulation Reduction mode (indicated with a small letter ‘b’ in Figure 17),

the Evaluation Preparer executes caesar.open tool mode with the input LOTOS file, with an

entry point specification derived from the given input Model ID, and with the reference to the

reductor OPEN/CAESAR tool (CADP manual authors 2017g) that provides CADP’s

bisimulation reduction functionality. Again, caesar.open internally calls CADP’s caesar.adt

and caesar tools as well as the configured C compiler, this time generating an executable to

generate a reduced version of the input process. The Evaluation Preparer calls the generated

executable with arguments to perform a total safety reduction, yielding a file with a respectively

reduced LTS in CADP’s Binary Coded Graph (BCG) format (CADP manual authors 2017c).

Next, the Evaluation Preparer calls CADP’s bcg_open tool with the path to the BCG file

containing the reduced LTS and with a reference to the evaluator4 OPEN/CAESAR tool.

bcg_open then generates the Evaluator Executable.

65

The executable resulting from both workflows becomes the main component that is used by the

Evaluation Runner.

6.4.5 Evaluation Runner

The Evaluation Runner takes as input a property in our MCL extension as described in

subsection 5.3.1 and an evaluation executable that was generated by the Evaluation Preparer. It

yields a Boolean result reflecting the fulfillment of the property by the respective Model, and

counterexample or witness information as provided by CADP’s evaluator4 in a representation

that can easily be used by our plugin’s Result Visualizer. We describe the detailed evaluation

and result interpretation workflows in the following. A visualization of these workflows is given

in Figure 18.

As a first step of the Evaluator Runner’s workflow, the Macro Expander expands macros as

described in subsection 5.3.1 to derive a corresponding plain MCL temporal property from the

input property that is specified in our extended version of MCL. The Macro Expander is an

implementation of the process described in subsection 5.3.2. Since CADP supports only the

ASCII character set, all non-ASCII characters of the input property specification will be

replaced with a question mark as described in subsection 6.4.3.

After converting the temporal property from our MCL extension into plain MCL, the Evaluation

Runner calls the Evaluator Executable generated by the Evaluation Preparer and provide the

plain MCL property as input. The Boolean value that is first result from the call becomes the

first output of the Evaluation Runner. The Diagnostics BCG file that is the second result from

the call contains information from which counterexample or witness information can be

derived.

The binary BCG file format does not have a public documentation. Also, there are no .NET-

compatible libraries known to us that allow reading BCG files. We could therefore not easily

implement a mechanism to read the Diagnostics BCG files. Instead, the Evaluation Runner

converts the Diagnostics BCG file into the AUT format (CADP manual authors 2017a) by

executing CADP’s bcg_io tool. AUT being a publicly documented text-based format, it was

much easier for us to implement a reading mechanism for this file format.

The AUT Reader uses our AUT reading mechanism to read the counterexample or witness

graph in a representation that can be easily be processed by the Result Visualizer.

66

Figure 18 The Evaluation Runner’s workflow

6.5 Usability Considerations

As established in section 5.4, an implementation of our approach should have a good usability.

In this section, we introduce our usability considerations (UC). We assume that the application

of our approach becomes more suitable and easier for users if the used implementation follows

these considerations. As such, a user-targeted implementation should also follow our usability

considerations.

Macro

Expander

Property in extended

MCL

Property in plain

MCL

Boolean result Diagnostics BCG

AUT Reader

bcg_io

(to convert)

Diagnostics AUT

Evaluator

Executable

Counterexample /

witness information

67

We introduce the considerations in the following, each with a short explanation on how our

implementation follows the respective consideration.

UC 1. A user should be supported by the implementation to specify temporal properties easily.

To simplify temporal property specification, our implementation includes the Temporal

Property Specification Wizard described in subsection 6.4.1 that guides a user through a

questionnaire and that finally generates a temporal property based on the user inputs.

For supporting the user in manual specification of temporal properties, our implementation

contains an easily accessible “cheat sheet” as shown in Figure 19. This cheat sheet lists

important constructs of the used temporal property specification language MCL as well as an

exemplary temporal property that makes usage of several of these constructs.

Figure 19 Screenshot showing our temporal property specification cheat sheet

UC 2. A user should be able to specify sequences of behaviors using an easily usable and

supportive user interface.

In our implementation, we visualize sequences of behaviors as lists of graphical blocks where

the blocks represent behavior instances. A user can re-order these sequences by dragging the

blocks with the mouse and dropping them at some different position in the list. Specifying

sequences of behaviors in our implementation is like working with a graphical programming

language. It can be compared to development of macros in Microsoft Access Web Apps

(Microsoft Corporation 2017a), or to building procedures by snapping together graphical blocks

in the educational programming environment “Scratch” (Resnick et al. 2003).

68

When a user specifies a formulaic expression, our implementation supports her with a cheat

sheet like the one presented above for temporal properties, and with autocomplete suggestions.

We present an example for the autocomplete feature in action. Given a formulaic expression

CurrentObjectOccurrence that evaluates to an ObjectOccurrence, assume that the user wants

to extend this expression so that it evaluates to the RelationshipOccurrences that have the

original ObjectOccurrence as source. Then the user would have to append a dot to the end of

the original expression, followed by RelationshipOccurrencesWithMeAsSource.

Our implementation allows the user to avoid typing out this whole string. Instead, if a user

begins typing the first few characters of this long string, a list with suggestions for possible

completions of the typed characters will appear as shown in Figure 14 (on page 60). We

implemented a special ordering algorithm for ordering suggestions that was inspired from

modern integrated development environments. If a user clicks on one of the suggested

completions, the typed characters will be replaced with the suggestion. We assume that the

autocomplete suggestion feature increases efficiency in specifying formulaic expressions.

UC 3. For automatic procedures with long processing times that need to be executed multiple

times with different inputs, a user should be able to define tasks for the required

procedures and inputs, and to initiate the collective automatic execution of these tasks.

Because model checking is a computation-intensive activity, it can take a large amount of time

to check if a process model fulfills a temporal property. We assume that users often want to

collectively check the fulfillment of multiple properties in multiple models. To avoid the user

initiating each check one after another manually, our implementation allows to define “model

checking tasks” and to initiate the collective execution of these tasks. A model checking task

describes the process of checking the fulfillment of a defined temporal property in a defined

model.

In our implementation, a user can select multiple models and multiple temporal properties at

once and generate “model checking tasks” for all combinations of selected models and selected

temporal properties. When initiating the execution of these tasks, the user must not interact with

her computer anymore to complete the model checking tasks. She can then for example let the

computer perform the required computations overnight.

69

7 Demonstration

In this chapter, we demonstrate how our approach can be put into practice using our [em] plugin.

We present three exemplary artificial case studies by introducing sample languages and models

in these languages. To make our case studies more tangible, we placed them into the context of

nuclear reactors as a demonstrative setting. Since we are no experts for nuclear reactors, our

case studies do not have the intention to represent real-world scenarios.

In the first case study, we demonstrate how execution semantics for a simple business process

modeling language can formally be specified with our approach and how our implementation

makes witness and counterexample information available to a user. In the second case study,

we develop a setting that might resemble a real-world scenario with a more complex model in

a more complex modeling language, and use it to demonstrate how our approach and our

Temporal Property Specification Wizard can help in identifying problems in process models.

In the third case study, we illustrate the cross-model and cross-language analysis capabilities of

our language.

7.1 Case Study 1

In our first case study, we introduce a simple business process modeling language with simple

execution semantics. We show how behaviors can be assigned to this language and its element

with our approach for describing the execution semantics to enable model checking of business

process models in this language. We show how the instances of the behavior types Report

Event, If/Then/Else, and Enable Element Occurrence may be used in practice. We demonstrate

the usage of simple formulas in the behaviors. We finally describe that our approach enables

model checking and demonstrates how counterexample information are represented by our

implementation.

In the first subsection, we introduce the Simple Linear Process Language (SLPL) that forms the

basis of the remaining case study. In the second subsection, we show how SLPL’s execution

semantics can be translated into sequences of behaviors assigned to SLPL models and their

element occurrences on the meta-level. In the third subsection, we describe how model

checking can be performed with our approach and show how our implementation visualizes

witness information in an interactive fashion.

7.1.1 Introduction into Simple Linear Process Language (SLPL)

We introduce the Simple Linear Process Language (SLPL), a process modeling language

created for our case study. SLPL has two element types: the object type Node and the

relationship type Node Connection, allowing to connect one Node to another. We visualize

70

Nodes as cyan boxes and Node Connections as arrows between two Nodes. We give an example

business process model in SLPL in Figure 20.

Figure 20 An exemplary business process for the build preparation of a nuclear reactor

If we want to put our approach into practice on SLPL business models, we must specify the

SLPL semantics first. For brevity, we gave SLPL very simple semantics: A formal process is

derived from a SLPL model from the events that are reported when enabling the model. If a

SLPL model is enabled, it must enable the first found Node that does not have any incoming

Node Connections. If a Node is enabled, it must a) report an event corresponding to its label

and b) enable the first found outgoing Node Connection. If a Node Connection is enabled, it

must enable the target Node.

7.1.2 Specification of Behavior Sequences for SLPL

We can now use the execution semantics specified in natural language in the last subsection to

formalize them as sequences of behaviors as described in section 4.4.

We give the specification of the sequence of behaviors for a SLPL Node in Table 7. This

sequence consists of three behaviors: a Report Event behavior and an If/Then/Else behavior

that contains an Enable Element Occurrence behavior.

Our semantics require that an event should be reported when enabling a Node. This requirement

is fulfilled through the Report Event behavior. To capture what element the event was reported

by, we used a formulaic expression yielding the current object occurrence as the behavior’s

“Element Occurrence” argument. To define the content of the public event, we used formulaic

expression yielding the label of the Node as the behavior’s “Event Content” argument.

After reporting the event, our semantics require the first found outgoing Node Connection

relationship to be enabled. To check if there is any outgoing relationship, we use the

If/Then/Else behavior with a formulaic expression as its “Condition” that counts the number of

outgoing relationships and checks if this number is greater than 0.

If this check results in 𝑓𝑎𝑙𝑠𝑒, nothing will be done. If the check results in 𝑡𝑟𝑢𝑒, the “Enable

Element Occurrence” behavior will be triggered. We use a formulaic expression yielding the

head of the collection of outgoing relationships (i.e. the first outgoing relationship) as the

behavior’s “Element Occurrence” argument. To put the enablement of the ElementOccurrence

71

into the scheduler’s enablement queue, we set its “Perform now instead of scheduling it” to

𝑓𝑎𝑙𝑠𝑒. This has a computational advantage: If the process model contains a loop and the same

ElementOccurrence is to be enabled again at a later point, the model checker can use the

scheduler’s enablement queue to identify that it already encountered the situation of having to

enable the respective ElementOccurrence. In such a case, the model checker may save

computational effort because it does not need to re-compute the already computed part of the

LTS that results from enabling the respective ElementOccurrence.

Neither does the semantics of our language need to operate with multiple runtime instances nor

with stored data. We can therefore make all enablements in our semantics use the initial runtime

instance and the initial enablement data. To accomplish this, we use the formulaic expressions

as given in Table 7 for all “Runtime Instance” and “Data to pass on” arguments in this example.

Report Event

Element

Occurrence

CurrentObjectOccurrence

Event

Content

CurrentObjectOccurrence.Object.Caption

If/Else/Then

Condition CurrentObjectOccurrence.RelationshipOccurrencesWithMeAsSource.Count.GreaterThan(0)

Then

Behaviors
Enable Element Occurrence

Runtime

Instance

CurrentRuntimeInstance

Element

Occurrence

CurrentObjectOccurrence.RelationshipOccurrencesWithMeAsSource.Head

Data to

pass on

EnablementData

Perform

now

instead of

scheduling

it

𝑓𝑎𝑙𝑠𝑒

Else

Behaviors

(empty sequence)

Table 7 Behavior sequence for occurrences of SLPL Nodes

We give the specification of the sequence of behaviors for a SLPL Node in Table 8. This

sequence consists of only one behavior: an Enable Element Occurrence behavior. When

enabling a Node Connection, our semantics require the target Node to be enabled. This target

72

element description translates directly into the formulaic expression used as the Element

Occurrence argument.

Enable Element Occurrence

Runtime

Instance

CurrentRuntimeInstance

Element

Occurrence

CurrentRelationshipOccurrence.TargetElementOccurrence

Data to pass on EnablementData

Perform now

instead of

scheduling it

𝑡𝑟𝑢𝑒

Table 8 Behavior sequence for occurrences of SLPL Node Connections

To complete the behavior specifications for SLPL, we give the specification of the sequence of

behaviors for a SLPL model in Table 9. This sequence consists of two behaviors: an

If/Then/Else behavior that contains an Enable Element Occurrence behavior.

If/Else/Then

Condition CurrentModel
.ElementOccurrences
.Any<eo |
 eo.IsObjectOccurrence
 .And(eo.RelationshipOccurrencesWithMeAsTarget.Count.Equals(0))
>

Then

Behaviors
Enable Element Occurrence

Runtime

Instance

CurrentRuntimeInstance

Element

Occurrence

CurrentModel
.ElementOccurrences
.Where<eo |
 eo.IsObjectOccurrence
 .And(eo.RelationshipOccurrencesWithMeAsTarget.Count.Equals(0))
>.Head

Data to pass

on

EnablementData

Perform now

instead of

scheduling it

𝑓𝑎𝑙𝑠𝑒

Else

Behaviors

(empty sequence)

Table 9 Behavior sequence for SLPL models

73

When an SLPL model is enabled, our semantics require the first found Node to be enabled that

does not have any incoming Node Connections. The If/Then/Else behavior checks if such a

behavior exists in the model, by using a formulaic expression as the “Condition” argument that

operates on a collection of all element occurrences in the model to determine if it contains at

least one element occurrence that is a ObjectOccurrence and has no incoming relationships. If

such an element occurrence does not exist, nothing will be done. If it does, the If/Then/Else’s

Then Behaviors sequence will be triggered, i.e. the Enable Element Occurrence.

We use a formulaic expression for the Enable Element Occurrence behavior’s “Element

Occurrence” argument that operates on the same collection as in the last paragraph. It filters the

collection, yielding a collection that contains only ObjectOccurrences without incoming

relationship. It then yields the head (i.e. the first element) of the collection.

7.1.3 Model Checking with SLPL Models

With SLPL’s semantics defined, we can now demonstrate that model checking with models in

SLPL becomes possible. For our demonstration, we use the simple exemplary property “there

must be a way that the process runs into an infinite loop” and check its fulfillment by the simple

exemplary models as given in Figure 20 (on page 70) and Figure 21.

Figure 21 Exemplary SLPL model containing a loop

From looking at the two models, it is obvious that the property is not fulfilled by the first model,

but by the second one.

We demonstrate that our approach gives us the correct answers for the two models. We also

demonstrate our implementation’s visualization of counterexample and witness information.

For the demonstration, we need our temporal property in MCL. We give the translation of our

exemplary temporal property from natural language into MCL in Listing 38.

74

< true > @

Listing 38 Temporal property in MCL that describes the existence of a cycle in the LTS

Our implementation gives us the expected result for each model, i.e. “not fulfilled” for the first

one and “fulfilled” for the second one. Additionally, it gives witness and counterexamples

information in a stack-like representation. We give our implementation’s representation in

Figure 22. The box on the left shows counterexample information for the first model. The box

on the right shows witness information for the second model.

Figure 22 Two exemplary counterexample and witness event chains

The stacks show the reported public events that prove or disprove the fulfillment of the property.

If an event transitions to a state that was explored before, its text is written in italics.

Our implementation’s visualization has an interactive component: Double-clicking on an event

with italic text changes the selection to the event that led to exploring the known state the first

time. Double-clicking on any other event that was reported by an element occurrence opens its

model. It then highlights the reporting element occurrence by surrounding it with a colored

border.

The border colors depend on the chain of events that lead to the selected event. The selected

event’s element occurrence is always highlighted in light green. The chain’s first reported

event’s element occurrence is highlighted in blue. All events between these two events are

highlighted in dark green in our example. In section 7.3, we demonstrate that “jumps” between

models within a chain of events are visualized by using further colors.

In Figure 23 we exemplarily show how our implementation highlights element occurrences

when double-clicking on the event “Check container safety” (on the left) and on the event

“Monitor health of personnel” (on the right).

We can infer from the witness information for the second model: The second time the event

“Check radiation levels” is reported, the LTS transitions via the event “Check container safety”

to a previously explored state. This proves the existence of a loop. Using the interactive

visualization, we can follow the chain of element occurrences reporting the events that make

up the loop. We found double-clicking on events in counterexample and witness event chains

75

to be helpful for determining how the events and their reporting element occurrences go

together.

Figure 23 Exemplary highlighting of element occurrences in a witness event chain

7.2 Case Study 2

In our second case study, we introduce a more complex, EPC-inspired exemplary business

process modeling language. We show how execution semantics may be specified that reports

events corresponding to more than one Element. We demonstrate the usage of more complex

formulaic expressions, for example to check the type of an Element. We demonstrate how data

storing and loading can be used to implement a merging join of two process branches that run

parallel to each other. Our presented execution semantics demonstrates how the behaviors “For

one item in collection”, “Load data”, and “Store data” may be used. We further demonstrate

how our Temporal Property Specification Wizard can be used to easily generate complex

temporal property specifications. Finally, we demonstrate how our visualization of

counterexample information may help in better understanding a model checking result.

In the first subsection, we introduce our more complex exemplary business process modeling

language and describe how its semantics can be formally specified with our ESDL. In the

second subsection, we show how our Temporal Property Specification Wizard helps in

specifying a temporal property, and demonstrate how results from our approach may help in

finding the sources or reasons for a violation of a property.

7.2.1 Basic Highly Simplified EPC without Interfaces (HSPEC)

We introduce the process modelling language Highly Simplified EPC without Interfaces

(HSEPC). HSEPC is inspired by EPC (Keller et al. 1992) and uses some of its elements.

76

HSEPC has nine element types. Its six object types are Event (visualized as a hexagon),

Function (visualized as a box with rounded corners), Business Object (visualized as a cut piece

of paper), Competent Body (visualized as a box with a double left border), AND (visualized as

a circle containing the symbol ∧), and XOR (visualized as a circle containing the symbol ×). Its

three relationship types are Flow (visualized as an arrow), Business Object to Function, and

Competent Body to Function (both visualized as a line). We give an exemplary HSEPC model

with these elements in Figure 24.

The semantics of HSEPC correspond to the informal semantics in (Keller et al. 1992). To allow

for model checking, we want occurrences of Functions and Events on a process flow to report

corresponding events like in SLPL. As an extension, we want to include the name of the

element’s type in our events. For Functions, we additionally want to include an associated

Business Object and an associated Competent Body in our events if such objects exist.

For brevity, we do not give the detailed behavior sequences but only explain the most important

aspects to them.

The behavior sequence for a Flow is the same as for a Node Connection in SLPL.

The behavior sequence for an Event is very similar to the one for a Node in SLPL with one

difference: Instead of reporting only the caption of the element, the caption is prepended with

the string Event: to indicate the reporting element occurrences’ type.

CurrentObjectOccurrence
 .RelationshipOccurrencesWithMeAsTarget.Any<ro |
 ro.Relationship.Type.Equals
 (CurrentLanguageElementTypes.RelationshipTypes.Competent_Body_to_Function)
 >

Listing 39 Formula to check for an incoming relationship of a specific type

The behavior sequence for a Function is similar to the one for an Event. To include a potentially

associated Business Object or Competent Body in the reported event, the behavior sequence

needs If/Then/Else behavior that checks if such associated objects exist. A condition to check

for the existence of an associated Business Object is given in Listing 39.

77

Figure 24 An exemplary HSEPC model

78

If an associated Competent Body exists, the Event Content reported by the Function needs to

consist of 1) a constant string corresponding to the type name, 2) the caption of the Function,

3) the caption of the associated Competent Body. We can use string concatenation to combine

these pieces of information. In Listing 40, we give a possible Event Content argument for

Functions that have an associated Competent Body but no associated Business Object. If a

Function has both an associated Business Object and a Competent Body, the formulaic

expression must be extended with additional concatenation accessors, respectively.

"Function: "
.ConcatedWith(CurrentObjectOccurrence.Object.Caption)
.ConcatedWith(" performed by ")
.ConcatedWith(CurrentObjectOccurrence
 .RelationshipOccurrencesWithMeAsTarget
 .Where<ro |
 ro.Relationship.Type.Equals
 (CurrentLanguageElementTypes.RelationshipTypes.Competent_Body_to_Function)
 >
 .Head
 .SourceElementOccurrence
 .AsObjectOccurrence
 .Object
 .Caption)

Listing 40 Event content formula for HSEPC Functions with associated Competent Body

The behavior sequence for an XOR is given in Table 10.

For one item in collection

Item Variable Name follower

Collection CurrentObjectOccurrence.RelationshipOccurrencesWithMeAsSource

Child Behaviors
Enable Element Occurrence

Runtime Instance CurrentRuntimeInstance

Element Occurrence follower

Data to pass on EnablementData

Perform now instead of scheduling it 𝑓𝑎𝑙𝑠𝑒

Table 10 Behavior sequence for occurrences of HSEPC XOR

In HSEPC, an AND keeps track of the number of times it was enabled. If the number of its

enablements equals the number of incoming relationships, it will reset the enablement counter

and will enable the outgoing relationships in parallel. To implement this concept, our

CustomStorageData is defined to contain an integer field NumberOfRegisteredTriggerings. The

loading and storing part of the behavior sequence for an AND is given in Table 11.

79

Load data

Runtime

Instance

CurrentRuntimeInstance

Element

Occurrence

CurrentObjectOccurrence

Variable

Name
data

Child

Behaviors
If/Then/Else

Condition data.NumberOfRegisteredTriggerings
.Plus(1)
.LessThan(
 CurrentObjectOccurrence
 .RelationshipOccurrencesWithMeAsTarget
 .Count
)

Then

Behaviors
Store data

Runtime

Instance

CurrentRuntimeInstance

Element

Occurrence

CurrentObjectOccurrence

Data to be

stored

Data
.WithChanged_NumberOfRegisteredTriggerings(
 Data
 .NumberOfRegisteredTriggerings
 .Plus(1)
)

Else

Behaviors
Store data

Runtime

Instance

CurrentRuntimeInstance

Element

Occurrence

CurrentObjectOccurrence

Data to be

stored

Data
.WithChanged_NumberOfRegisteredTriggerings(0)

[Behaviors to enable outgoing relationships in parallel]

Table 11 Partial behavior sequence for occurrences of HSEPC AND

The element types Business Object, Competent Body, Business Object to Function, and

Competent Body to Function themselves do not have behavior sequences assigned to them; the

behavior sequences of the other element types take them into account.

80

The behavior sequence for enabling a HSPEC model must enable all Event occurrences without

incoming relationships in parallel.

7.2.2 Model Checking with HSEPC

The exemplary process model in Figure 24 has a complexity that a real-life process model might

also have. We use it to demonstrate our approach working with models that are close to practice.

Assume we want to make sure in our process design that the emergency team does not enter the

reactor while it is running. We use the property wizard to define a property capturing this

requirement.

In the first step, the property wizard asks questions to determine the property’s scope. The

questions and answers are shown in Figure 25.

Figure 25 Property Scope page of our Temporal Property Specification Wizard

81

In the second step, the property wizard asks questions to determine the property behaviour.

The questions and answers are shown in Figure 26.

Figure 26 Property Behavior page of our Temporal Property Specification Wizard

In the third and last step, the property wizard asks for the events in the property pattern that

results from the previous answers. The questions and answers are shown in Figure 27.

Figure 27 Event Specification page of our Temporal Property Specification Wizard

The Temporal Property Specification Wizard generates the property given in Listing 41. While

the property can easily be expressed in natural language, the resulting formalization is shown

to be complex and hard to read and understand.

[true*. ({{{Event: Reactor is started}}}) . (not ({{{Event: Reactor is shut
down}}}))*. ({{{Function: Enter reactor interior performed by Emergency team}}}
)] false

Listing 41 Exemplary property generated by the Temporal Property Specification Wizard

Checking if the generated property is fulfilled by our exemplary model yields the result that the

property is not fulfilled, i.e. the model entails a situation in which the emergency team enters

82

the reactor while it is running. Inspecting the counterexample information allows us to find the

elements involved in this situation. The counterexample stack is given in Figure 28.

Figure 28 Counterexample stack for the second case study

The counterexample stack implies that a situation can happen in which the reactor is shut

down, then directly started again, and then entered by the emergency team. Double-clicking

on the last two events allows finding the element occurrences that reported the events. In

Figure 29, we give sections of the process model with the highlighted elements that the

second to last event (a), and the last event (b) was reported for.

Figure 29 Highlighted elements relevant for the counterexample of the second case study

From this information we can deduce: If a weekly inspection happens to occur when reactor is

in emergency mode, the emergency team might enter a started reactor. Careful inspection of the

process model would have yielded the same result. We nevertheless hope that our case study

shows that a situation like this can easily be overlooked already in a comparatively small model.

(a)

(b)

83

7.3 Case Study 3

In practice, models may be interlinked and not all models may use the same modeling

languages. Using our third case study, we illustrate that our implementation supports cross-

model and cross-language analysis. We further show that it supports events reported for

Relationships, not just for Objects. Finally, we show how our implementation visualizes

counterexample information that contain “jumps” from one model to another.

We introduce HSEPCwI, an extension of HSEPC with the additional object type Interface that

allows to be refined by a Model. In Figure 30 we show a section of the model of the previous

case study where the “Check reactor interior” Function is replaced with a corresponding

Interface. The highlighting can be ignored for now; we cover it further below.

Figure 30 Section of an exemplary HSEPCwI model with highlighted elements

When enabling an Interface without refinements, its outgoing relationships will be enabled.

When enabling an Interface with refinements, it will enable the refinement Model in such a

way that the refinement Model can “jump back” to the refined Interface and pass data to it. The

Interface then passes this data on to its outgoing relationships. In HSEPCwI, the semantic of

XOR is slightly different than in HSEPC: If an XOR is enabled with passed data, it will only

enable outgoing relationships that lead to objects whose captions match this passed data. It does

not pass on the data any further.

84

Figure 31 An exemplary SDTL model with highlighted elements

We introduce our Simple Decision Tree Language (SDTL). It has three element types: the

object types State (represented as a box) and Decision (represented as a rhombus), and a generic

relationship type (represented as an arrow) that connects any object with another one. In Figure

31, we give an exemplary SDTL model that refines the Interface object in the HSEPCwI model

of this case study. Again, the highlighting in the Figure can be ignored for now.

Figure 32 Fragment of the witness information of case study 3

The decision tree language starts with the first found state without incoming relationships, goes

through decision tree, interpreting each Decision as an exclusive choice. Once reaching a final

85

state, i.e. a state without outgoing relationships, it enables the object the SDTL model was

enabled from, passing the caption of the final state.

For our case study, we want to check if finding green glowing substance in reactor always leads

to informing the authorities. Using our approach, we find out that this property is fulfilled, i.e.

whenever green glowing substance is found, the authorities will be informed. We give a

fragment of the resulting witness information in Figure 32.

The highlighting in the SDTL model given in Figure 31 reflects the result of double-clicking

on a “Reactor broken” entry in the witness event stack of Figure 32. The highlighting in the

HSEPCwI model given in Figure 30 reflects the result of double-clicking on the “Event:

Authorities are informed” entry. By clicking on events in the event stacks that were reported

for elements in different models, our implementation allows a user to quickly jump between

multiple models containing relevant elements.

As also shown in Figure 30, the color of highlighting changes between the HSEPCwI elements

that reported events before and after the switch to the refinement model. This demonstrates that

our implementation allows a user to easily pinpoint where a “jump” to another model took place

when analyzing the counterexample or witness information for some model.

86

8 Discussion, Outlook and Summary

In this chapter, we discuss our work’s results by comparing our approach with other process

model analysis approaches and by identifying obstacles for the practical applicability of our

approach. We further outline concepts how our approach could be extended and enhanced and

finally give a summary of our work.

In the first section, we compare our model checking-based process model analysis approach

with a class of other model analysis approaches that are not restricted to a specific modeling

language. In the second section, we discuss the applicability of our approach in practice and

identify potentials for follow-up work. In the third section, we summarize our work.

8.1 Comparison with Model Structure-Based Process Model Analysis Approaches

Besides our approach as presented in this thesis, there is only one class of process model

analysis approaches known to us that is not restricted to a specific modeling language.

Approaches in this class allow formulating and checking for properties formulated over the

structure of a model. We therefore call these approaches “structure-based”. In this section, we

compare our model checking-based process model analysis approach with structure-based

approaches.

One structure-based model analysis approach is based on formulating a property as pattern as a

tree of operations over sets of model elements. The model’s fulfilment of the property is

determined by evaluating the operations of the tree and checking if a pattern match was found

this way. (Delfmann et al. 2010; Delfmann, Steinhorst, et al. 2015) Another such structure-

based approach is based on the subgraph isomorphism problem: A “haystack” graph is derived

from a business process model’s structure. A property is formulated as a “needle” graph pattern.

The model’s fulfilment of the property is determined by determining whether the haystack

graph contains a subgraph that is isomorphic to the needle graph pattern. (Delfmann, Breuker,

et al. 2015)

The core difference between model structure-based analysis approaches and our model

checking-based analysis approach lies in the aspects that input properties can describe: In

structure-based approaches, properties describe aspects of the structure of process models. In

our model checking-based approaches, properties describe aspects of the meaning of process

models, i.e. the events entailed by the models’ execution semantics.

Most process modeling languages have their own symbols and their own syntax. Therefore, the

structure of a model for the same set of business processes generally differs between languages.

When formulating properties for structure-based approaches, a property must be specified for

a set of anticipated process modeling languages with their respective symbols and syntaxes. If

87

properties should be used to reason about the business processes entailed by some model, the

execution semantics of the anticipated process modeling languages must be implicitly captured

in each property. In contrast, our model checking-based approach requires the execution

semantics to be explicitly specified only once upfront for the required languages; properties can

then directly describe aspects about the events entailed by process models in languages that

semantics were specified for.

We give some user advantages and disadvantages of our model checking-based approach

compared to the model structure-based approaches.

Property Specification Effort – Directness of Property Specification Workflow: Specifying

properties using our approach is arguably more direct, requiring less property specification

effort: A user can directly specify sequences of forbidden or required events using our approach.

In structure-based approaches on the other handy, an intermediate step is usually required. In

this step, a suitable specification must be found for the sequence of forbidden of required events

that corresponds to a searchable part of the model’s structure. We show with an example that

finding such a specification can be difficult.

Take a property that requires an event B to occur at most once in business processes. Using a

structure-based approach, a naïve specification for such a property could for example be to

search for an object corresponding to event B and to search for a directed outgoing path from

this object to another object that also corresponds to event B. The property is fulfilled if no such

path is found.

A B

B

Figure 33 BPMN model with compensations

Such a specification is however incomplete as it would not generally report the correct result.

For example, it the specified structure could not be found in the BPMN model in Figure 33,

assuming each activity corresponds to an event as specified by the respective activity’s label.

The model does however entail a process containing two B events: The intermediate throwing

compensation event (the circle with the two black left-pointing arrows) enables the activity with

label B that is attached to the compensation boundary event (the circle with the two white left-

88

pointing arrows), followed by enabling the second activity with label B in the normal process

flow.

BPMN has several further constructs where the execution semantics does not correspond

closely to a path through the model structure. Therefore, finding suitable property specifications

that correspond to parts of the model structure is arguably difficult, and may even be impossible

for some properties.

Property Specification Effort – Reusability of Property Specifications: If execution

semantics for different process modeling languages are appropriately specified for our

approach, then properties can be specified independently from the process modeling language

that the models to analyze are created in. A user can re-use such a language-independent

property for analysis of models in different languages. In structure-based approaches the same

property might have to be specified differently for different modeling languages, causing more

property specification effort for the user.

Property Specification Effort – Reusability of Execution Semantics Specifications: As

established further above, execution semantics must be captured by every property in structure-

based approaches. In our approach, the execution semantics needs to be explicitly specified

only once. Depending on the complexity of the process modeling language’s semantic and on

the analysis goals, the effort to specify execution semantics and temporal properties can

however still be higher than defining a set of structural patterns. With our approach, economics

of scale may be realized if many different properties are to be analyzed for models of the same

languages. In a setting where the number of modeling languages involved in process model

analysis is mostly constant and low, and the number of involved properties is higher, we expect

the initial effort to specify execution semantics to pay off, compared to finding suitable model

structure specifications for each property.

Understandability of Property Specifications: Property specifications for our approach may

be less understandable for a user, compared to properties for subgraph isomorphism-based

approaches that use visual representations for structural patterns. Understanding such a visual

pattern may arguably be easier than understanding a temporal formula in a complex formulaic

language like in our approach or in an approach based on set operations.

Applicability for Different Analysis Goals: Our approach has the goal to enable a user to

formulate a temporal property and to check if this property is fulfilled by business processes

entailed through execution semantics by a process model. As such, its application area is

restricted to fulfilling this goal. Approaches allowing to formulate properties about the structure

of models may have additional application areas. On this basis, structure-based approaches can

be considered as arguably being more versatile.

89

Theoretical Computational Complexity: Advantages of the different approaches w.r.t.

computational complexity depend on the given input model, its underlying execution semantics,

and the given property. The model checking algorithm employed in our work has a space and

time complexity linear in the number of operators in the formula and the size of the LTS.

(CADP manual authors 2017f, sec. Model Checking Complexity) Subgraph isomorphism was

shown to be NP-complete. (Delfmann, Breuker, et al. 2015, p. 477) From a theoretical point of

view we expect our approach to work more efficient than subgraph isomorphism-based

approaches, reducing the user’s waiting times for results. We were not able to find information

on the space and time complexity of the set operation-based approach and can therefore not

compare it with our approach w.r.t. algorithmic efficiency. Apart from the theoretical

computational complexity, it may be interesting to compare how fast and with how much

memory usage the different approaches perform in practice.

8.2 Discussion and Outlook on Our Process Model Analysis Approach

In this section, we derive and identify potentials for future research and for improving and

enhancing our work by discussing the applicability of our approach and of our implementation.

In the first subsection, we present potentials that can make implementations of our approach

more robust or faster. In the second subsection, we present potentials to extend the functionality

of an implementation of our approach. In the third subsection, we discuss our approach

conceptually and present ideas to improve and test its applicability.

Within each subsection, we give the potentials for future work ordered by our expected

realization effort, starting with the potential that we expect to cause the lowest effort if realized.

8.2.1 Non-Functional Improvement Potentials

Making Diagnostics Information Available to Plugin Differently. We rely on parsing of

AUT files and of their labels to make CADP’s model checking diagnostics information

available to our plugin. Hubert Garavel, one of CADP’s core maintainers, signalized in

unpublished communication that the format of labels generated by CADP in AUT files may be

modified for future version of CADP. Such a modification may require adjusting our parsing

implementation.

To avoid such adjustments in the long term, it may be interesting to implement a format-

independent approach of making diagnostics information available to our plugin. As such an

alternative approach, a new stable file format could be defined for transferring relevant aspects

of the diagnostics information from the CADP tools to our plugin. A small C-based or C++-

based program could be written to create files in this format. This program could make use of

90

CADP’s C API to read a diagnostics BCG file and would write the information in the newly

defined format.

Increasing CADP Performance. The CADP software tools being Unix-targeted and [em]

being Windows-targeted, the integration of the two toolsets requires difficult solutions that have

their downsides. In our implementation we run the CADP tools on Cygwin (Cygwin project

home page authors 2017), a Unix-like environment for Windows. Running the CADP tools this

way comes with a heavy performance penalty: Processing takes much more time than on a

“true” Unix system.

Even with the small models presented in our work, each property validation took several

minutes on Cygwin. From the long processing times on Cygwin, we assume that our

implementation operates too slowly for real-world scenarios. An implementation that should be

applicable to real-world scenarios would need to find a way to reduce processing times

dramatically. For some examples, we used a Linux system to test running the same CADP

commands as our plugin does. Model checking completed within only a few seconds on Linux

for the tested examples.

This indicates that different way of implementing our approach could increase performance.

For example, a network-based communication protocol could be designed that allows

exchanging relevant data between an [em] plugin (running on Windows) and a server

application (running on a Unix-based system). The server application could perform model

checking operations using CADP, and send back the results to the [em] plugin. If there was a

requirement to still run both applications on the same physical computer, a virtual Unix machine

for the server application could be set up on a Windows system for [em] – or the other way

around.

Another alternative may be to make the CADP software tools available for the Windows

Subsystem for Linux (WSL) (Windows Subsystem for Linux Documentation contributors

2016). According to unpublished communication from Hubert Garavel, one of the core CADP

maintainers, the CADP team initially found WSL a promising way to allow for fast model

checking with CADP on Windows, but finally found the effort to get it running on WSL to be

too high.

Generalizing Approach to Use Different Model Checkers. Our implementation is based on

the CADP tools and tightly coupled with them. It may be interesting to realize our approach

with different model checkers or to develop a generalized implementation that could easily be

extended with different model checkers. The different implementations and model checkers

could then be compared w.r.t. performance and versatility.

91

One especially interesting model checker for such an implementation is mCRL2. As of writing

this thesis, mCRL2’s witness or counterexample information do not allow to draw conclusions

about the model elements that are “responsible” for a temporal property to be fulfilled or not

fulfilled.

An approach based on mCRL2’s event reachability analysis capability can however generate

counterexample or witness information that could be used for our approach. In this approach

temporal properties are translated into “observer” or “monitor” processes. Such a monitor

process is integrated to a formal process specification and monitors all the reported events. It

will report a special event if it detects a sequence of events that allows determining the

fulfillment of the property. Using mCRL2’s event reachability analysis allows finding a

sequence of events that lead to the special monitor process event being reported. This approach

does however only work for a limited subset of temporal properties. (Remenska 2016, chap.

5.4.4; Remenska et al. 2014)

8.2.2 Functionality-Extending Improvement Potentials

Introducing Value Object Support. As established in section 4.1, we did not implement

support for the full [em] data model to keep the demonstration of our approach simple: Values

carried by Objects are not available in our implementation. If model checking with value-

carrying Objects turns out to be required in practice, support for such values can easily be added

to our implementation.

Introducing Reusable Formulaic Expressions and Behaviors. Typical programming

languages offer the concepts of “functions” and “procedures”, allowing to abstract code that is

used more than once. Our implementation does not support such concepts to abstract repetitions

in formulaic expressions or behavior sequences. Extending our approach with such concepts

may improve the practical usability of our approach and the conciseness of behavior sequences

as well as formulaic expressions.

Introducing Syntax Highlighting in Formulaic Expressions. Modern integrated

development environments support reviewing code through coloring different syntactic

constructs in different colors. Extending our approach with such syntax highlighting may

improve the practical usability of an implementation of our approach.

Extending Event Data Types. Our current implementation only allows to use strings as public

events. It may be useful to allow further data types in public events. For example, a “Invoice

paid” event could additionally carry the amount that was paid in a structured way. Our

implementation requires to encode such information in the event string, e.g. as “Invoice paid

(Amount: 100 Euro)”. While the data type string is versatile in this regard, temporal property

specifications can arguably become inconvenient. A property requiring the occurrence of an

92

invoice payment event for any amount would require a suitable event string pattern

specification that does not take the amount into consideration. A property requiring the

occurrence of an invoice payment event for an amount larger than some value would even

require a string parsing mechanism that could interpret the string-encoded amount value in the

event string.

The CADP and mCRL2 tools allow events to carry values of different data types. To different

extends, both solutions also allow specifying data-rich temporal properties, i.e. properties that

take the values carried by the events into consideration. Extending our approach with the ability

to report events carrying additional data in different types may make the specification of

properties easier in settings with data. Extending our approach further to allow a user to specify

more than the two pre-defined custom data types may further increase the applicability of our

approach.

Enabling Analysis with Infinite Data Types. The CADP tools work under the assumption of

finite data types. For example, integer values in our implementation are 16-bit values, i.e. only

integers in the range −32,768 through 32,767 can be used in formal processes defined with our

implementation. While this range may arguably be sufficient for many practical problems, there

may be formal processes requiring larger and possibly infinite data type ranges. Such processes

cannot meaningfully be checked with CADP.

Model checking such a process requires different approaches. Translating a formal process

specification not into a LTS but into a Symbolic Transition System was proposed as such an

approach. (Calder et al. 2001; Calder and Shankland 2001) Using a first-order extension of µ-

calculus was proposed as another one. (Groote and Mateescu 1999) We assume that such

approaches need to be adopted for our approach to handle process model analysis problems

requiring more complex data types.

Making Counterexample Information More Tangible. In subsections 7.1.3 and 7.2.2, we

demonstrated that counterexample or witness information can be helpful for understanding why

a property is fulfilled or not fulfilled. We assume however that counterexample or witness

information may be more complex and hard to understand when applying our approach on real-

world business process models that especially handle much variable data. In the context of

model checking for computer program code, tools were developed to make understanding

counterexample and witness information easier and more tangible.

For example, one such tool can produce a variation of counterexample information that is close

to the original counterexample but does not violate the fulfilment of a property. (Groce et al.

2004) Another tool allows to find test vectors for a target predicate, i.e. tuples of input values

for a program that lead to a predicate to be satisfied. Using these input values, the dynamic

behavior of the program can be studied to gain further insight into reasons for the predicate to

93

be satisfied. (Beyer et al. 2004) It may be interesting to adopt such approaches for the context

of model checking for business process models.

8.2.3 Conceptual Future Work

Improving Assistance in and Accessibility of Temporal Property Specification. In section

7.2.2, we demonstrated how a temporal property can be generated with the Temporal Property

Specification Wizard. Despite being a property with a simple natural language specification, its

formal specification is complex and difficult to understand.

We expect the complexity of temporal property specifications to be barely manageable in more

complex scenarios that might be required in practice, and we assume that most process model

analysis practitioners do not have deep knowledge around temporal property specification. We

argue that it is a difficult task to convey knowledge required to understand complex temporal

properties in languages inspired by or based on the µ-calculus. We assume that most

practitioners would not accept an analysis approach that requires such deep formal knowledge

to produce results that are of practical use.

On this basis, we assume that strong assistance in specifying temporal properties is a necessity

to ensure acceptance for a model checking-based business process analysis approach. While the

Temporal Property Specification Wizard in our implementation is providing helpful assistance

already, we assume that further assistance is required for more complex property requirements.

Another way to make temporal properties more accessible may be the introduction of a visual

notation for them. An example for such a visual notation is an BPMN-inspired one that was

proposed for LTL. (Brambilla 2005) In the context of model checking for computer programs,

another visual notation was proposed that was inspired by UML sequence diagrams. (Remenska

2016, chap. 5.4.3) It may be interesting to design a visual notation for MCL or similar temporal

specification languages based on the µ-calculus and to implement a functionality that allows a

user to specify or analyze properties in such a visual notation.

Testing Applicability of Approach. In section 2.1, we defined a “business process” using a

simplification that stripped away any relevance towards a business need. For the perspective of

our work, we could use this simplification. However, with process models typically being

defined with a business need in mind, we assume that business process analysis should usually

help to fulfill a business need. On this basis we assume that process model analysis is only

helpful if conclusions drawn from an analysis can be translated back into the reality that the

models and their execution semantics should describe.

From this argument, another aspect of our approach can be derived that may be an obstacle for

practical application of our approach: the mutual dependency between models with their

94

content, specifications of formal execution semantics, and specifications of properties. We

explain this triangular dependency in pairs:

a) Execution semantics specifications and property specifications may not fit together, for

example because the events entailed through execution semantics have a different

representation than expected in temporal properties. For illustration, take a temporal property

that requires an event “Activity ‘Pay Invoice’ performed” to occur, and assume that the

execution semantics entails only the congruent but differently represented event “Pay Invoice

function executed”, i.e. an event with a different string representation than used in the property.

b) Execution semantics specifications and models with their content may not fit together, for

example because execution semantics were specified under specific expectations about models

and their content, but models do not meet these expectations. For illustration, assume that

execution semantics is specified under the assumption that each activity has an assigned

responsible person, but some models have activities without such a person.

c) Property specifications and models with their content may not fit together, for example

because properties refer to events that do not have corresponding elements in models. This may

be a result of models’ low granularity. For illustration, take a temporal property that requires

an event “Activity ‘Login to Online Banking System’ performed” to occur, and a model with

an event “Activity ‘Pay Invoice’ performed”. Assume that paying the invoice implicitly

requires logging in to the Online Banking system without the model explicitly capturing this

implicit relationship.

While the temporal property in the illustration for a) and c) is fulfilled on a conceptual level,

the misalignment between execution semantics, the property specifications, and models with

their content would make model checking yield a result that indicates non-fulfillment. In the

illustration for b), model checking may even yield an undefined result or an error. These

illustrations demonstrate that one of the three elements not being aligned with the other two

causes the model checking result to not be helpful for a business process model analyst. For our

approach to be applicable to real-world business process model analysis problems, we expect

aligning these three elements to be a challenge.

In this mutual dependency, we expect real-world models to be particularly challenging for our

approach’s practical applicability: While in much literature the elicitation and representation of

reality in the course of modeling is regarded as largely unproblematic, it was argued that

representations of the reality like business process models are generally perspectival

simplifications with inherent limits. (Riemer et al. 2013) A possible implication of this

argument is: Business process models may not generally capture all pieces of information that

are required for meaningful analysis.

95

It may therefore be interesting to test the applicability of our approach in real-world scenarios.

It may also be interesting to compare the real-world applicability of different analysis

approaches.

8.3 Summary

We presented a business process model analysis approach based on model checking. We

introduced languages for describing a process model’s execution semantics at the level of its

modeling language by formulating behavior sequences and assigning them to models and their

elements on the meta-level.

Given a model, its meta model, given execution semantics described on the model’s meta-level,

and given some temporal property, our approach uses model checking algorithms to determine

if the model fulfills the temporal property and to get a hint why the property is fulfilled or why

it is not, respectively.

We surveyed model checkers that an implementation of our approach could be based on and

selected the Construction and Analysis of Distributed Processes (CADP) model checker as the

base of our implementation. We developed an approach to translate [em] data and assigned

behavior sequences into process specifications that can be processed by the CADP model

checker. We developed a macro extension for the CADP-supported temporal property

specification language MCL that allows a user to formulate properties easily while keeping the

possibility of mapping events from counterexample or witness information back to model

elements that they were reported for.

We collected requirements that an implementation of our approach must fulfill to be usable for

a user. We developed a plugin for [em] that implements our approach. Finally, using our [em]

plugin, we demonstrated in three case studies how our implementation can be used in practice.

We discussed the applicability of our approach and our implementation and named various

ways how they can be extended and enhanced. While our approach proved to work in our

exemplary artificial case studies, we also identified obstacles for the practical applicability of

our approach. It would therefore be interesting to test in future work if our approach is

applicable to real-world business process model analysis problems.

96

References

The URLs in this bibliography were all valid when last accessed on 2017-12-10.

.NET Docs contributors 2017. “.NET Regular Expressions Reference,” in .NET Docs.

Available at: https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-

expressions.

van der Aalst, W. M. P., Desel, J., and Kindler, E. 2002. “On the semantics of EPCs: A

vicious circle,” in Proceedings of the EPK 2002: Geschäftsprozessmanagement mit

Ereignisgesteuerten Prozessketten, M. Rump and F.J. Nuttgens (eds.), Trier, Germany:

Gesellschaft für Informatik, pp. 71–80.

van der Aalst, W. M. P., ter Hofstede, A. H. M., Kiepuszewski, B., and Barros, A. P. 2003.

“Workflow Patterns,” Distributed and Parallel Databases (14:1), pp. 5–51.

van der Aalst, W. M. P., and ter Hofstede, A. 2017. “Workflow Patterns Home Page.”

Available at: http://www.workflowpatterns.com/.

American National Standard for Information Standards 1986. Coded Character Sets — 7-Bit

American Standard Code for Information Interchange (7-Bit ASCII) ANSI X3.4-1986.

Arsac, W., Compagna, L., Pellegrino, G., and Ponta, S. E. 2011. “Security Validation of

Business Processes via Model Checking,” Lecture Notes in Computer Science (6542),

pp. 29–42.

Becker, J., Breuker, D., Weiß, B., and Winkelmann, A. 2010. “Exploring the Status Quo of

Business Process Modelling Languages in the Banking Sector – An Empirical Insight

into The Usage of Methods in Banks,” ACIS 2010 Proceedings, p. Paper 8.

Becker, J., Delfmann, P., Dietrich, H.-A., Steinhorst, M., and Eggert, M. 2014. “Business

process compliance checking - applying and evaluating a generic pattern matching

approach for conceptual models in the financial sector,” Information Systems Frontiers

(17), pp. 1–47.

Becker, J., Delfmann, P., and Knackstedt, R. 2004. “Konstruktion von

Referenzmodellierungssprachen - Ein Ordnungsrahmen zur Spezifikation von

Adaptionsmechanismen für Informationsmodelle,” Wirtschaftsinformatik (46:4), pp.

251–264.

Becker, J., and Schütte, R. 2004. Handelsinformationssysteme, MI Wirtschaftsbuch.

Bergstra, J. A., and Klop, J. W. 1984. “Process Algebra for Synchronous Communication,”

Information and Control (60:1–3), pp. 109–137.

Beyer, D., Chlipala, A. J., Henzinger, T. A., Jhala, R., and Majumdar, R. 2004. “Generating

Tests from Counterexamples,” in Proceedings of the 26th International Conference on

Software Engineering, Edinburgh, United Kingdom: ACM, pp. 326–335.

Bolognesi, T., and Brinksma, E. 1987. “Introduction to the ISO Specification Language

LOTOS,” Computer Networks and ISDN Systems (14:1), pp. 25–59.

97

Brambilla, M. 2005. LTL Formalization of BPML Semantics and Visual Notation for Linear

Temporal Logic.

CADP manual authors 2017a. “AUT manual page,” in CADP website. Available at:

http://cadp.inria.fr/man/aut.html.

CADP manual authors 2017b. “BCG_WRITE manual page,” in CADP website. Available at:

http://cadp.inria.fr/man/bcg_write.html.

CADP manual authors 2017c. “BCG manual page,” in CADP website. Available at:

http://cadp.inria.fr/man/bcg.html.

CADP manual authors 2017d. “BISIMULATOR manual page,” in CADP website. Available

at: http://cadp.inria.fr/man/bisimulator.html.

CADP manual authors 2017e. “EVALUATOR4 manual page,” in CADP website. Available

at: http://cadp.inria.fr/man/evaluator4.html.

CADP manual authors 2017f. “MCL manual page,” in CADP website. Available at:

http://cadp.inria.fr/man/mcl.html.

CADP manual authors 2017g. “REDUCTOR manual page,” in CADP website. Available at:

http://cadp.inria.fr/man/reductor.html.

CADP manual authors 2017h. “regexp manual page,” in CADP website. Available at:

http://cadp.inria.fr/man/regexp.html.

Calder, M., Maharaj, S., and Shankland, C. 2001. “An Adequate Logic for Full LOTOS,” in

Proceedings of the 10th International Symposium of Formal Methods Europe, Berlin,

Germany: Springer, pp. 384–394.

Calder, M., and Shankland, C. 2001. “A Symbolic Semantics and Bisimulation for Full

LOTOS,” in Proceedings of the 21st International Conference on Formal Techniques for

Networked and Distributed Systems (FORTE 2001), pp. 184–200.

Champelovier, D., Clerc, X., Garavel, H., Guerte, Y., Lang, F., McKinty, C., et al. 2017.

Reference manual of the LNT to LOTOS translator (version 6.7), INRIA.

Clarke, E. M., and Emerson, E. A. 1981. “Design and Synthesis of Synchronization Skeletons

Using Branching Time Temporal Logic,” Lecture Notes in Computer Science (131).

Clarke, E. M. 2008. “The Birth of Model Checking,” Lecture Notes in Computer Science

(5000), pp. 1–8.

Cygwin project home page authors 2017. “Cygwin project home page.” Available at:

https://cygwin.com/.

Davenport, T. H. 1993. Process Innovation: Reengineering Work Through Information

Technology, Harvard Business School Press.

98

Delfmann, P., Breuker, D., Matzner, M., and Becker, J. 2015. “Supporting Information

Systems Analysis Through Conceptual Model Query - The Diagramed Model Query

Language (DMQL),” Communications of the Association for Information Systems (37),

pp. 473–509.

Delfmann, P., Herwig, S., Karow, M., and Lis, Ł. 2008. “Ein konfiguratives

Metamodellierungswerkzeug,” Proceedings of the Workshops Colocated with the

MobIS2008 Conference: Including EPK2008, KobAS2008 and ModKollGP2008, pp.

109–127.

Delfmann, P., and Hübers, M. 2015. “Towards Supporting Business Process Compliance

Checking with Compliance Pattern Catalogues,” Enterprise Modelling and Information

Systems Architectures (10:1), pp. 67–88.

Delfmann, P., Sebastian, H., Lis, Ł., Stein, A., Tent, K., and Becker, J. 2010. “Pattern

Specification and Matching in Conceptual Models,” Enterprise Modelling and

Information Systems Architectures (5:3), pp. 24–43.

Delfmann, P., Steinhorst, M., Dietrich, H. A., and Becker, J. 2015. “The generic model query

language GMQL - Conceptual specification, implementation, and runtime evaluation,”

Information Systems (47), pp. 129–177.

van Dongen, B. F., Jansen-Vullers, M. H., Verbeek, H. M. W., and van der Aalst, W. M. P.

2007. “Verification of the SAP reference models using EPC reduction, state-space

analysis, and invariants,” Computers in Industry (58:6), pp. 578–601.

Emerson, E. A., and Lei, C.-L. 1986. “Efficient Model Checking in Fragements of the

Propositional Mu-Calculus (Extended Abstract),” in Proceedings of the First Annual

IEEE Symposium on Logic in Computer Science (LICS 1986), Cambridge, MA, USA:

IEEE Computer Society Press, pp. 267–278.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1994. Design Patterns: Elements of

Reusable Object-Oriented Software, Addison-Wesley.

Groce, A., Kroening, D., and Lerda, F. 2004. “Understanding Counterexamples with explain,”

Computer Aided Verification (3114), pp. 318–321.

Groote, J. F., and Mateescu, R. 1999. “Verification of Temporal Properties of Processes in a

Setting with Data,” Lecture Notes in Computer Science (1548), pp. 74–90.

Hammer, M., and Champy, J. 1993. Reengineering the Corporation: A Manifesto for Business

Revolution, Harper Business.

Hoare, C. A. R. 1978. “Communicating Sequential Processes,” Communications of the ACM

(21:8), pp. 666–677.

Hoare, C. A. R. 1980. “A Model for Communicating Sequential Processes,” in On the

Construction of Programs, R.M. McKeag and A.M. McNaghton (eds.), London, United

Kingdom; New York, United States of America: Cambridge University Press, pp. 229–

243.

International Organization for Standardization 1989. Binary floating-point arithmetic for

microprocessor systems (ISO/IEC 559:1989).

99

International Organization for Standardization 2011. Information technology – Programming

languages – C (ISO/IEC 9899:2011).

International Organization for Standardization 1996. Information technology – Syntactic

metalanguage – Extended BNF (ISO 14977:1996).

International Union of Railways (UIC), Railsafe Consulting Ltd., University of York,

University of Southampton, and Laboratory for Quality Software (LaQuSo) 2009.

INESS_WS D_Deliverable D.4.1_Documented strategy for Verification and

Validation_Report.

Keller, G., Nüttgens, M., and Scheer, A.-W. 1992. “Semantische Prozeßmodellierung auf der

Grundlage ‘Ereignisgesteuerter Prozeßketten (EPK),’” Veröffentlichungen des Instituts

für Wirtschaftsinformatik (IWi), Universität des Saarlandes (89).

Kozen, D. 1982. “Results on the Propositional µ-Calculus,” in Proceedings of the Special

Issue 9th International Colloquium on Automata, Languages and Programming, Aarhus,

Denmark: Elsevier, pp. 333–354.

Lahtinen, J., Valkonen, J., Björkman, K., Frits, J., Niemelä, I., and Heljanko, K. 2012. “Model

checking of safety-critical software in the nuclear engineering domain,” Reliability

Engineering and System Safety (105), pp. 104–113.

Lamport, L. 1977. “Proving the Correctness of Multiprocess Programs,” IEEE Transactions

on Software Engineering (SE-3:2), pp. 125–143.

Mateescu, R., and Thivolle, D. 2008. “A Model Checking Language for Concurrent Value-

Passing Systems,” in Proceedings of the 15th International Symposium on Formal

Methods, Turku, Finland: Springer, pp. 148–164.

Mendling, J. 2007. “Detection and Prediction of Errors in EPC Business Process Models.”

Microsoft Corporation 2017a. “How to: Create and customize a web app in Access,” in

MSDN Library. Available at: https://msdn.microsoft.com/en-us/library/jj249372.aspx.

Microsoft Corporation 2017b. “System.Double.Parse Method,” in .NET Framework

documentation. Available at: https://msdn.microsoft.com/en-

us/library/fd84bdyt(v=vs.110).aspx.

Microsoft Corporation 2017c. “System.Int32.Parse Method,” in .NET Framework

documentation. Available at: https://msdn.microsoft.com/en-

us/library/b3h1hf19(v=vs.110).aspx.

Milner, R. 1980. A Calculus of Communicating Systems, University of Edinburgh.

Department of Computer Science. Laboratory for Foundations of Computer Science.

Object Management Group 2011. Business Process Model and Notation (BPMN) Version 2.0.

Object Management Group 2015. OMG Unified Modeling Language (OMG UML) Version

2.5.

100

Pnueli, A. 1977. “The Temporal Logic of Programs,” in Proceedings of the 18th Annual

Symposium on Foundations of Computer Science, Providence, Rhode Island, United

States of America: IEEE, pp. 46–57.

Pribnow, H. 2016a. “How to pick any element of a list (and optionally delete it),” in CADP

forums. Available at: http://cadp.forumotion.com/t443-how-to-pick-any-element-of-a-

list-and-optionally-delete-it (Free Registration Required).

Pribnow, H. 2016b. “Parser generator for C# target that enables IntelliSense-like code auto-

completion?,” in StackEchange Community “Software Recommendations.” Available at:

https://softwarerecs.stackexchange.com/questions/30229/parser-generator-for-c-target-

that-enables-intellisense-like-code-auto-completi.

Raedts, I., Petkovic, M., Usenko, Y. Y. S., van der Werf, J. M. E. M., Groote, J. F., and

Somers, L. J. 2007. “Transformation of BPMN Models for Behaviour Analysis.,” in

Proceedings of the 5th International Workshop on Modelling, Simulation, Verification

and Validation of Enterprise Information Systems (MSVVEIS-2007), pp. 126–137.

Remenska, D., Willemse, T. A. C., Templon, J., Verstoep, K., and Bal, H. 2014. “Property

Specification Made Easy: Harnessing the Power of Model Checking in UML Designs,”

in Lecture Notes in Computer Science, Berlin, Germany: Springer, pp. 17–32.

Remenska, D. 2016. “Bringing Model Checking Closer To Practical Software Engineering.”

Resnick, M., Kafai, Y., and Maeda, J. 2003. “A Networked, Media-Rich Programming

Environment to Enhance Technological Fluency at After-School Centers in

Economically-Disadvantaged Communities.”

Riemer, K., Hovorka, D., Johnston, R. B., and Indulska, M. 2013. “Challenging the

Philosophical Foundations of Modeling Organizational Reality: The Case of Process

Modeling,” in Thirty Fourth International Conference on Information Systems (ICIS

2013).

Smith, J. 2009. “Patterns - WPF Apps With The Model-View-ViewModel Design Pattern,” in

MSDN Magazine Blog. Available at: https://msdn.microsoft.com/en-

us/magazine/dd419663.aspx.

Stirling, C. 1996. “Modal and Temporal Logics for Processes,” Lecture Notes in Computer

Science (1043), pp. 149–237.

Technische Universiteit Eindhoven 2017. “Introduction to mCRL2,” in mCRL2 Language

Reference. Available at: http://www.mcrl2.org/web/user_manual/introduction.html.

Wikipedia contributors 2017a. “List of model checking tools,” in Wikipedia, The Free

Encyclopedia. Available at:

https://en.wikipedia.org/w/index.php?title=List_of_model_checking_tools&oldid=79563

7856.

Wikipedia contributors 2017b. “Nullable type,” in Wikipedia, The Free Encyclopedia.

Available at:

https://en.wikipedia.org/w/index.php?title=Nullable_type&oldid=798046589.

101

Wikipedia contributors 2017c. “Process modeling,” in Wikipedia, The Free Encyclopedia.

Available at:

https://en.wikipedia.org/w/index.php?title=Process_modeling&oldid=792507909.

Windows Subsystem for Linux Documentation contributors 2016. “Windows Subsystem for

Linux Documentation,” in Microsoft Developer Network. Available at:

https://msdn.microsoft.com/commandline/wsl/about.

102

Appendix A Semantics of Formulaic Expression Language

In this appendix, we define semantics of our formulaic expression language.

We formally define a set of environments as 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 = {(𝑝, 𝑚) | 𝑝 ∈

𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡, 𝑚 ∈ 𝑀} where 𝑝 is the “parent” environment, and 𝑚 is a map from identifiers

to values. 𝑀 is the set of all possible functions that map an identifier to a value, formally 𝑀 =

{𝐼𝑝 → 𝑉 | 𝐼𝑝 ∈ 𝑃(𝐼), 𝑉 ∈ ⋃ 𝑇𝑇∈𝑇𝑦𝑝𝑒𝑠 } where 𝑃 is the function to derive a set’s power set, 𝐼 is

the set of all possible identifiers, and 𝑇𝑦𝑝𝑒𝑠 = {𝐵𝑜𝑜𝑙, 𝐼𝑛𝑡𝑒𝑔𝑒𝑟, 𝑆𝑡𝑟𝑖𝑛𝑔, … } is the set of all data

types supported by the formulaic expression language.

On this basis, we give a recursive definition of a function 𝑒𝑣𝑎𝑙 that takes a formulaic expression

𝑒𝑥𝑝 in our language and an environment 𝑒𝑛𝑣, and returns the value that 𝑒𝑥𝑝 evaluates to.

We start with introducing Base token semantics. We denote a Base by its type name followed

by its bracket-enclosed string value or a bracket-enclosed identifier that plays the role of a

placeholder for its string value. The first part of the 𝑒𝑣𝑎𝑙 function is defined as follows:

 𝑒𝑥𝑝 = 𝐵𝑜𝑜𝑙𝑒𝑎𝑛("true") → 𝑒𝑣𝑎𝑙(𝑒𝑥𝑝, 𝑒𝑛𝑣) = 𝑡𝑟𝑢𝑒

 𝑒𝑥𝑝 = 𝐵𝑜𝑜𝑙𝑒𝑎𝑛("false") → 𝑒𝑣𝑎𝑙(𝑒𝑥𝑝, 𝑒𝑛𝑣) = 𝑓𝑎𝑙𝑠𝑒

 𝑒𝑥𝑝 = 𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝑟) → 𝑒𝑣𝑎𝑙(𝑒𝑥𝑝, 𝑒𝑛𝑣) =

𝑆𝑦𝑠𝑡𝑒𝑚. 𝐼𝑛𝑡32. 𝑃𝑎𝑟𝑠𝑒(𝑟) where

𝑆𝑦𝑠𝑡𝑒𝑚. 𝐼𝑛𝑡32. 𝑃𝑎𝑟𝑠𝑒 is as defined in

(Microsoft Corporation 2017c).

 𝑒𝑥𝑝 = 𝑆𝑡𝑟𝑖𝑛𝑔(𝑟) → 𝑒𝑣𝑎𝑙(𝑒𝑥𝑝, 𝑒𝑛𝑣) = 𝑟𝑝 where 𝑟𝑝 is 𝑟

without the first and the last character

and where all occurrences of \" are

replaced with " and then all occurrences

of \\ are replaced with \.

 𝑒𝑥𝑝 = 𝐷𝑜𝑢𝑏𝑙𝑒(𝑟) → 𝑒𝑣𝑎𝑙(𝑒𝑥𝑝, 𝑒𝑛𝑣) =

𝑆𝑦𝑠𝑡𝑒𝑚. 𝐷𝑜𝑢𝑏𝑙𝑒. 𝑃𝑎𝑟𝑠𝑒(𝑟𝑠) where 𝑟𝑠 is

𝑟 without the first and the last character,

and 𝑆𝑦𝑠𝑡𝑒𝑚. 𝐷𝑜𝑢𝑏𝑙𝑒. 𝑃𝑎𝑟𝑠𝑒 is as

defined in (Microsoft Corporation

2017b).

To formally specify the evaluation of identifiers, we a helper function called 𝑙𝑜𝑜𝑘𝑢𝑝. Given an

environment and an identifier, this function tries to find and return a mapped value for the

103

identifier from a search in the given environment and a recursive iteration through the chain of

its parent environments. If it does not find the identifier, it returns 𝑛𝑢𝑙𝑙. We formally define

𝑙𝑜𝑜𝑘𝑢𝑝 as follows:

 𝑙𝑜𝑜𝑘𝑢𝑝(𝑒𝑛𝑣, 𝑖𝑑) = {
𝑒𝑛𝑣1(𝑖𝑑) where 𝑖𝑑 ∈ 𝐷𝑜𝑚𝑎𝑖𝑛(𝑒𝑛𝑣1)

𝑙𝑜𝑜𝑘𝑢𝑝(𝑒𝑛𝑣0, 𝑖𝑑) where 𝑖𝑑 ∉ 𝐷𝑜𝑚𝑎𝑖𝑛(𝑒𝑛𝑣1) ∧ 𝑒𝑛𝑣0 ≠ ∅
𝑛𝑢𝑙𝑙 else

.

We formally specify how to evaluate an Identifier. The 𝑒𝑣𝑎𝑙 function is defined for

Identifier as follows:

 𝑒𝑥𝑝 = 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟(𝑟) → 𝑒𝑣𝑎𝑙(𝑒𝑥𝑝, 𝑒𝑛𝑣) = 𝑙𝑜𝑜𝑘𝑢𝑝(𝑒𝑛𝑣, 𝑟).

We introduce accessor semantics. To formally specify the evaluation of accessors, we make use

of a helper function called 𝑎𝑝𝑝𝑙𝑦. We give an intuition and then explain parts of its definition.

The 𝑎𝑝𝑝𝑙𝑦 function is a ternary function taking a value of any data type in our language as its

first argument, a PropertyAccessor, FunctionAccessor, or LambdaAccessor as its second

argument, and an environment as its third argument. It yields a value of some data type in our

language. Informally, 𝑎𝑝𝑝𝑙𝑦 yields the result of applying an accessor to a value. For example,

when provided with a Boolean value 𝑏, a PropertyAccessor with the string value Inverse and

some environment, it yields the inverse (i.e. the negation) of 𝑏.

We extend the definition of the 𝑒𝑣𝑎𝑙 function with 𝑎𝑝𝑝𝑙𝑦 to define evaluations of Formulas

with Accessors:

 𝑒𝑥𝑝 = 𝐹𝑜𝑟𝑚𝑢𝑙𝑎(𝑓) “. ” 𝐴𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑎) → 𝑒𝑣𝑎𝑙(𝑒𝑥𝑝, 𝑒𝑛𝑣) =

𝑎𝑝𝑝𝑙𝑦(𝑒𝑣𝑎𝑙(𝑓, 𝑒𝑛𝑣), 𝑎, 𝑒𝑛𝑣)

We exemplarily show partial definitions for 𝑎𝑝𝑝𝑙𝑦 for each of the three Accessor types.

We give a partial 𝑎𝑝𝑝𝑙𝑦 definition for PropertyAccessors on Boolean values. Let 𝑏 be a Boolean

value different from 𝑛𝑢𝑙𝑙. Let 𝑝𝑎(𝑖𝑑) a PropertyAccessor with identifier 𝑖𝑑. Then:

 𝑎𝑝𝑝𝑙𝑦(𝑏, 𝑝𝑎(“𝐼𝑛𝑣𝑒𝑟𝑠𝑒”), 𝑒𝑛𝑣) = {
¬𝑏 𝑖𝑓 𝑏 = 𝑡𝑟𝑢𝑒 ∨ 𝑏 = 𝑓𝑎𝑙𝑠𝑒

𝑛𝑢𝑙𝑙 𝑖𝑓 𝑏 = 𝑛𝑢𝑙𝑙

 𝑎𝑝𝑝𝑙𝑦(𝑏, 𝑝𝑎(“𝐴𝑠𝑆𝑡𝑟𝑖𝑛𝑔”), 𝑒𝑛𝑣) = {

”true” 𝑖𝑓 𝑏 = 𝑡𝑟𝑢𝑒
”false” 𝑖𝑓 𝑏 = 𝑓𝑎𝑙𝑠𝑒

𝑛𝑢𝑙𝑙 𝑖𝑓 𝑏 = 𝑛𝑢𝑙𝑙

We give a partial 𝑎𝑝𝑝𝑙𝑦 definition for FunctionAccessors, also on Boolean values. Let

𝑓𝑎(𝑖𝑑, 𝑎𝑟𝑔𝑠) be a FunctionAccessor with some identifier 𝑖𝑑 and a sequence of Formulas 𝑎𝑟𝑔𝑠

that is derived from recursive iteration of its ArgumentList. Then:

104

 𝑎𝑝𝑝𝑙𝑦(𝑏, 𝑓𝑎(“𝐴𝑛𝑑”, 𝑎𝑟𝑔𝑠), 𝑒𝑛𝑣) =

 {
 𝑏 ∧ 𝑒𝑣𝑎𝑙(𝑎𝑟𝑔𝑠0, 𝑒𝑛𝑣) 𝑖𝑓 𝑏 = 𝑡𝑟𝑢𝑒 ∨ 𝑏 = 𝑓𝑎𝑙𝑠𝑒

𝑛𝑢𝑙𝑙 𝑖𝑓 𝑏 = 𝑛𝑢𝑙𝑙

where |𝑎𝑟𝑔𝑠| = 1 and 𝑒𝑣𝑎𝑙(𝑎𝑟𝑔𝑠0, 𝑒𝑛𝑣) is Boolean.

 𝑎𝑝𝑝𝑙𝑦(𝑏, 𝑓𝑎(“𝑂𝑟”, 𝑎𝑟𝑔𝑠), 𝑒𝑛𝑣) =

{
 𝑏 ∨ 𝑒𝑣𝑎𝑙(𝑎𝑟𝑔𝑠0, 𝑒𝑛𝑣) 𝑖𝑓 𝑏 = 𝑡𝑟𝑢𝑒 ∨ 𝑏 = 𝑓𝑎𝑙𝑠𝑒

𝑛𝑢𝑙𝑙 𝑖𝑓 𝑏 = 𝑛𝑢𝑙𝑙

where |𝑎𝑟𝑔𝑠| = 1 and 𝑒𝑣𝑎𝑙(𝑎𝑟𝑔𝑠0, 𝑒𝑛𝑣) is Boolean.

 𝑎𝑝𝑝𝑙𝑦(𝑏, 𝑓𝑎(“𝑋𝑜𝑟”, 𝑎𝑟𝑔𝑠), 𝑒𝑛𝑣) =

 {
 𝑏 ⊕ 𝑒𝑣𝑎𝑙(𝑎𝑟𝑔𝑠0, 𝑒𝑛𝑣) 𝑖𝑓 𝑏 = 𝑡𝑟𝑢𝑒 ∨ 𝑏 = 𝑓𝑎𝑙𝑠𝑒

𝑛𝑢𝑙𝑙 𝑖𝑓 𝑏 = 𝑛𝑢𝑙𝑙

where |𝑎𝑟𝑔𝑠| = 1 and 𝑒𝑣𝑎𝑙(𝑎𝑟𝑔𝑠0, 𝑒𝑛𝑣) is Boolean.

⊕ symbolizes the logical operation “exclusive or”.

 𝑎𝑝𝑝𝑙𝑦(𝑏, 𝑓𝑎(“𝐸𝑞𝑢𝑎𝑙𝑠”, 𝑎𝑟𝑔𝑠), 𝑒𝑛𝑣) =

{

𝑛𝑢𝑙𝑙 𝑖𝑓 𝑒𝑣𝑎𝑙(𝑎𝑟𝑔𝑠0, 𝑒𝑛𝑣) = 𝑛𝑢𝑙𝑙

𝑡𝑟𝑢𝑒 𝑖𝑓 𝑏 = 𝑒𝑣𝑎𝑙(𝑎𝑟𝑔𝑠0, 𝑒𝑛𝑣)

𝑓𝑎𝑙𝑠𝑒 𝑖𝑓 𝑏 ≠ 𝑒𝑣𝑎𝑙(𝑎𝑟𝑔𝑠0, 𝑒𝑛𝑣)

where |𝑎𝑟𝑔𝑠| = 1 and 𝑒𝑣𝑎𝑙(𝑎𝑟𝑔𝑠0, 𝑒𝑛𝑣) is Boolean.

 𝑎𝑝𝑝𝑙𝑦(𝑏, 𝑓𝑎(“𝐼𝑓𝐸𝑙𝑠𝑒”, 𝑎𝑟𝑔𝑠), 𝑒𝑛𝑣) =

{

𝑛𝑢𝑙𝑙 𝑖𝑓 𝑒𝑣𝑎𝑙(𝑎𝑟𝑔𝑠0, 𝑒𝑛𝑣) = 𝑛𝑢𝑙𝑙

𝑒𝑣𝑎𝑙(𝑎𝑟𝑔𝑠1, 𝑒𝑛𝑣) 𝑖𝑓 𝑒𝑣𝑎𝑙(𝑎𝑟𝑔𝑠0, 𝑒𝑛𝑣) = 𝑡𝑟𝑢𝑒

𝑒𝑣𝑎𝑙(𝑎𝑟𝑔𝑠2, 𝑒𝑛𝑣) 𝑖𝑓 𝑒𝑣𝑎𝑙(𝑎𝑟𝑔𝑠0, 𝑒𝑛𝑣) = 𝑓𝑎𝑙𝑠𝑒

where |𝑎𝑟𝑔𝑠| = 2 and 𝑒𝑣𝑎𝑙(𝑎𝑟𝑔𝑠0, 𝑒𝑛𝑣) is Boolean.

We give a partial 𝑎𝑝𝑝𝑙𝑦 definition for LambdaAccessors on Collection values. Let

𝑙𝑎(𝑖𝑑, 𝑝𝑎𝑟𝑎𝑚𝑠, 𝑒𝑥𝑝) a LambdaAccessor with identifier 𝑖𝑑, formula 𝑒𝑥𝑝, and a sequence of

identifiers 𝑝𝑎𝑟𝑎𝑚𝑠 that is derived from recursive iteration of its LambdaParameterList. Let 𝑐

be a Collection (for any type) that is different from 𝑛𝑢𝑙𝑙. Let 𝑚𝑒𝑚𝑏𝑒𝑟𝑠𝑂𝑓(𝑐) be 𝑐’s members.

Then:

 𝑎𝑝𝑝𝑙𝑦(𝑐, 𝑙𝑎(“𝐴𝑙𝑙”, 𝑝𝑎𝑟𝑎𝑚𝑠, 𝑒𝑥𝑝)) =

{

𝑛𝑢𝑙𝑙 𝑖𝑓 ∃𝑚 ∈ 𝑚𝑒𝑚𝑏𝑒𝑟𝑠𝑂𝑓(𝑐) ∶ 𝑒𝑣𝑎𝑙(𝑒𝑥𝑝, (𝑒𝑛𝑣, {(𝑝𝑎𝑟𝑎𝑚𝑠0, 𝑚)})) = 𝑛𝑢𝑙𝑙

𝑡𝑟𝑢𝑒 𝑖𝑓 ∀𝑚 ∈ 𝑚𝑒𝑚𝑏𝑒𝑟𝑠𝑂𝑓(𝑐) ∶ 𝑒𝑣𝑎𝑙(𝑒𝑥𝑝, (𝑒𝑛𝑣, {(𝑝𝑎𝑟𝑎𝑚𝑠0, 𝑚)})) = 𝑡𝑟𝑢𝑒
𝑓𝑎𝑙𝑠𝑒 𝑒𝑙𝑠𝑒

where |𝑝𝑎𝑟𝑎𝑚𝑠| = 2.

The remaining definition of 𝑎𝑝𝑝𝑙𝑦 corresponds to the informal descriptions given in Appendix

C. For all combinations of arguments where there is not definition given, 𝑎𝑝𝑝𝑙𝑦 yields 𝑛𝑢𝑙𝑙.

105

Appendix B ESDL Formal Specification

In this appendix, we give a formal specification of our ESDL. To do so, we introduce a

formalization to describe assignments of behavior sequences to ElementOccurrences and

Models on the ElementType and Language level, respectively. On this basis, we describe an

abstract machine and its state space, and we formally define behaviors and their effects on the

state. Finally, we show how an LTS could be derived with our abstract machine.

B.a Assignment of Behavior Sequences to Element Occurrences and Models

We introduce our formalization of assigning behaviors to Element Occurrences and to Models

on the Element Type and Language level, respectively. As a foundation, we introduce the

concept “scope”. Let 𝑆𝑐𝑜𝑝𝑒 be a set of [em] Projects.

Let 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟 the set of all possible instances of all Behavior types with all possible arguments.

Let 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 the set of all sequences of 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟 elements. Let 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝐶𝑎𝑟𝑟𝑖𝑒𝑟

be the union of the set of Languages used in Models in 𝑆𝑐𝑜𝑝𝑒’s Projects, and of the set of the

ElementTypes in these Languages. Let 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑀𝑎𝑝𝑝𝑖𝑛𝑔 be the set of all possible mappings

from 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝐶𝑎𝑟𝑟𝑖𝑒𝑟 to sequences of 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟.

In the following we assume that a user has defined a behavior mapping as some 𝑏𝑚 ∈

𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑀𝑎𝑝𝑝𝑖𝑛𝑔.

B.b Introduction into Our Abstract Machine

We introduce some basic definitions required to formally describe the abstract machine’s state

and its execution semantics.

Let 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 be the union of the set of all Models in the Projects in 𝑆𝑐𝑜𝑝𝑒, and of the set of the

ElementOccurrences in these Models.

Let 𝐸𝑛𝑎𝑏𝑙𝑒𝑚𝑒𝑛𝑡𝑇𝑎𝑠𝑘 = 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 × 𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 × 𝐶𝑢𝑠𝑡𝑜𝑚𝐸𝑛𝑎𝑏𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎 where

CustomEnablementData is as defined by the user. Let 𝐸𝑛𝑎𝑏𝑙𝑒𝑚𝑒𝑛𝑡𝑇𝑎𝑠𝑘𝐿𝑖𝑠𝑡 be the set of

multisets consisting of elements in 𝐸𝑛𝑎𝑏𝑙𝑒𝑚𝑒𝑛𝑡𝑇𝑎𝑠𝑘.

Let 𝐸𝑂𝐷𝑎𝑡𝑎𝑀𝑎𝑝 = {𝑒𝑜 → 𝑑 | 𝑒𝑜 ∈ 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒, 𝑑 ∈ 𝐶𝑢𝑠𝑡𝑜𝑚𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐷𝑎𝑡𝑎}, i.e.

the set of all possible mappings from ElementOccurrence elements to a CustomStorageData

value. Let 𝐷𝑎𝑡𝑎𝑅𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟𝑦 = {𝑟𝑖 → 𝑑𝑚 | 𝑟𝑖 ∈ 𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒, 𝑑𝑚 ∈ 𝐸𝑂𝐷𝑎𝑡𝑎𝑀𝑎𝑝},

i.e. the set of all possible mappings from RuntimeInstance elements to an 𝐸𝑂𝐷𝑎𝑡𝑎𝑀𝑎𝑝

element.

106

Let 𝐸𝑣𝑒𝑛𝑡 = 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 × 𝑆𝑡𝑟𝑖𝑛𝑔. Let 𝐸𝑣𝑒𝑛𝑡𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 be a sequence of 𝐸𝑣𝑒𝑛𝑡

elements.

Having the pre-requisites defined, we describe our abstract machine.

Let 𝑆𝑖𝑛𝑔𝑙𝑒𝑆𝑡𝑎𝑡𝑒 = 𝐸𝑛𝑎𝑏𝑙𝑒𝑚𝑒𝑛𝑡𝑇𝑎𝑠𝑘𝐿𝑖𝑠𝑡 × 𝐷𝑎𝑡𝑎𝑅𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟𝑦 × 𝐸𝑣𝑒𝑛𝑡𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒. Then we

can define our abstract machine’s 𝑆𝑡𝑎𝑡𝑒𝑆𝑝𝑎𝑐𝑒 as the powerset of 𝑆𝑖𝑛𝑔𝑙𝑒𝑆𝑡𝑎𝑡𝑒. Given some

𝑠𝑡𝑎𝑡𝑒𝑆𝑒𝑡𝑖 ∈ 𝑆𝑡𝑎𝑡𝑒𝑆𝑝𝑎𝑐𝑒, the transition of our abstract machine to 𝑠𝑡𝑎𝑡𝑒𝑆𝑒𝑡𝑖+1 ∈ 𝑆𝑡𝑎𝑡𝑒𝑆𝑝𝑎𝑐𝑒

can be defined using a function 𝑡𝑟𝑎𝑛𝑠: 𝑆𝑡𝑎𝑡𝑒𝑆𝑝𝑎𝑐𝑒 → 𝑆𝑡𝑎𝑡𝑒𝑆𝑝𝑎𝑐𝑒. We establish further

concepts to define this function concisely.

We introduce a family of functions 𝑒𝑥𝑒𝑐𝐵𝑒𝑛𝑣: 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟 × 𝐸𝑛𝑎𝑏𝑙𝑒𝑚𝑒𝑛𝑡𝑇𝑎𝑠𝑘𝐿𝑖𝑠𝑡 ×

𝐷𝑎𝑡𝑎𝑅𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟𝑦 × 𝐸𝑣𝑒𝑛𝑡𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 → 𝑆𝑎𝑡𝑒𝑆𝑝𝑎𝑐𝑒 with 𝑒𝑛𝑣 ∈ 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡. Given a

behavior, an initial enablement task list, an initial data repository, and a sequence of previously

reported events, each 𝑒𝑥𝑒𝑐𝐵𝑒𝑛𝑣 yields a new set of single states. As an intuition, 𝑒𝑥𝑒𝑐𝐵𝑒𝑛𝑣

describes the possible effects of executing a single behavior. We define 𝑒𝑥𝑒𝑐𝐵𝑒𝑛𝑣 in the

following subsections. For brevity, we write 𝑒(𝑏) for 𝑒𝑥𝑒𝑐𝐵𝑒𝑛𝑣(𝑏, 𝑡𝑙, 𝑑𝑟).

We further define a family of functions 𝑒𝑥𝑒𝑐𝐵𝑆𝑒𝑛𝑣: 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 ×

𝐸𝑛𝑎𝑏𝑙𝑒𝑚𝑒𝑛𝑡𝑇𝑎𝑠𝑘𝐿𝑖𝑠𝑡 × 𝐷𝑎𝑡𝑎𝑅𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟𝑦 × 𝐸𝑣𝑒𝑛𝑡𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 → 𝑆𝑎𝑡𝑒𝑆𝑝𝑎𝑐𝑒 with 𝑒𝑛𝑣 ∈

𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡. Given a sequence of behaviors, an initial enablement task list, an initial data

repository, and a sequence of previously reported events, each 𝑒𝑥𝑒𝑐𝐵𝑆𝑒𝑛𝑣 yields a new set of

single states. As an intuition, 𝑒𝑥𝑒𝑐𝐵𝑆𝑒𝑛𝑣 describes the effects of executing a sequence of

behaviors.

We use a recursive definition for 𝑒𝑥𝑒𝑐𝐵𝑆𝑒𝑛𝑣. For an empty behavior sequence, we define

𝑒𝑥𝑒𝑐𝐵𝑆𝑒𝑛𝑣 as:

𝑒𝑥𝑒𝑐𝐵𝑆𝑒𝑛𝑣((), 𝑡𝑙, 𝑑𝑟, 𝑒𝑠) = {(𝑡𝑙, 𝑑𝑟, 𝑒𝑠)}.

For a non-empty behavior sequence, i.e. for |𝑏𝑠| > 0, we define 𝑒𝑥𝑒𝑐𝐵𝑆𝑒𝑛𝑣 as:

𝑒𝑥𝑒𝑐𝐵𝑆𝑒𝑛𝑣((𝑏𝑠0, … , 𝑏𝑠𝑛), 𝑡𝑙, 𝑑𝑟, 𝑒𝑠)

= ⋃ 𝑒𝑥𝑒𝑐𝐵𝑆𝑒𝑛𝑣((𝑏𝑠1, … , 𝑏𝑠𝑛), 𝑡𝑙∗, 𝑑𝑟∗, 𝑒𝑠∗)
(𝑡𝑙∗,𝑑𝑟∗,𝑒𝑠∗)∈

𝑒𝑥𝑒𝑐𝐵𝑒𝑛𝑣(𝑏𝑠0,𝑡𝑙,𝑑𝑟,𝑒𝑠)

.

Let 𝑏𝑎𝑠𝑒𝐸𝑛𝑣(𝑠, 𝑖, 𝑑) be the environment with the mappings

 CurrentRuntimeInstance → 𝑖,

 EnablementData → 𝑑,

 CurrentModel → 𝑠 if 𝑠 ∈ 𝑀𝑜𝑑𝑒𝑙,

107

 CurrentObjectOccurrence → 𝑠 if 𝑠 ∈ 𝑂𝑏𝑗𝑒𝑐𝑡𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒,

 CurrentRelationshipOccurrence → 𝑠 if 𝑠 ∈ 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒.

Let 𝑡: 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 → 𝐿𝑎𝑛𝑔𝑢𝑎𝑔𝑒 ∪ 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒 the function where 𝑡(𝑠) yields the Language of

𝑠 if 𝑠 ∈ 𝑀𝑜𝑑𝑒𝑙, or the ElementType of 𝑠 if 𝑠 ∈ 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒. Let 𝑏𝑠(𝑠) =

(𝑏𝑠0, 𝑏𝑠1, … , 𝑏𝑠𝑛) = 𝑏𝑚(𝑡(𝑠)), describing the sequence of behaviors assigned to the respective

𝑠 on the ElementType or Language level.

We define the function 𝑠𝑖𝑛𝑔𝑙𝑒𝑆𝑡𝑎𝑡𝑒𝑇𝑟𝑎𝑛𝑠: 𝑆𝑖𝑛𝑔𝑙𝑒𝑆𝑡𝑎𝑡𝑒 → 𝑆𝑡𝑎𝑡𝑒𝑆𝑝𝑎𝑐𝑒 as:

𝑠𝑖𝑛𝑔𝑙𝑒𝑆𝑡𝑎𝑡𝑒𝑇𝑟𝑎𝑛𝑠(𝑡𝑙, 𝑑𝑟, 𝑒𝑠)

= ⋃ 𝑒𝑥𝑒𝑐𝐵𝑆𝑏𝑎𝑠𝑒𝐸𝑛𝑣(𝑠,𝑖,𝑑)(𝑏𝑠(𝑠), 𝑡𝑙 ∖ 𝑡, 𝑑𝑟, 𝑒𝑠).

𝑡=(𝑠,𝑖,𝑑)∈𝑡𝑙

As an intuition, 𝑠𝑖𝑛𝑔𝑙𝑒𝑆𝑡𝑎𝑡𝑒𝑇𝑟𝑎𝑛𝑠 yields for all task in the task list the set of possible states

after executing the behavior sequence that is assigned to the respective task’s subject on the

ElementType or Language level.

Using these building blocks, we can define our abstract machine’s transition function now:

𝑡𝑟𝑎𝑛𝑠(𝑠𝑡𝑎𝑡𝑒𝑠𝑖) = ⋃ 𝑠𝑖𝑛𝑔𝑙𝑒𝑆𝑡𝑎𝑡𝑒𝑇𝑟𝑎𝑛𝑠(𝑡𝑙, 𝑑𝑟, 𝑒𝑠)

(𝑡𝑙,𝑑𝑟,𝑒𝑠)∈𝑠𝑡𝑎𝑡𝑒𝑠𝑖

.

As an intuition, 𝑡𝑟𝑎𝑛𝑠 yields the result of applying 𝑠𝑖𝑛𝑔𝑙𝑒𝑆𝑡𝑎𝑡𝑒𝑇𝑟𝑎𝑛𝑠 on all states.

B.c Behavior Types

We formally give the semantics of the behaviors by partially defining 𝑒𝑥𝑒𝑐𝐵𝑒𝑛𝑣 for each

behavior type.

Behavior Type “Enable Element Occurrence”. Let 𝑒𝑒𝑜(𝑟𝑖, 𝑒𝑜, 𝑑, 𝑛𝑜𝑤) be a behavior of type

“Enable Element Occurrence”. Let 𝑟𝑖 be its “Runtime Instance” argument, 𝑒𝑜 its “Element

Occurrence” argument, 𝑑 its “Data to pass on” argument, 𝑛𝑜𝑤 its “Perform now instead of

scheduling it” argument. Then:

 𝑒(𝑒𝑒𝑜(𝑟𝑖, 𝑒𝑜, 𝑑, 𝑡𝑟𝑢𝑒)) = 𝑒𝑥𝑒𝑐𝐵𝑆𝑏𝑎𝑠𝑒𝐸𝑛𝑣(𝑠∗,𝑖∗,𝑑∗)(𝑏𝑠(𝑠∗), 𝑡𝑙, 𝑑𝑟, 𝑒𝑠),

 𝑒(𝑒𝑒𝑜(𝑟𝑖, 𝑒𝑜, 𝑑, 𝑓𝑎𝑙𝑠𝑒)) = {(𝑡𝑙 ∪ {(𝑠∗, 𝑖∗, 𝑑∗)}, 𝑑𝑟, 𝑒𝑠)}

with 𝑠∗ = 𝑒𝑣𝑎𝑙(𝑒𝑜, 𝑒𝑛𝑣), 𝑖∗ = 𝑒𝑣𝑎𝑙(𝑟𝑖, 𝑒𝑛𝑣), and 𝑑∗ = 𝑒𝑣𝑎𝑙(𝑑, 𝑒𝑛𝑣).

Behavior Type “Enable Model”. Let 𝑒𝑚(𝑛𝑒𝑤, 𝑟𝑖, 𝑚, 𝑑, 𝑛𝑜𝑤) be a behavior of type “Enable

Model”. Let 𝑛𝑒𝑤 be its “Create new runtime instance” argument, 𝑟𝑖 be its “Runtime Instance”

108

argument, 𝑚 its “Model” argument, 𝑑 its “Data to pass on” argument, 𝑛𝑜𝑤 its “Perform now

instead of scheduling it” argument. Further let

 𝑖∗ = {
𝑒𝑣𝑎𝑙(𝑟𝑖, 𝑒𝑛𝑣) if 𝑛𝑒𝑤 = 𝑓𝑎𝑙𝑠𝑒

𝑓𝑖𝑟𝑠𝑡𝐹𝑟𝑒𝑒𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒(𝑑𝑟) else
,

 𝑑𝑟∗ = {
𝑑𝑟 if 𝑛𝑒𝑤 = 𝑓𝑎𝑙𝑠𝑒

𝑑𝑟 ∪ {𝑓𝑖𝑟𝑠𝑡𝐹𝑟𝑒𝑒𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒(𝑑𝑟) → { }} else

where 𝑓𝑖𝑟𝑠𝑡𝐹𝑟𝑒𝑒𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒: 𝐷𝑎𝑡𝑎𝑅𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟𝑦 → 𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 is the function

that yields 𝑟𝑖𝑖 ∈ 𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 with 𝑖 being the number of RuntimeInstances used in the

given DataRepository.

Then:

𝑒(𝑒𝑚(𝑛𝑒𝑤, 𝑟𝑖, 𝑚, 𝑑, 𝑡𝑟𝑢𝑒)) = 𝑒𝑥𝑒𝑐𝐵𝑆𝑏𝑎𝑠𝑒𝐸𝑛𝑣(𝑠∗,𝑖∗,𝑑∗)(𝑏𝑠(𝑠∗), 𝑡𝑙, 𝑑𝑟∗, 𝑒𝑠),

𝑒(𝑒𝑚(𝑛𝑒𝑤, 𝑟𝑖, 𝑚, 𝑑, 𝑓𝑎𝑙𝑠𝑒)) = {(𝑡𝑙 ∪ {(𝑠∗, 𝑖∗, 𝑑∗)}, 𝑑𝑟∗, 𝑒𝑠)}

with 𝑠∗ = 𝑒𝑣𝑎𝑙(𝑒𝑜, 𝑒𝑛𝑣), and 𝑑∗ = 𝑒𝑣𝑎𝑙(𝑑, 𝑒𝑛𝑣).

Behavior Type “For one item in a collection”. Let 𝑓𝑜(𝑣𝑛, 𝑐, 𝑐𝑏) be a behavior of type “For

one item in a collection”. Let 𝑣𝑛 be its “Item Variable Name” argument, 𝑐 be its “Collection”

argument, 𝑐𝑏 its “Child Behaviors” argument. Then:

𝑒(𝑓𝑜(𝑣𝑛, 𝑐, 𝑐𝑏)) = ⋃ 𝑒𝑥𝑒𝑐𝐵𝑆𝑒𝑛𝑣∗(𝑐𝑏, 𝑡𝑙, 𝑑𝑟, 𝑒𝑠)

𝑐𝑚∈𝑚𝑒𝑚𝑏𝑒𝑟𝑠𝑂𝑓(𝑒𝑣𝑎𝑙(𝑐,𝑒𝑛𝑣))

with 𝑒𝑛𝑣∗ = (𝑒𝑛𝑣, {𝑣𝑛 → 𝑐𝑚}).

Behavior Type “For each item in a collection”. Let 𝑓𝑒(𝑣𝑛, 𝑐, 𝑐𝑏) be a behavior of type “For

each item in a collection”. Let 𝑣𝑛 be its “Item Variable Name” argument, 𝑐 be its “Collection”

argument, 𝑐𝑏 its “Child Behaviors” argument. To concisely describe the “looping” through the

collection, we introduce a family of non-deterministic helper functions

𝑓𝑒𝐻𝑒𝑙𝑝𝑒𝑟𝑒𝑛𝑣,𝑇: 𝐸𝑛𝑎𝑏𝑙𝑒𝑚𝑒𝑛𝑡𝑇𝑎𝑠𝑘𝐿𝑖𝑠𝑡 × 𝐷𝑎𝑡𝑎𝑅𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟𝑦 × 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛〈𝑇〉 × 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 ×

𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 → 𝑆𝑡𝑎𝑡𝑒𝑆𝑝𝑎𝑐𝑒 with 𝑒𝑛𝑣 ∈ 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 and 𝑇 being some type.

We use a recursive definition for 𝑓𝑒𝐻𝑒𝑙𝑝𝑒𝑟𝑒𝑛𝑣,𝑇. For an empty collection value, we define

𝑓𝑒𝐻𝑒𝑙𝑝𝑒𝑟𝑒𝑛𝑣,𝑇 as:

𝑓𝑒𝐻𝑒𝑙𝑝𝑒𝑟𝑒𝑛𝑣,𝑇(𝑡𝑙, 𝑑𝑟, 𝑒𝑠, (), 𝑣𝑛, 𝑐𝑏) = {(𝑡𝑙, 𝑑𝑟, 𝑒𝑠)}.

For a non-empty behavior sequence, i.e. for |𝑐𝑣| > 0, we define 𝑒𝑥𝑒𝑐𝐵𝑆𝑒𝑛𝑣 as:

109

𝑓𝑒𝐻𝑒𝑙𝑝𝑒𝑟𝑒𝑛𝑣,𝑇(𝑡𝑙, 𝑑𝑟, 𝑒𝑠, 𝑐𝑣, 𝑣𝑛, 𝑐𝑏)

= ⋃ 𝑓𝑒𝐻𝑒𝑙𝑝𝑒𝑟𝑒𝑛𝑣,𝑇(𝑡𝑙∗, 𝑑𝑟∗, 𝑒𝑠∗, (𝑐𝑣1, … , 𝑐𝑣𝑛), 𝑣𝑛, 𝑐𝑏)

(𝑡𝑙∗,𝑑𝑟∗,𝑒𝑠∗)∈

𝑒𝑥𝑒𝑐𝐵𝑆𝑒𝑛𝑣∗(𝑐𝑏,𝑡𝑙,𝑑𝑟)

with 𝑒𝑛𝑣∗ = (𝑒𝑛𝑣, {𝑣𝑛 → 𝑐𝑚}). Then we can provide the partial definition for 𝑒𝑥𝑒𝑐𝐵 that is

relevant for behaviors of type “For each item in a collection” as:

 𝑒(𝑓𝑒(𝑣𝑛, 𝑐, 𝑐𝑏)) = 𝑓𝑒𝐻𝑒𝑙𝑝𝑒𝑟𝑒𝑛𝑣,𝑇(𝑡𝑙, 𝑑𝑟, 𝑒𝑠, 𝑒𝑣𝑎𝑙(𝑐, 𝑒𝑛𝑣), 𝑣𝑛, 𝑐𝑏)

where 𝑇 is the type of members of the collection as given by 𝑒𝑣𝑎𝑙(𝑐, 𝑒𝑛𝑣).

Behavior Type “If/Then/Else”. Let 𝑖𝑓(𝑐, 𝑡𝑏, 𝑒𝑏) be a behavior of type “If/Then/Else”. Let 𝑐

be its “Condition” argument, 𝑡𝑏 be its “Then Behaviors” argument, 𝑒𝑏 its “Else Behaviors”

argument. Then:

 𝑒(𝑖𝑓(𝑐, 𝑡𝑏, 𝑒𝑏)) = {
𝑒𝑥𝑒𝑐𝐵𝑆𝑒𝑛𝑣(𝑡𝑏, 𝑡𝑙, 𝑑𝑟, 𝑒𝑠) if 𝑒𝑣𝑎𝑙(𝑐, 𝑒𝑛𝑣) = 𝑡𝑟𝑢𝑒

𝑒𝑥𝑒𝑐𝐵𝑆𝑒𝑛𝑣(𝑒𝑏, 𝑡𝑙, 𝑑𝑟, 𝑒𝑠) if 𝑒𝑣𝑎𝑙(𝑐, 𝑒𝑛𝑣) = 𝑓𝑎𝑙𝑠𝑒

Behavior Type “Load Data”. Let 𝑙𝑑(𝑟𝑖, 𝑒𝑜, 𝑣𝑛, 𝑐𝑏) be a behavior of type “Load Data”. Let 𝑟𝑖

be its “Runtime Instance” argument, 𝑒𝑜 its “Element Occurrence” argument, 𝑣𝑛 its “Variable

Name” argument, 𝑐𝑏 its “Child Behaviors” argument.

To concisely describe the approach of looking up data stored for a RuntimeInstance and an

ElementOccurrence, and of alternatively creating a new CustomDataInstance if no data was

previously stored, we introduce some helper definitions.

We define the helper function 𝑙𝑜𝑜𝑘𝑢𝑝𝐸𝑂𝐷𝑎𝑡𝑎𝑀𝑎𝑝 that maps a RuntimeInstance and a

𝐷𝑎𝑡𝑎𝑅𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟𝑦 element to a 𝐸𝑂𝐷𝑎𝑡𝑎𝑀𝑎𝑝 element:

 𝑙𝑜𝑜𝑘𝑢𝑝𝐸𝑂𝐷𝑎𝑡𝑎𝑀𝑎𝑝(𝑟𝑖, 𝑑𝑟) = {
𝑑𝑟(𝑟𝑖) if ∃𝑥: (𝑟𝑖 → 𝑥) ∈ 𝑑𝑟

{ } else

We define the helper function 𝑙𝑜𝑎𝑑𝑂𝑟𝑁𝑒𝑤: 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 × 𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 ×

𝐷𝑎𝑡𝑎𝑅𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟𝑦 → 𝐶𝑢𝑠𝑡𝑜𝑚𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐷𝑎𝑡𝑎 as:

𝑙𝑜𝑎𝑑𝑂𝑟𝑁𝑒𝑤(𝑒𝑜, 𝑟𝑖, 𝑑𝑟)

= {
𝑑𝑚(𝑒𝑜) if ∃𝑥: (𝑒𝑜 → 𝑥) ∈ 𝑑𝑚

𝐷𝑒𝑓𝑎𝑢𝑙𝑡(𝐶𝑢𝑠𝑡𝑜𝑚𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐷𝑎𝑡𝑎) else

with 𝑑𝑚 = 𝑙𝑜𝑘𝑢𝑝𝐸𝑂𝐷𝑎𝑡𝑎𝑀𝑎𝑝(𝑟𝑖, 𝑑𝑟). Now we can provide the partial definition for 𝑒𝑥𝑒𝑐𝐵

that is relevant for behaviors of type “Load Data” as:

 𝑒(𝑙𝑑(𝑟𝑖, 𝑒𝑜, 𝑣𝑛, 𝑐𝑏)) = 𝑒𝑥𝑒𝑐𝐵𝑆𝑒𝑛𝑣∗(𝑐𝑏, 𝑡𝑙, 𝑑𝑟, 𝑒𝑠)

with 𝑒𝑛𝑣∗ = (𝑒𝑛𝑣, {𝑣𝑛 → 𝑙𝑜𝑎𝑑𝑂𝑟𝑁𝑒𝑤(𝑒𝑜, 𝑟𝑖, 𝑑𝑟)}).

110

Behavior Type “Release Runtime Instance”. Let 𝑟𝑟𝑖(𝑟𝑖) be a behavior of type “Release

Runtime Instance”. Let 𝑟𝑖 be its “Runtime Instance” argument.

Let 𝑟𝑖𝑠 = {𝑒𝑣𝑎𝑙(𝑟𝑖, 𝑒𝑛𝑣) → 𝑥 | 𝑥 ∈ 𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐷𝑎𝑡𝑎𝐸𝑛𝑡𝑟𝑦}, i.e. the set of all possible

mappings from the RuntimeInstance as specified by the formula in the argument to some

RuntimeInstanceDataEntry. Then:

 𝑒(𝑟𝑟𝑖(𝑟𝑖)) = {(𝑡𝑙, 𝑑𝑟 ∖ 𝑟𝑖𝑠, 𝑒𝑠)}.

Behavior Type “Report Event”. Let 𝑟𝑒(𝑒𝑜, 𝑒𝑐) be a behavior of type “Report Event”. Let 𝑒𝑜

be its “Element Occurrence” argument, 𝑒𝑐 its “Event Content” argument. Then:

 𝑒(𝑟𝑒(𝑒𝑜, 𝑒𝑐)) = {(𝑡𝑙, 𝑑𝑟, (𝑒𝑠0, … , 𝑒𝑠|𝑒𝑠|−1, 𝑒∗))}

with 𝑒∗ = (𝑒𝑣𝑎𝑙(𝑒𝑜, 𝑒𝑛𝑣), 𝑒𝑣𝑎𝑙(𝑒𝑐, 𝑒𝑛𝑣)).

Behavior Type “Store Data”. Let 𝑠𝑑(𝑟𝑖, 𝑒𝑜, 𝑑) be a behavior of type “Store Data”. Let 𝑟𝑖 be

its “Runtime Instance” argument, 𝑒𝑜 its “Element Occurrence” argument, 𝑑 its “Data to be

stored” argument.

To concisely describe the formalism of storing data for a RuntimeInstance and an

ElementOccurrence, we introduce some helper definitions.

Let 𝑒𝑜𝑣 = 𝑒𝑣𝑎𝑙(𝑒𝑜, 𝑒𝑛𝑣), i.e. the ElementOccurrence value as specified by the formula in the

respective argument. Let 𝑒𝑜𝑚 = {𝑒𝑜𝑣 → 𝑥 | 𝑥 ∈ 𝐶𝑢𝑠𝑡𝑜𝑚𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐷𝑎𝑡𝑎} i.e. the set of all

possible mappings from 𝑒𝑜𝑣 to a CustomStorageData value. Let 𝑒𝑜𝑚∗ = {𝑒𝑜𝑣 →

𝑒𝑣𝑎𝑙(𝑑, 𝑒𝑛𝑣)}, i.e. the set containing a mapping from 𝑒𝑜𝑣 to the new data as specified by the

formula 𝑑.

Let 𝑟𝑖𝑠 be defined as for the behavior type “Release Runtime Instance”. Let 𝑟𝑖𝑠∗ =

(𝑟𝑖𝑠 ∖ 𝑒𝑜𝑚) ∪ 𝑒𝑜𝑚∗, i.e. a set of ElementOccurrence to CustomStorageData mappings where

the mapping from 𝑒𝑜𝑣 is replaced with the evaluation of the formula in the “Data to be stored”

argument. Then:

𝑒(𝑠𝑑(𝑟𝑖, 𝑒𝑜, 𝑑)) = {(𝑡𝑙, (𝑑𝑟 ∖ 𝑟𝑖𝑠) ∪ 𝑟𝑖𝑠∗, 𝑒𝑠)}.

B.d Deriving an LTS using Our Abstract Machine

Given some initial Model 𝑀 in a 𝑆𝑐𝑜𝑝𝑒’s Project, let 𝑡𝑙0 =

{(𝑀, 𝑟𝑖0, 𝐷𝑒𝑓𝑎𝑢𝑙𝑡(𝐶𝑢𝑠𝑡𝑜𝑚𝐸𝑛𝑎𝑏𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎))} be an initial 𝐸𝑛𝑎𝑏𝑙𝑒𝑚𝑒𝑛𝑡𝑇𝑎𝑠𝑘𝐿𝑖𝑠𝑡. Let

𝑑𝑟0 = {𝑟𝑖0 → { }} be an initial 𝐷𝑎𝑡𝑎𝑅𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟𝑦. Let 𝑒𝑠0 = () be an initial empty

EventSequence. Then let 𝑠𝑡𝑎𝑡𝑒𝑆𝑒𝑡0 = {(𝑡𝑙0, 𝑑𝑟0, 𝑒𝑠0)} be the initial 𝑆𝑡𝑎𝑡𝑒𝑆𝑝𝑎𝑐𝑒.

111

The LTS could be specified based on the sequences of reported events 𝑒𝑠 of (𝑡𝑙, 𝑑𝑟, 𝑒𝑠) ∈

𝑠𝑡𝑎𝑡𝑒𝑆𝑒𝑡𝑖 derived from transitioning the abstract machine starting with 𝑠𝑡𝑎𝑡𝑒𝑆𝑒𝑡0. This

however is just a theoretical way of specifying the LTS that cannot directly be implemented in

software. For example, if the given behaviors entail a loop, the resulting sequences of events

will become infinite. Because this will result in the LTS becoming infinite as well, a computer

could not store a direct representation of the LTS. An actual model checker must therefore

derive a finite LTS from the given behaviors to allow solving typical model checking problems.

For performance reasons, an actual model checker should also detect if branches in the tree

merge again at some point to reduce the number of states that need to be processed. The CADP

model checker used by our implementation takes care of these aspects.

Also, in our definitions for the abstract machine, there are some gaps that were deliberately left

undefined for conciseness. If an implementation of our abstract machine runs into such a gap,

it must stop its operation and should issue a message giving information about the situation

which led to running into the respective gap.

For example, if an implementation of our abstract machine is requested to enable a wrongly

specified ElementOccurrence, then it is unclear what it should do. In such a case, stopping its

operation makes sense. This example can be formally described with an “Element Occurrence”

argument of an “Enable Element Occurrence” behavior evaluating to 𝑛𝑢𝑙𝑙. In this case, 𝑠∗

would be 𝑛𝑢𝑙𝑙. Because 𝑏𝑠(𝑠∗) with 𝑠∗ = 𝑛𝑢𝑙𝑙 is not defined, the abstract machine

implementation would run into a definition gap and would have to stop its operation as per our

specification. In our implementation, we handle such gaps accordingly.

112

Appendix C Reference on Data Types in Our Languages

In this appendix, we provide tabular references for properties, functions and lambdas supported

by the data types of our languages.

Let a “predecessor expression” be an expression that evaluates to an instance of some specific

data type. We call this data type’s “properties” all the supported property accessors that can be

appended to the type’s predecessor expressions. Similarly, we call this data type’s “functions”

and “lambdas” all the supported function and lambda accessors that can be appended to the

type’s predecessor expressions, respectively. We denote with “predecessor value” the value that

a predecessor expression evaluates to.

C.a Boolean

C.a.a Properties

Name Return Type Description

Inverse Boolean Returns the inverse of the predecessor value.

AsString String Returns the String representation of the predecessor value, i.e. either true or

false.

C.a.b Functions

Name Parameters

with Types

Return

Type

Description

And other: Boolean Boolean Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the result of logical

conjunction of the predecessor value and 𝑜𝑡ℎ𝑒𝑟.

Or other: Boolean Boolean Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the result of the logical

disjunction of the predecessor value and 𝑜𝑡ℎ𝑒𝑟.

Xor other: Boolean Boolean Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the result of applying

exclusive or to the predecessor value and 𝑜𝑡ℎ𝑒𝑟.

Equals other: Boolean Boolean Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Returns 𝑡𝑟𝑢𝑒 if the predecessor

value and 𝑜𝑡ℎ𝑒𝑟 are equal. Else, returns 𝑓𝑎𝑙𝑠𝑒.

IfElse ifTerm: <T>,

elseTerm: <T>

<T> Returns 𝑖𝑓𝑇𝑒𝑟𝑚 if the predecessor value is 𝑡𝑟𝑢𝑒.

Returns 𝑒𝑙𝑠𝑒𝑇𝑒𝑟𝑚 if the predecessor value is 𝑓𝑎𝑙𝑠𝑒.

<T> is a placeholder for a single arbitrary type.

C.b Integer

C.b.a Properties

Name Return Type Description

Negation Integer Returns the negation of the predecessor value.

AsString String Returns a String representation of the predecessor value as provided by the

LNT-internal transformation according to (Champelovier et al. 2017).

113

C.b.b Functions

Name Parameters

with Types

Return Type Description

Equals other: Integer Boolean Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Returns 𝑡𝑟𝑢𝑒 if

the predecessor value and 𝑜𝑡ℎ𝑒𝑟 are equal.

Else, returns 𝑓𝑎𝑙𝑠𝑒.

Unequals other: Integer Boolean Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Returns 𝑓𝑎𝑙𝑠𝑒 if

the predecessor value and 𝑜𝑡ℎ𝑒𝑟 are equal.

Else, returns 𝑡𝑟𝑢𝑒.

GreaterThan other: Integer Boolean Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the

truth value of the predecessor value being

greater than 𝑜𝑡ℎ𝑒𝑟.

LessThan other: Integer Boolean Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the

truth value of the predecessor value being less

than 𝑜𝑡ℎ𝑒𝑟.

GreaterThanOrEquals other: Integer Boolean Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the

truth value of the predecessor value being

greater than or equals 𝑜𝑡ℎ𝑒𝑟.

LessThanOrEquals other: Integer Boolean Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the

truth value of the predecessor value being less

than or equals 𝑜𝑡ℎ𝑒𝑟.

Plus other: Integer Integer Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the

result of adding 𝑜𝑡ℎ𝑒𝑟 to the predecessor

value.

Minus other: Integer Integer Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the

result of subtracting 𝑜𝑡ℎ𝑒𝑟 from the

predecessor value.

Times other: Integer Integer Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the

result of multiplying the predecessor value

with 𝑜𝑡ℎ𝑒𝑟.

DividedBy other: Integer Integer Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the

result of dividing the predecessor value by

𝑜𝑡ℎ𝑒𝑟.

Modulo other: Integer Integer Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the

result of applying the modulo operator to the

predecessor value and 𝑜𝑡ℎ𝑒𝑟.

C.c Double

C.c.a Properties

Name Return Type Description

Negation Double Returns the negation of the predecessor value.

AsString String Returns a String representation of the predecessor

value as provided by the LNT-internal

transformation according to (Champelovier et al.

2017).

114

C.c.b Functions

Name Parameters

with Types

Return Type Description

Equals other: Double Boolean Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Returns 𝑡𝑟𝑢𝑒 if

the predecessor value and 𝑜𝑡ℎ𝑒𝑟 are equal.

Else, returns 𝑓𝑎𝑙𝑠𝑒.

Unequals other: Double Boolean Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Returns 𝑓𝑎𝑙𝑠𝑒 if

the predecessor value and 𝑜𝑡ℎ𝑒𝑟 are equal.

Else, returns 𝑡𝑟𝑢𝑒.

GreaterThan other: Double Boolean Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the

truth value of the predecessor value being

greater than 𝑜𝑡ℎ𝑒𝑟.

LessThan other: Double Boolean Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the

truth value of the predecessor value being less

than 𝑜𝑡ℎ𝑒𝑟.

GreaterThanOrEquals other: Double Boolean Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the

truth value of the predecessor value being

greater than or equals 𝑜𝑡ℎ𝑒𝑟.

LessThanOrEquals other: Double Boolean Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the

truth value of the predecessor value being less

than or equals 𝑜𝑡ℎ𝑒𝑟.

Plus other: Double Double Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the

result of adding 𝑜𝑡ℎ𝑒𝑟 to the predecessor

value.

Minus other: Double Double Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the

result of subtracting 𝑜𝑡ℎ𝑒𝑟 from the

predecessor value.

Times other: Double Double Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the

result of multiplying the predecessor value

with 𝑜𝑡ℎ𝑒𝑟.

DividedBy other: Double Double Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the

result of dividing the predecessor value by

𝑜𝑡ℎ𝑒𝑟.

C.d String

C.d.a Properties

Name Return Type Description

Length Integer Returns the length of the String as determined with

the LNT-internal length function according to

(Champelovier et al. 2017).

C.d.b Functions

Name Parameters

with Types

Return Type Description

Equals other: String Boolean Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Returns 𝑡𝑟𝑢𝑒 if

the predecessor value and 𝑜𝑡ℎ𝑒𝑟 are equal.

Else, returns 𝑓𝑎𝑙𝑠𝑒.

Unequals other: String Boolean Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Returns 𝑓𝑎𝑙𝑠𝑒 if

the predecessor value and 𝑜𝑡ℎ𝑒𝑟 are equal.

Else, returns 𝑡𝑟𝑢𝑒.

115

Name Parameters

with Types

Return Type Description

ConcatenatedWith other: String String Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the

concatenation of the predecessor value and

𝑜𝑡ℎ𝑒𝑟.

Substring startIndex:

Index

String Returns 𝑛𝑢𝑙𝑙 if 𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥 is 𝑛𝑢𝑙𝑙 or if

𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥 < 0 or if 𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥 > length of

the predecessor value. Else, returns the

substring of the predecessor value that starts at

index 𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥.

Substring startIndex:

Integer, length:

Integer

String Returns 𝑛𝑢𝑙𝑙 if 𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥 is 𝑛𝑢𝑙𝑙 or if

𝑙𝑒𝑛𝑔𝑡ℎ is 𝑛𝑢𝑙𝑙 or if 𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥 < 0 or if

𝑙𝑒𝑛𝑔𝑡ℎ < 0 or if 𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥 > length of the

predecessor value or if 𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥 +

𝑙𝑒𝑛𝑔𝑡ℎ > length of the predecessor value.

Else, returns the substring of the predecessor

value that starts at index 𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥 and has

the length 𝑙𝑒𝑛𝑔𝑡ℎ.

C.e Collection<T>

T is a placeholder for a single arbitrary type.

C.e.a Properties

Name Return Type Description

Count Integer Returns the number of members in the predecessor

value.

Head T Returns 𝑛𝑢𝑙𝑙 if the predecessor value is empty.

Else, returns the first member of the predecessor

value.

Tail Collection<T> Returns 𝑛𝑢𝑙𝑙 if the predecessor value is empty.

Else, returns the predecessor value without its first

member.

C.e.b Functions

Name Parameters

with Types

Return Type Description

AppendedWith other:

Collection<T>

Collection<T> Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns

predecessor value appended with 𝑜𝑡ℎ𝑒𝑟 using

the LNT union function according to

(Champelovier et al. 2017).

C.e.c Lambdas

Each of the lambdas iterate through the predecessor value’s members and evaluates the inner

formula in such a way that the given parameter maps to the respective member.

116

Name Parameters

with Types

Expected

Lambda

Body Type

Return Type Description

All item: T Boolean Boolean Returns 𝑛𝑢𝑙𝑙 if the inner formula evaluates to

𝑛𝑢𝑙𝑙 during iteration. Returns 𝑓𝑎𝑙𝑠𝑒 if the

inner formula evaluates to 𝑓𝑎𝑙𝑠𝑒 during

iteration. Else, returns 𝑡𝑟𝑢𝑒.

Any item: T Boolean Boolean Returns 𝑛𝑢𝑙𝑙 if the inner formula evaluates to

𝑛𝑢𝑙𝑙 during iteration. Returns 𝑡𝑟𝑢𝑒 if the inner

formula evaluates to 𝑡𝑟𝑢𝑒 during iteration.

Else, returns 𝑓𝑎𝑙𝑠𝑒.

Single item: T Boolean T Returns 𝑛𝑢𝑙𝑙 if the inner formula evaluates to

𝑛𝑢𝑙𝑙 during iteration. Returns the first

iteration’s member that the inner formula

evaluates to 𝑡𝑟𝑢𝑒 for. Else, returns 𝑛𝑢𝑙𝑙.

Where item: T Boolean Collection<T> Returns 𝑛𝑢𝑙𝑙 if the inner formula evaluates to

𝑛𝑢𝑙𝑙 during iteration. Else, returns the

predecessor value that is filtered so that only

those members remain that the inner formula

evaluates to 𝑡𝑟𝑢𝑒 for.

Select item: T U Collection<U> Returns 𝑛𝑢𝑙𝑙 if U is a Collection type.

Else, returns a collection where each member

of the predecessor value is mapped to the

evaluation result of the inner formula.

U is a placeholder for a single arbitrary type.

In the current implementation, specifying a

collection type for U is not supported, i.e. you

cannot describe collections of collections with

Select.

C.f [em] Data Types

The [em] Data Types in our languages closely reflect the data model of [em] as introduced in

section 4.1. Most of its aspects can be described in a templatic fashion.

We give templates that describe the main properties of each type in the first sub-subsection. We

describe additional properties and functions in the remaining sub-subsections. We use bracket-

enclosed text for placeholders.

C.f.a Templates for Main Properties

Name Existence Criteria Return Type Description

[Association Name] For each association

with max. target

multiplicity of one

[Association’s target

class]

Returns the association’s

target instance, or 𝑛𝑢𝑙𝑙 if the

association does not have a

target instance.

[Association Name] For each association

with max. target

multiplicity greater

than one

Collection<[Association’s

target class]>

Returns a collection of the

association’s target instances.

[Field Name] For each field (also of

some parent class)

String Returns the field’s value.

117

C.f.b Additional Element Properties

Name Return Type Description

IsRelationship Bool Returns 𝑡𝑟𝑢𝑒 if the Element is a Relationship; 𝑓𝑎𝑙𝑠𝑒 otherwise.

IsObject Bool Returns 𝑡𝑟𝑢𝑒 if the Element is an Object; 𝑓𝑎𝑙𝑠𝑒 otherwise.

AsRelationship Relationship Returns a Relationship corresponding to this Element if it is a

Relationship; 𝑛𝑢𝑙𝑙 otherwise.

AsObject Relationship Returns an Object corresponding to this Element if it is an

Object; 𝑛𝑢𝑙𝑙 otherwise.

C.f.c Additional ElementOccurrence Properties

Name Return Type Description

IsRelationshipOccurrence Bool Returns 𝑡𝑟𝑢𝑒 if the predecessor value is a

RelationshipOccurrence; 𝑓𝑎𝑙𝑠𝑒 otherwise.

IsObjectOccurrence Bool Returns 𝑡𝑟𝑢𝑒 if the predecessor value is an

ObjectOccurrence; 𝑓𝑎𝑙𝑠𝑒 otherwise.

AsRelationshipOccurrence Relationship Returns a RelationshipOccurrence corresponding to

the predecessor value if it is a

RelationshipOccurrence; 𝑛𝑢𝑙𝑙 otherwise.

AsObjectOccurrence Relationship Returns an ObjectOccurrence corresponding to the

predecessor value if it is a ObjectOccurrence; 𝑛𝑢𝑙𝑙
otherwise.

C.f.d Additional ElementType Properties

Name Return Type Description

IsRelationshipType Bool Returns 𝑡𝑟𝑢𝑒 if the predecessor value is a

RelationshipType; 𝑓𝑎𝑙𝑠𝑒 otherwise.

IsObjectType Bool Returns 𝑡𝑟𝑢𝑒 if the predecessor value is an

ObjectType; false otherwise.

AsRelationshipType Relationship Returns a RelationshipType corresponding to the

predecessor value if it is a RelationshipType; 𝑛𝑢𝑙𝑙
otherwise.

AsObjectType Relationship Returns an ObjectType corresponding to the

predecessor value if it is a ObjectType; 𝑛𝑢𝑙𝑙
otherwise.

C.f.e Additional ElementType, ObjectType and RelationshipType Functions

Name Parameters

with Types

Return Type Description

Equals other: [Type of

predecessor

value]

Bool Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Returns 𝑡𝑟𝑢𝑒 if

the predecessor value and 𝑜𝑡ℎ𝑒𝑟 are equal.

Else, returns 𝑓𝑎𝑙𝑠𝑒.

C.g Runtime-relevant Types

RuntimeInstances do not have any properties, functions, or lambdas. Custom types have for

each of their field a property and a function. We introduce them in the following two sub-

subsections.

118

C.g.a Custom Type Properties

Name Existence Criteria Return Type Description

[Field Name] For each field [Field type] Returns the value of the respective field.

C.g.b Custom Type Functions

Name Existence

Criteria

Parameters

with Types

Return Type Description

WithChanged_[Field Name] For each

field

value: [Field

type]

[Type of predecessor

value, i.e. either

CustomEnablementData,

or CustomStorageData]

Returns a copy of

the custom type

instance where the

respective field

value is replaced

with the argument

𝑣𝑎𝑙𝑢𝑒.

119

Appendix D Source Code of Plugin

The source code of the plugin should come with this document in digital form.

If it is missing, please contact Hauke Pribnow.

120

Declaration of Authorship

I hereby declare that, to the best of my knowledge and belief, this Master Thesis titled

“Leveraging Propositional Logic-Based Model Checking to Enable Convenient Analysis of

Process Models in Arbitrary Graph-Based Process Modeling Languages” is my own work. I

confirm that each significant contribution to and quotation in this thesis that originates from the

work or works of others is indicated by proper use of citation and references.

Münster, 2017-12-19

Hauke Pribnow

121

Consent Form

for the use of plagiarism detection software to check my thesis

Name: Pribnow Given Name: Hauke

Student number: 365292 Course of Study: Information Systems

Address: Averkampstraße 9, 48151 Münster, Germany

Title of the thesis: Leveraging Propositional Logic-Based Model Checking to Enable

Convenient Analysis of Process Models in Arbitrary Graph-Based Process Modeling

Languages

What is plagiarism? Plagiarism is defined as submitting someone else’s work or ideas as your

own without a complete indication of the source. It is hereby irrelevant whether the work of

others is copied word by word without acknowledgment of the source, text structures (e.g. line

of argumentation or outline) are borrowed or texts are translated from a foreign language.

Use of plagiarism detection software. The examination office uses plagiarism software to

check each submitted bachelor and master thesis for plagiarism. For that purpose the thesis is

electronically forwarded to a software service provider where the software checks for potential

matches between the submitted work and work from other sources. For future comparisons with

other theses, your thesis will be permanently stored in a database. Only the School of Business

and Economics of the University of Münster is allowed to access your stored thesis. The student

agrees that his or her thesis may be stored and reproduced only for the purpose of plagiarism

assessment. The first examiner of the thesis will be advised on the outcome of the plagiarism

assessment.

Sanctions. Each case of plagiarism constitutes an attempt to deceive in terms of the

examination regulations and will lead to the thesis being graded as “failed”. This will be

communicated to the examination office where your case will be documented. In the event of a

serious case of deception the examinee can be generally excluded from any further examination.

This can lead to the exmatriculation of the student. Even after completion of the examination

procedure and graduation from university, plagiarism can result in a withdrawal of the awarded

academic degree.

I confirm that I have read and understood the information in this document. I agree to the

outlined procedure for plagiarism assessment and potential sanctioning.

Münster, 2017-12-19

Hauke Pribnow

