Vrije Universiteit Amsterdam

VRIJE
UNIVERSITEIT
AN° AMSTERDAM

Bachelor Project

An Experience Report on Model Learning

Author: Gideon Roose (2645786)

Supervisor: Prof. dr. Wan Fokkink
2nd reader: dr. Jorg Endrullis

July 2022

Abstract

This paper dives deeper in how model learning can be used to learn automata
for real-world systems. Most of the research done on model learning is theoret-
ical and the tools are often not fit to be used in real systems. After describing
how model learning works, we do some experiments in a tool called Tomte: one
theoretical experiment to see how the tool uses certain input files to generate
models and one experiment in which we try to construct a SUT for an external
API, to get an understanding of the difficulties of applying model learning to

real-world systems.

Introduction

Imagine you just bought your first smartwatch. How would you explore all its function-
alities? To get to know all the features of the watch, most people would not read the
manual from front to back. A more likely scenario is that you start pressing buttons and
opening apps and menus to observe what happens. Then, by trial and error, you start to
understand how it works.

This is the basic principle of model learning. To put it more formally, model learning
is a method to construct a state-diagram model of a software or hardware system from
which the exact behaviour is unknown (a black-box system) (IJ). It is also known as
automata learning and there are two different types of learning algorithms: passive and

active learning algorithms.

1.1 Passive automata learning

Algorithms based on passive automata learning attempt to construct a model by using a
set of traces of the program. These traces are often collected from actual usage of a system.
For example, take a device with three buttons: Button A, Button B and Button C. Each
button outputs something different. The set of traces used for learning the systems could

then be as follows:
e Press "Button A" -> Output: "a"
e Press "Button B" -> Output: "b"

e Press "Button C" -> Output: "c"

From these traces, a model can be constructed. There is, however, a fundamental flaw in

this approach. What if it is also possible to press multiple buttons in sequence? Then

1. INTRODUCTION

pressing "Button A" followed by "Button B" might result in the output "ab". Perhaps
pressing "Button C" three times turns the system off. This basic example illustrates
that with passive model learning it is extremely hard to be sure the constructed model is
accurate, especially when the system increases in complexity. Furthermore, since the set
of traces might not paint a complete picture of how the system works, it is also possible

that one set of traces can result in multiple valid models, making the result ambiguous (2)).

1.2 Active automata learning

Active model learning, on the other hand, is generally more thorough. Algorithms based
on this approach learn by actively doing experiments on the system, instead of using a
predefined set of traces like passive learning algorithms. Most active learning algorithms
used today are based on Angluin’s approach (3)) of using a minimally adequate teacher
(MAT). The teacher provides information about the system under testing (SUT) to the
learner (the learning algorithm). The learner can use two types of queries that the teacher
can answer: membership and equivalence queries. Membership queries are composed of a
sequence of input symbols (2). When the learner provides such a query to the teacher, the
teacher will respond with output from the system. By sending many of these membership
queries to the teacher and observing the output returned by the teacher, the learner can
construct a hypothesized model of how the system works. Then the learner can check if
the model is accurate by sending an equivalence query, followed by checking whether the
model is equal to the teacher model. If it is equivalent, the process is finished. If it is
not equivalent, the teacher will return a counter-example that illustrates how the learned
model differs from the teacher model. Based on this counter-example, the learner can send
new membership queries in order to construct a new model. The remainder of this report
will focus on active model learning.

As mentioned in (4), model learning has multiple realistic useful applications, like re-
gression testing, replacing manual testing by model-based testing, producing models of
standardized protocols, or analyzing whether an existing system is vulnerable to attacks.
However, a problem with active automata learning is that it is quite difficult to implement
it into your system. Most of the time, a solution is developed specifically for a certain
system, meaning no one can easily reuse that implementation. Luckily, some tools aim to
automate most of the work needed in automata learning. The question is, though, how

easy it actually is to use these tools in a real-world environment.

Model Learning

To get a full understanding of what model learning is, it is useful to know which models it
is generally used on, what algorithm most currently used learning algorithms are based on,

and what kind of tools are available to make it easier to get started with model learning.

2.1 Target models

There exist various models for which automata learning algorithms are available. However,
not all models can be learned with the currently existing algorithms. The models for which
the largest number of algorithms are available are deterministic finite automata (DFA) and
Mealy machines. However, in recent years, some progressions have been made for other
models as well; one of those is the Register Automaton [H

2.1.1 Deterministic Finite Automata (DFA)

The first model learning algorithms were designed for inferring regular languages, described

as deterministic finite automata (5)). Therefore, a short definition of a DFA is given below.
Definition 1 A Deterministic Finite Automaton is a tuple (Q,%, 0, qo, F) consisting of:
o A finite set Q of states;
e A finite input alphabet 3;
o A transition function § : Q X X — Q;
e A starting state qo € Q; and

e A set F C Q of final states.

"https://wcventure.github.io/Active-Automata-Learning/

https://wcventure.github.io/Active-Automata-Learning/

2. MODEL LEARNING

A limitation to DFAs in the real world is that they do not produce output for every input.
DFAs only accept certain sequences of input symbols (sequences that start in starting state
qo and end in F'), which means that for any input sequence, a DFA can only provide a
single output, namely whether the input is valid or invalid. This, however, is often not

enough to represent a real-world system.

2.1.2 Mealy machines

Most model learning algorithms used today have been improved so that they can support
Mealy machines. A Mealy machine is a finite-state machine and its output is determined

by its current state and current inputs.
Definition 2 A Mealy machine is a tuple (S, Sy, X, A, T, G) consisting of:

o A finite set S of states;

A start state (also called the initial state) Sy which is an element of S;

A finite input alphabet ¥;

A finite output alphabet A;

A transition function T : S x X — §; and

An output function G : S x X — A.

The definition of a Mealy machine is quite similar to the definition of a DFA, but there
are some slight differences. Note how Mealy machines have an output function G, whereas
DFAs have a set F' of final states. This results in an advantage of being able to learn a
Mealy machine over simply a DFA as Mealy machines can produce output for every input
symbol. Real-world systems can often be better represented by a Mealy machine than a
DFA, but since this is not always the case, it is still useful that some algorithms work for

DFAs just like some work for Mealy machines.

2.1.3 Register Automata (RA)

To understand what register automata are, one must first be aware of the differences
between extended finite-state machines (EFSM) and finite-state machines (FSM). ESFMs

are FSMs with the addition of state variables and several functions [Tk

"https://automata.cs.ru.nl/Syntax/EFSM

https://automata.cs.ru.nl/Syntax/EFSM

2.2 The L* algorithm

e Enabling functions are an expression over the input parameters and state variables

to decide whether a transition is enabled;
e Update functions update the state variables when a transition is taken; and
e Output functions calculate the new output parameters when a transition is taken.
Definition 3 A Register Automaton (RA) is a tuple (I,0,V, L,ly,T') consisting of:

o A set I of input symbols;

o A set O of output symbols;

o A finite set V of state variables, and we assume two special variables in and out not
contained in V' and write V;, for the set V U {in, out};

o A finite set L of locations;

e An initial location ly € L; and

o ' C LxIx®V,)x(V—= V) xO xLisa finite set of transitions. For each

transition (1,1, g, 0,0,l'), we refer to l as the source, i as the input symbol, g as the
guard, o as the update, o as the output symbol and ' as the target. We require that

out does not occur negatively in the guard, meaning it may not occur in a subformula
of the form x # y.

Register Automata are Mealy extended finite-state machines (Mealy EFSM, also known as
scalarset Mealy machines) and they place some restrictions on the extra functions of the
EFSM; the update function can only assign a register (state variable) with a register or an
input parameter (meaning no operations are allowed on data) and the enabling function
is limited to a boolean expression of the form true, false, t =y or x # y where x and y

are either registers or input parameters.

2.2 The L* algorithm

When Angluin designed the MAT model, she also developed the L* algorithm for learning
DFAs (3). Interestingly, even though faster algorithms exist these days (than L* which
runs in polynomial time), most still follow Angluin’s MAT model (which she proposed in
1987). The L* algorithm works by following the MAT model as explained in section
and using an observation table to keep track of all the retrieved information the learner

has gotten from the teacher.

2. MODEL LEARNING

Definition 4 An observation table is a triple (S, E,T'), consisting of:

e A nonempty finite prefiz-closed set S of strings (prefiz-closed means that every prefiz
of every member of the set is also a member of the set and the same goes for suffiz-

closed);
o A nonempty finite suffiz-closed set E of strings; and

e A finite function T mapping ((SUS x A) x E) to {0,1}, where A is a fized known
finite alphabet.

To make it more clear what an observation table looks like, you can imagine it as a matrix
where the rows are labelled by elements of (SUS x A), the columns are labelled by elements
of E, and the entry at row s and column e is equal to T'(s x e) (3). When the algorithm
decides that the table contains enough information, it constructs a DFA.

Later, others have made extensions for the L* algorithm to make it work on Mealy
machines as well (one example is Maler & Pnueli’s algorithm (6))). This allows the algorithm

to be used on a larger number of real-world reactive systems ([5)).

2.3 Tools

Using active model learning algorithms on systems often means you have to build a custom

implementation of an algorithm specific to your system. This has a few downsides:
1. The implementation cannot easily be reused for other systems; and

2. Chances are since it is a one-off implementation, it is not optimized to the fullest

extent.

Another problem is that many systems have a too large or even infinite number of actions
(input options). An example might be a login system where a user can fill in a username
and password; the combinations of usernames and passwords are endless and that results
in many/infinite states. In such cases, a mapper needs to be placed in between the learner
and the teacher that transforms the large set of actions into a small set of abstract actions
(7). By using a mapper, a learning algorithm that targets finite-state machines can be
applied to these larger systems. However, building a mapper is a cumbersome process,
making it even harder to start using automata learning.

Luckily, a few libraries and tools aim to solve these issues by automating the creation

of the mapper and optimizing the algorithms as much as possible so that one does not

2.3 Tools

have to build a custom implementation for every system they work with. Two of these
tools stand out: LearnLib and Tomte. LearnLib stands out because it is the most used
and mature library for automata learning and implements many different algorithms for
learning DFAs and Mealy Machines. Tomte uses LearnLib for learning DFAs and Mealy
Machines but is also capable of learning Register Automata. Furthermore, the Tomte tool
makes it possible to learn systems with infinite states by abstracting said states. This

functionality makes Tomte a logical choice to use on real systems.

2.3.1 LearnLib

LearnLib (R)) is a library for active automata learning that has been designed with an
emphasis on scalability and performance and is probably the most well-known tool in
the field. It was developed at the Chair for Programming Systems at the TU Dortmund
University, Germany. It implements several learning algorithms, most of which target DFAs
and Mealy machines (like L* and some extensions of L*, but also different algorithms like
the TTT (9) or Kearns & Vazirani (10) algorithms). On top of those algorithms, LearnLib
also includes an algorithm for non-deterministic finite-state machines (NFAs), namely the
NL* algorithm (IT)). It is similar to the L* algorithm, but some modifications were made
to make it work for NFAs. The library has been in development since 2003 and is still
being improved upon. The idea is that with LearnLib you can easily start using active
automata learning algorithms and equivalence queries and the library provides users with

an infrastructure that includes statistics and a SUT adapter.

2.3.2 Tomte

The Tomte tool (4) was created by a team at the Radboud University Nijmegen, The
Netherlands. For learning, it uses the LearnLib library, but for some use-cases, it has its
own implementation, e.g. for Register Automata. Both tools support DFAs and Mealy
machines, but Tomte is also capable of learning Register Automata. A benefit Tomte has
over LearnLib is that it automatically generates a mapper, making it more suitable for
large systems. Furthermore, most model learning tools can only learn DFAs and Mealy
Machines, but most real-world systems are more complex than a simple DFA or Mealy
Machine. Therefore, Tomte seems like the tool one should choose to start with model
learning on real-world systems as it can abstract systems with infinite states to a form

that can be learned by currently existing active learning algorithms.

2. MODEL LEARNING

Tomte tool

In this section I shall explain more about how the Tomte tool works, what it was like using

the tool, and what could be improved.

3.1 Inner workings

The Tomte tool is placed between the learner and teacher. To make sure the learner can
apply an algorithm to the system, three steps are required. First, all the non-determinism
of the SUT that is generated by its outputs must be removed. Then a so-called lookahead
oracle remembers events with information about the data that have an impact on the future
behaviour of the SUT. As a last step, the large set of values of the SUT is abstracted to a
small set of symbolic values that the learner is capable of handling. See Figure [3.1] for a
diagram of the architecture of Tomte. Sections - describe these 3 steps in more
detail, but to obtain a complete understanding of the components, one can refer to Aarts,

et al. (12).

3.1.1 Determinizer

The determinizer component is placed closest to the teacher and its function is to remove
any non-determinism from the SUT for the learner. This is necessary when working with
fresh output values, e.g. in a system like a server that generates passwords. The component

renames the generated fresh output values to -1, the next one to -2, etc. This is great,

|:| Lookahead ’:l . Teacher
[Learner]—:[Abstractor Oracle Ueterrmul/.er]_:_[(SUL)]

Figure 3.1: Architecture of Tomte

3. TOMTE TOOL

because the output values need to be neat and quite often this is not the case, since the
learner usually has no control over what the system returns as output. If each output value
in a trace is either equal to a previous value or equal to the smallest preceding value minus
1, the trace is considered to be neat. The determinizer is not recommended for systems
where collisions can easily occur. A collision is when the automata ’accidentally’ selects

an output which equals a previous output.

3.1.2 Lookahead oracle

The lookahead oracle is placed right in the middle. It works as follows: the abstractor sends
an input action to the oracle and the oracle sends it to the determinizer without altering
it. Next, when the oracle receives an output value from the determinizer, it creates a pair
consisting of the output value and a valuation. All traces are saved to an observation tree
where the root of the tree is the start of the traces. When a new node is added to the tree,
the oracle computes a set of variables for it. This set of variables may grow dynamically

during the learning process.

3.1.3 Abstractor

During learning, the lookahead oracle sends which variables should be remembered to the
abstractor. Based on these variables it will try to create an abstract version for the learner.
It will always try to use the smallest possible abstraction. During verification of the hy-
pothesized model the list of variables to remember may be updated if a counterexample is
found. If it is updated, Tomte will try again to find a fitting model but with an abstrac-
tion created from the new list of variables. We call this method ’counterexample guided

abstraction refinement’.

3.1.4 Equivalence checking

Often we cannot perform equivalence queries directly on the SUT. In such cases, a model-
based testing tool (MBT tool) should be used (4). An MBT tool will generate a certain
amount of test input traces and use these traces on the learner model and the teacher
model /SUT. If the output is always equal, the hypothesized model is likely correct or close
to what it should be. Otherwise, it will return the output trace for which the equivalence
check failed. Suppose some knowledge about the SUT is already available, like an example
model in the documentation. In that case, the hypothesized learner model can be compared

to the SUT using the CADP toolset and the SUT tool (also created by the team from

10

3.2 Commands

Tomte and downloadable from the same website). The SUT tool can simulate a SUT if
no real SUT is available. CADP offers a comprehensive set of functionalities covering the
entire design cycle of asynchronous systems: specification, interactive simulation, rapid
prototyping, verification, testing, and performance evaluation. For verification, it supports
the three essential approaches existing in the field: model checking, equivalence checking,
and visual checking (I3)). In Tomte, CADPs equivalence checking features can be used on

simulated SUTs to confirm that a learned model is equal to a teacher model.

3.1.5 Additional software

Just like for equivalence checking, some other features of the tool also rely on additional
software. It is required to have both the Java SDK and Python 2.7 installed on your
machine in order to run Tomte. Furthermore, suppose you want to test Tomte with a
simple model before using it on a real system. In that case, you need the UPPAAL (14)
tool to create a model visually, after which you can download the model as an XML file
which you can use to generate a SUT in Tomte. UPPAAL is a tool to design, simulate and
verify models in a visual interface. On top of that, Graphviz (15) is required to generate

models in the .dot format (.dot is a graph description language).

3.2 Commands

The Tomte tool is a command-line interface (CLI). It includes a couple of useful commands
that automate different actions one might need to perform when using automata learning.
3.2.1 sut_ run

To start using Tomte, you need to have a running SUT and the ’sut _run’ command takes
care of that. You can use any SUT that is capable of communication over TCP /IP network
sockets. The positional 'modelfile’ argument is required and it describes the path to your
input UPPAAL model XML file that you might use while testing Tomte or the path to
your SUT in a real-world system. On top of that, a couple of optional parameters are

available as well:
e -h/-help: for help about the usage/available arguments;
e -v/—verbose: to print all inputs and outputs; and

e —port PORT: to define a specific TCP port to listen on for incoming connections.

11

3. TOMTE TOOL

3.2.2 tomte learn

When the SUT is running, the 'tomte learn’ command can be used to learn a model by
running the actual Tomte tool. It requires a config.yaml file and a sutinfo.yaml file (see
next section). The arguments available to this command include one positional argument
(required) and seven optional arguments. The positional argument is the ’configfile’ argu-
ment, which describes a path to a .yaml file which contains learner configuration options.
The optional arguments are the ’help’, and ’'port’ arguments which function as described

in the previous section, and the other five optional arguments are the following:

e —seed SEED: seed to use for random number generation (different seeds can produce
different results, but by using a seed number you can easily rerun a previously run

learning process that will produce the same results every time).

e —max-memory MAX MEMORY: maximum memory to use by virtual machine in
GB. There is not much documentation on this argument, but it is probably useful

on less powerful systems so they do not crash.

e —output-dir OUTPUT DIR: the tool generates a lot of new files and they need to
be saved somewhere. By default it is in a folder called ’output’, but you can override

that with a path of your own choosing by using this parameter.

e -¢/—eclipse: run the tool using build code from the eclipse project. Again, this
command does not include much information, so the benefits of running the command

with this argument are unclear.

e —config-option CONFIG OPTION: overrule a configuration option from the config
file.

3.2.3 sut_ uppaal2sutinfo

A sutinfo yaml file can be generated from the teacher model with the ’sut uppaal2sutinfo’
command. The sutinfo file describes some information in a yaml config file, like what the
input and output interfaces of the SUT are and the SUT name (the name is solely used
for the output folder name and is not required for learning). The ’sut uppaal2sutinfo’
command has only one optional parameter, namely the ’-h’ or —help’ parameter which
simply outputs some useful information about using this command. It has two positional
arguments; the first one is used for selecting the teacher model file and the second one is

the name of the sutinfo file. This command is useful when testing how Tomte works, but

12

3.2 Commands

in a real-world system you would need to configure this file yourself as you do not have
an exact model of the system yet. Luckily, it is an extremely easy to understand file, so

creating it should not be too hard.

3.2.4 sut uppaal2layoutformat

If you want to generate a pdf from the learned concrete UPPAAL model, you can use this

command. It is required to also have the Python module pygraphviz’ installed.

3.2.5 sut_ compare

Finally, the ’sut _compare’ command can confirm that the learned model is equal to the
teacher model. It first flattens both models to CADP .bcg files and then runs the CADP
bisimulator, which compares the two models using a specified equivalence relation. The
bisimulator reformulates the graph comparison problem as a boolean equation system. It
can also generate a counterexample, which is helpful to see why two models are not equal
ﬂ The command has four possible positional arguments: modell, model2, range min,
range max. 'modell’ and 'model2’ are the two models that will be compared and are
therefore required. The models can be an UPPAAL model, CADP .aut, JTorX .aut or
.dot format. 'range min’ and 'range max’ describe the minimum and maximum value of
range used for input parameters when flattening (see Section the model. These are
only needed for models with data and both arguments already have a default value of 0.
Next to the optional arguments -h, —help, -v, —verbose which were already described in the

sut_run section, there exist also some special optional arguments:

o —keep-tmp-files: useful if you want to keep the temporary files that were generated

for doing the comparison.

e —skip-both-ways: for IOMEALY models, the two models are compared both ways
to find different outputs for both models. You can decide to only compare modell

against model2 with this argument.

e —output-json, —output-boolean, —output-text: by default, the command outputs in
json style the result of the comparison with some additional data. If you only want
to see the result, —output-boolean should be used. If you dislike the json format and

prefer a text format, —output-text should be used.

"https://cadp.inria.fr/tools.html#section-4

13

https://cadp.inria.fr/tools.html##section-4

3. TOMTE TOOL

e —lts, —io-mealy: for LTS automata it is required to specify it is a label transition
system. By default, the command will assume it is an I/O automaton describing a

Mealy automaton.

3.2.6 Flattening

We can remove data parameters from input actions by defining a set of symbols for each
input where each symbol represents a unique instance of its input parameters from the
given range. This function is part of the SUT tool and requires the CADP toolset. It
includes three conversion commands: sut uppaal2bcg, bcg io and sut ioaut2mealydot.
'sut_uppaal2bcg’ flattens a UPPAAL model to a beg (binary coded graph) file E Then
the beg 1o command can be used to transform the beg file to an .aut (aldebaran) format ﬂ
Finally, with the ’sut ioaut2mealydot’ command one can transform the .aut file to a .dot

file. Combining these commands will transform the UPPAAL model to a Mealy model.

3.3 Personal experience

Tomte is simple to use once you know how it works, but there are definitely elements that
could make it easier to get started with the tool. The program relies on five different other
programs, of which four are hard requirements. Two of these five programs require a licence
(free academic licence or paid commercial licence with no pricing available on their sites).
After downloading all required software, the Tomte tool and optionally the SUT tool, you
can start the installation. Tomte should (according to their website) work on Linux, Mac
and Windows. However, when I first tried to install Tomte on my Windows machine, the
sut_run command did accept any arguments, rendering the tool useless. Installing it on
Linux did work after manually adding Tomte and the SUT tool to the PATH variable (this
is required to specify where Tomte and the SUT tool are located, so the different commands
run correctly). If you would like to use the CADP toolset for equivalence checking, you have
to add CADP to the PATH variable and create a CADP LANGUAGE (value: english)
variable to make it work with Tomte, and you have to email the maintainers to retrieve
a licence key. Depending on where you installed the software, these variables should be
added to either the ’ /.bashrc’ or ’/etc/profile’ file. To put it concisely, the installation

process is quite painful.

"https://cadp.inria.fr/man/bcg.html
®https://www.mcrl2.org/web/user_manual/language_reference/lts.html#aldebaran-format

14

https://cadp.inria.fr/man/bcg.html
https://www.mcrl2.org/web/user_manual/language_reference/lts.html##aldebaran-format

3.3 Personal experience

Using the tool is easy, but the documentation is lacking. It gives enough information
to run the example models that come with downloading Tomte and a little information is
given on how to generate a SUT of your own which you can use for testing Tomte, but
there is no information available about how to use Tomte for a real-world system. Without
diving in all of the files and reading all the code of the example models, it is unclear how
one could attach Tomte to an actual system. The error messages are not descriptive and
the stack traces do not help much either, since you do not have access to the source code

of Tomte. This makes debugging your SUT quite hard.

15

3. TOMTE TOOL

16

4

Experiments

Tomte comes with 34 example models, so new users can look at how Tomte works before
using it on their own systems. All of these models have their own SUT that is generated
from an UPPAAL file. In this section I will explore how these SUTs are created and what
kind of output is generated from the learning process. To make sure we get results that we
can analyze, the 'Making your own SUT’ guide on the Tomte website E] is followed closely.
Therefore, the SUT we will create in this section will be for a Register Automaton of an
alternating bit protocol receiverE] to observe what type of output is generated. We will also
attempt to build a custom SUT by modifying the fresh cav_multilogin2 example model

so it functions as an external API, to make it a more realistic system.

4.1 Generating a SUT

The first step necessary for creating a SUT is to draw the teacher model in UPPAAL.
In UPPAAL, you can easily add different states and transitions with a drag-and-drop
interface. Then, by clicking a transition, you can open a popup which gives you the
option to add guards, the name of the accompanying method and update functions. It is
important to note that you have to follow a certain syntax. Input methods should start
with an uppercase "I" and output methods should start with an uppercase "O". Figure
displays the UPPAAL interface.

We also have to write some declarations. Tomte requires these declarations to be written
in the global declarations section and thus not in the local declarations section. This has

probably something to do with how Tomte parses the UPPAAL XML file. If the local

"https://tomte.cs.ru.nl/Sut-0-4/MakingSut
*https://www.d.umn.edu/ gshute/net/reliable-data-transfer.xhtml

17

https://tomte.cs.ru.nl/Sut-0-4/MakingSut
https://www.d.umn.edu/~gshute/net/reliable-data-transfer.xhtml

4. EXPERIMENTS

File Edit View Tools Options Help

Blajm| [a]a]a B @]+]=

Simulator | Verifier

Drag out |= Name: |custcm abp Parameters: |

3 Project
[Declarations Y

o 8 custom_abp 8 expectedBit==0 expectedBit==1
D System declarations OAck((OAck(1)

PleaseAck()

L‘::l
expectedBit=1; expectedBit=0;

(vb==0 && expe
(vb==1 && expecte

(vb==1 && expectedBit==0) 5\
(vb —1— 0 && expectedBit == 1) ||

Figure 4.1: Creating a model in UPPAAL

section is used instead of the global section, the command sut uppaal2sutinfo will not
work. Even if you write the sutinfo.yaml file manually, this could probably cause some
issues with the sut run command as well. An overview of the declaration can be seen in
Figure [£.2] When we press the save button, an XML file with all the settings is generated
and saved to your computer.

Now that we have the teacher model, we need to create a sutinfo.yaml file, so the SUT tool
can generate a SUT implementation. We can do this by running the sut_uppaal2sutinfo
command. The sutinfo.yaml file is basically a yaml representation of the UPPAAL declara-
tions (see Appendix. If the declarations are incomplete or contain errors, this command

will detect it, which is useful for debugging. Everything is now ready for the SUT to work.

4.2 Learning

In order to start learning, we need to create a config.yaml file. This file contains options
for the learning/testing process. While some of the options are easily understood, other
options would require documentation. However, there is nearly no documentation on this
file. The only information about the configuration options on the Tomte website tells us
that the learning section of the file specifies the parameters that are needed for generating
a hypothesis during learning and that the testing section specifies the parameters that are

needed for testing a hypothesis against the SUT. While there are some options that are

18

4.2 Learning

File Edit View Tools Options Help

B a|E B @~
Editor | Simulator | Verifier |

Drag out 1s Place global declaraticns here.
lconst int zero = @;

[»]

3 Project const int one = 1;
D
o= "8 custom_abp int vd;

[} system declarations int wh;
int expectedBit = 0;

vold IFrame(int d, int b} {
void IPLeasedck() {

i

vold oout{int wd) {

H

vold QAck{int wb) {
B

void OMOK{) {
+

4 i [o]

Figure 4.2: Adding declarations in UPPAAL

understandable, the lack of documentation makes it hard to understand what every option
does. Luckily, the example models all include this file as well and they do not differ much,
so you can copy one of those and if needed tweak some options, like the seed or perhaps
some of the options in the ’testing’ block. The configuration that was used for obtaining

the results below can be found in Appendix [B]

We should now start up the SUT with the sut_run command. At this point, there was a
typo in one of the guards in the UPPAAL model (’expectedBitt’ instead of ’expectedBit’).
The sut_run command detected that a variable was used in a guard that does not exist
and returned an error describing the issue in enough detail. After the typo was fixed,
sut_run ran without any more issues. To begin learning the model, we need to open a
second terminal window and run the tomte learn command. This command will output
everything it does in the terminal and when finished, it will create an output folder in
which statistics about the various runs (a run is everything that happens from the moment
Tomte starts sending queries until Tomte is finished with the equivalence queries, and if
a counterexample is found, a new run is started) and the learned model files are stored.
Finally, a check is done with the sut compare command to check whether the learned

model is correct by comparing it to the teacher model.

19

4. EXPERIMENTS

IPleaseAck.fONOK

IFrame -1 0/00ut_p0

o» IFrame -1 _-1/ONOK

IPleaseAck/OAck c0

IPleaseAck/OAck cl

@Frame -1 _-1/ONO!I

[oIPleaseAck/ONOK

IFrame -1_1/OOut_p0

Figure 4.3: Learned abstract model

4.3 Results

According to the result of the sut compare command, our learned model is equal to the
teacher model (Appendix. The output folder also contains interesting data, like exhaus-
tive statistics about the runs of the program (Appendix, the learned model in UPPAAL
format (but without positioning, thus making it hard to see the states and transitions when
viewing the model in UPPAAL without first editing the file), the learned abstraction that
was generated for the learning algorithm (Appendix [F]) with a accompanying .dot file (see
Figure for a visualisation of the abstraction), and a folder with for each run the hy-
pothesis that was made. In the statistics file, it is logged how many runs it took Tomte to
find the correct model, how many queries were made, which counterexamples were found,

and moreover for each run and at the end of the file is a summary of all the data combined.

4.4 Using Tomte for real-world systems

In the real world, this method for generating a SUT would not work, since you do not
have the exact model yet. While there is not really any documentation on how to connect
Tomte to a real system (even though one of the goals of Tomte is to bridge the gap between
automata learning and real-world systems), it is possible to gain some knowledge by looking
at the fresh cav_multilogin2 example model. This model uses a small Java application

as SUT and the main logic of the system it simulates is written in the Sut.java file. Thus,

20

4.4 Using Tomte for real-world systems

by modifying this file, we should be able to connect Tomte to a real system. I built an
implementation that connects a custom SUT with an external API H

To do this, I wrote a simple API in Python (Appendix [[) that has the same function-
ality as the example model. It has four input methods: IRegister, ILogin, ILogout and
IChangePassword. IRegister has one parameter called uid, which checks whether a user
already exists for that uid and if not, creates a user and generates a password which is
returned to the API caller. This password can then be used by the user to call ILogin
(also with the uid, of course) and a user can only log in if they are currently logged out.
If a user is logged in, they can call [Logout and IChangePassword with the uid. I also had
the create an extra 'reset’ method, to remove all data to return to the default state of the
program.

Now that the API is set up and running, we should modify the Sut.java file (Appendix
. Currently, this file includes all logic of the API, so we start by removing all that logic.
Instead, we create a method for each available APT call, which takes as input the uid (and
in case of the ILogin method, also the password). Then, in the method we send a request
to the APIL. In case of the [Register and IChangePassword calls, a password is returned, so
we return the password as parameter to our learning algorithm together with the output
method name "OOK’. If an API call is unsuccessful, we return the method name "ONOK"
with no parameters. We also create a reset method which just calls the reset endpoint
of the API without returning any data. A handler() method redirects each method of
the learning algorithm to the correct method in the SUT. ILogin and ILogout should also
return a parameter with OOK, but this value is not important for the program. Therefore,
we return a random integer as fresh value. Next, we generate a .jar file and the SUT is
finished. Now, our learning algorithm can fully contact the API.

We start learning with 'tomte learn’. What is interesting is, even though the behaviour
of the program should be identical to the behaviour of the original example model, some
errors are returned. The first one that had to be dealt with, was an error regarding that the
program ran too long. This could be fixed by adding a 'max__time’ value to our config.yaml
(Appendix [H) file, with a high value, e.g. 3000 (in seconds). The next error is probably
caused by the fresh values returned by ILogin and ILogout:

abslearning.exceptions.ValueCannotBeDecanonizedException:

value -1100 cannot be decanonized

"https://github.com/GideonRoose/model-learning- experiment

21

https://github.com/GideonRoose/model-learning-experiment

4. EXPERIMENTS

As was mentioned in Section the determinizer deals with fresh values by trans-
forming them into a canonical form. When these values later have to be decanonicalized,
it can cause errors. Perhaps Tomte is unable to correctly differentiate between fresh values
that should be saved and reused and values that should be thrown away. Interestingly, the
value that could not be decanonicalized was always lower than or equal to -1000. So maybe
specific values are canonicalized to canonical values lower than or equal to -1000, meaning
that the error would only be present for these specific values. The real issue, however, is
unclear, so we can only speculate about what causes the error.

In the end, it is possible to create a functional SUT, but it is next to impossible to
debug its errors. For example, the above error could be caused by something in my SUT
implementation, but it could also be caused by how Tomte deals with these fresh values.
Since you can not read the source code of Tomte and thus the implementation of the

determinizer, it is impossible to understand how the determinizer is implemented fully.

22

Conclusion

Model learning can be beneficial for discovering whether a program conforms to the ap-
propriate standards and determining how a system functions. It should also be possible to
use it on real-world systems instead of just theoretical ones, but the available tools do not
provide the user with enough information to get this done. As I experienced in my own
implementation, connecting a tool like Tomte to even a simple external API is difficult. I
had to thoroughly understand the tool and its inner workings to use it, and even then, my
knowledge appeared insufficient to obtain valuable results. Modifying the example SUT
to fit my needs was a pain as it was initially unclear which files should be modified. Only
after carefully examining the code in all the different files was it possible to build a custom
SUT.

To make Tomte applicable to real-world systems, a few items should be addressed.
Firstly, the documentation must be extended. It is currently at a state where it is possible
to make theoretical models and see how the tool functions, but more information should
be provided to users on how to implement their own SUT. Now, the only method they
have is to copy the custom SUT from one of the example models and modify that one to
fit your needs. Modifying the example model requires you to know Java, and you have to
reread the example code multiple times to get an idea of what is happening. Then still,
you do not have enough information to debug your SUT in case of problems. A better
approach would be to define a structure in which your SUT should function. Which end-
points should be available, how the socket server should be set up, and what data should
be returned to Tomte. Defining such a structure would make it possible for users to more
easily implement a SUT in a language of their choosing and thus make it easier for users

to know what is going wrong with errors.

23

5. CONCLUSION

Furthermore, error messages returned by Tomte in the learning process should be docu-
mented better. Right now, it is probably enough for the developers of Tomte to know what
is going wrong. However, the ordinary user cannot find all the necessary information to
debug their SUT. A great addition would be proper documentation on the determinizer.
The goal of the determinizer is described in one paper. However, since errors related to
the determinizer can quickly occur, as I have seen in my implementation, it could help
users gain a deeper understanding of how Tomte deals with fresh values by describing the
determinizer’s functionality in detail. Finally, the config.yaml file should be explained in
more detail, so users know what options they can edit to fit their needs.

In conclusion, the tool could be powerful for actively learning automata if the previous
points are addressed. It is not mature enough to be easily implemented in real systems,
but it has the potential. Model learning is a valuable method for learning automata, and

it would be interesting to see others adopt tools such as Tomte when possible.

24

References

1]

2]

3]

4]

[5]

(6]

7]

18]

19]

FRITS VAANDRAGER. Model learning. Communications of the ACM, 60(2):86-95,
2017. [

MAIK MERTEN. Active automata learning for real life applications. PhD thesis,
Technical University of Dortmund, 01 2013.

DANA ANGLUIN. Learning regular sets from queries and counterexamples.

Information and Computation, 75(2):87-106, 1987. [2 [5] [f]

FIDES DOROTHEA AARTS. Tomte: bridging the gap between active learning and real-
world systems. PhD thesis, [Sl: sn|, 2014. ,

BERNHARD STEFFEN, FALK HOWAR, AND MAIK MERTEN. Introduction to active
automata learning from a practical perspective. In International School on
Formal Methods for the Design of Computer, Communication and Software Systems,

pages 256-296. Springer, 2011. [3] [6]

ODED MALER AND AMIR PNUELL. On the learnability of infinitary regular
sets. Information and Computation, 118(2):316-326, 1995. [0]

FIiDES AARTS, FALK HOWAR, HARCO KUPPENS, AND FRITS VAANDRAGER. Algo-
rithms for inferring register automata. In International Symposium On Lever-
aging Applications of Formal Methods, Verification and Validation, pages 202-219.
Springer, 2014. [0]

MALTE ISBERNER, FALK HOWAR, AND BERNHARD STEFFEN. The Open-Source
LearnLib. In DANIEL KROENING AND CORINA S. PASAREANU, editors, Computer
Aided Verification, pages 487-495, Cham, 2015. Springer International Publishing. [7]

MALTE ISBERNER, FALK HOWAR, AND BERNHARD STEFFEN. The TTT algo-
rithm: a redundancy-free approach to active automata learning. In Interna-

tional Conference on Runtime Verification, pages 307-322. Springer, 2014.

25

https://www.sciencedirect.com/science/article/pii/0890540187900526

REFERENCES

[10]

[11]

[12]

[13]

[14]

[15]

MiCHAEL J KEARNS AND UMESH VAZIRANI. An introduction to computational learn-
ing theory. MIT press, 1994.

BENEDIKT BOLLIG, PETER HABERMEHL, CARSTEN KERN, AND MARTIN LEUCKER.
Angluin-Style Learning of NFA. In IJCAI, 9, pages 1004-1009, 2009.

FIDES AARTS, PAUL FITERAU-BROSTEAN, HARCO KUPPENS, AND FRITS VAAN-
DRAGER. Learning register automata with fresh value generation. In Inter-
national Colloquium on Theoretical Aspects of Computing, pages 165—183. Springer,
2015.

HUBERT GARAVEL, FREDERIC LANG, RADU MATEESCU, AND WENDELIN SERWE.
CADP 2011: a toolbox for the construction and analysis of distributed pro-
cesses. International Journal on Software Tools for Technology Transfer, 15(2):89—

107, 2013. [I]]

ALEXANDRE DaviD, KiM GULDSTRAND LARSEN, GERD BEHRMANN, JOHN
HAKANSSON, PAUL PETTERSSON, WANG Y1, AND MARTIJN HENDRIKS. UPPAAL
4.0. In Third International Conference on the Quantitative Fuvaluation of SysTems

(QEST) 2006, pages 125-126. IEEE Computer Society Press, 2006.

EMDEN R. GANSNER AND STEPHEN C. NORTH. An open graph visualization
system and its applications to software engineering. SOFTWARE - PRAC-
TICE AND EXPERIENCE, 30(11):1203-1233, 2000.

26

Appendix

A Contents of sutinfo.yaml (input)

constants:
-0
-1
inputInterfaces:
IFrame:
- int
- int
IPleaseAck: []
name: custom_abp
outputInterfaces:
OAck:
- int
ONOK: []
00ut:

- int

B Contents of config.yaml (input)

B.1 Options used for overwriting defaults

learning:
mode: "stateVarN"
sutinfoFile: "sutinfo.yaml"
seed: 12345
preferFirst: false

testing:

minValue: O

27

APPENDIX.

maxValue: 400

maxTracelLength: 150

maxNumTraces: 500
verification:

method: null

B.2 All options used in tomte learn

currentOutputDir: output/22-06-25_09.54.06_custom_abp/
learning:
mode: stateVarN
relations: [’EQUAL’,]
sutinfoFile: /home/user/tomte-0.41/models/custom_abp/sutinfo.yaml
seed: 12345
generateHypCode: false
reuseCounterExample: true
reduceCounterExample: true
algorithm: observationPack
freshValueStep: 100
memVOrder: lookahead
reconstructAbstractions: false
reductionStrategies: [’loop’, ’singleTransition’,]
useSutSimulation: false
maxTime: O
maxNumRuns: -1
testing:
maxNumTraces: 500
minValue: O
maxValue: 400
valuesExtendable: true
useTestingFallback: true
useConstantsInTestInputs: true
drawFresh: 0.1
methods: [’randomWalkFromState’,]
minTracelLength: 5
avgTraceLength: 10
maxTracelLength: 150
randomLength: 10

testTraces: []

28

B Contents of config.yaml (input)

verification:
when: atEnd
cadp:
learning:
compareMinValue: 0O
compareMaxValue: 2
dataStructureElements: 0O
sutInterface:
communicationChannel: socket
socket:
portNumber: 9999
server: unknown
directCall:
package: generated.sut
className: SutImpl
sutImplementation:
modelName: ${modelDirName}
projectClassPath: build
sutSimulation:
method: DirectMethodCall
learnResults:
outputDir: output/22-06-25_09.54.06_custom_abp
abstractModelDotFile: learnedAbstractModel.dot
abstractModelPdfFile: learnedAbstractModel.pdf
writeAbstractModelPdfFile: false
learnedConcreteModelFile: learnedConcreteModel.xml
abstractionFile: learnedAbstraction.txt
learnedModelDataFile: learnedModelData.json
statisticsFile: statistics.txt
statisticsJsonFile: statistics.json
logging:
logDir: log/
hypDir: generated/hypothesis/
logFile: log.txt
logFileThreshold: off
consoleThreshold: info
rootLoggerLevel: info

learnliblLoglevel: info

29

APPENDIX.

special:
hypotheses: true
hypothesesWritePdf: false
memQueries: false
memTraces: false
equivQueries: false
equivTraces: false
memQueriesFile: memQueries.txt
memTracesFile: memTraces.txt
equivQueriesFile: equivQueries.txt
equivTracesFile: equivTraces.txt
concreteTree: false
concreteTreeFile: concreteTree.dot
concreteTreeStatistics: false
concreteTreeStatisticsFile: concreteTreeStatistics.json
plotConcreteTreeStatistics: false
params:
originalArgs: [’--tomte-root-path’, ’/home/user/tomte-0.41",
’--output-dir’, ’output/22-06-25_09.54.06_custom_abp’
’--port’, ’9999°,
’/home/user/tomte-0.41/models/custom_abp/config.yaml’,]
configFile: /home/user/tomte-0.41/models/custom_abp/config.yaml
tomteRootPath: /home/user/tomte-0.41
verboselLevel: 0
dependency:
pythonCmd: /usr/bin/python
javaCmd: /usr/bin/java
javacCmd: javac
tomteLearnresult2uppaalCmd: /home/user/tomte-0.41/bin/tomte_learnresult2uppaal
sutUppaal2JarCmd: /home/user/sut-0.41/bin/sut_uppaal2jar
sutUppaal2SutInfoCmd: sut_uppaal2sutinfo
sutRunCmd: sut_run
devel:
printStackTraceOfExceptions: true

runInEclipse: false

30

C Contents of statistics.txt (output)

C Contents of statistics.txt (output)

RUNS
Run number 1
Start learning from scratch : true
HypL index/#states after run :1/1
Membership queries : 9
Membership inputs 112
Running time of membership : 82 ms = 0:00:00 (h:m:s)
Testing equivalence queries 1
Testing equivalence inputs : 6
Running time of testing : 40 ms = 0:00:00 (h:m:s)
Ce analysis membership queries : 4
Ce analysis membership inputs 1 24
Running time of counterexample analysis : 108 ms = 0:00:00 (h:m:s)
Learn resets : 9
Learn inputs : 10
Testing resets : 2
Testing inputs : 12
Ce Analysis resets : 8
Ce Analysis inputs 1 42

Number nodes in observation tree

Number end nodes in observation tree

num Ce inputs EquivQOracle : 12
num Ce inputs AfterLoopReduction : 12

num Ce inputs AfterCeAnalysis

number 0f Reused CounterExamples : 0
Abstraction refinement done : 0
Store updates on CE : 0
Store updates on inconsistency : 0
Counterexample sent to learner : 0

Description of run

31

APPENDIX.

Termination Reason: concrete counterexample found!

concrete CE inputs:
[IPleaseAck(), IFrame(100,200), IPleaseAck(), IPleaseAck(),
IFrame (200,200), IFrame(0,0)]
executed:
on Sut (with abstractions determined using statevars of sut):
IPleaseAck() / ONOK() -> IFrame_-1_-1(100,200) / ONOK() ->
IPleaseAck() / ONOK() -> IPleaseAck() / ONOK() ->
IFrame_-1_-1(200,200) / ONOK() -> IFrame_-1_-1(0,0) / 00ut_c0(0)
on Hyp (with abstractions determined using statevars of hyp):
IPleaseAck() / ONOK() -> IFrame_-1_-1(100,200) / ONOK() ->
IPleaseAck() / ONOK() -> IPleaseAck() / ONOK() ->
IFrame_-1_-1(200,200) / ONOK() -> IFrame_-1_-1(0,0) / ONOKQ)

trace on sut

IPleaseAck() /
ONOK ()

memV: [] stateVarUpdates: {} stateVars: {}
IFrame_-1_-1(100,200) /
ONOK ()

memV: [] stateVarUpdates: {} stateVars: {}
IPleaseAck() /
ONOK ()

memV: [] stateVarUpdates: {} stateVars: {}
IPleaseAck() /
ONOK ()

memV: [] stateVarUpdates: {} stateVars: {}
IFrame_-1_-1(300,400) /
ONOK ()

memV: [] stateVarUpdates: {} stateVars: {}
IFrame_-1_-1(500,0) /
00ut_p0(500)

memV: [] stateVarUpdates: {} stateVars: {}

trace on hyp

32

C Contents of statistics.txt (output)

IPleaseAck() /
ONOK ()

memV: null stateVarUpdates: null stateVars: {}
IFrame_-1_-1(100,200) /
ONOK ()

memV: null stateVarUpdates: null stateVars: {}
IPleaseAck() /
ONOK ()

memV: null stateVarUpdates: null stateVars: {}
IPleaseAck() /
ONOK)

memV: null stateVarUpdates: null stateVars: {}
IFrame_-1_-1(300,400) /
ONOK ()

memV: null stateVarUpdates: null stateVars: {}
IFrame_-1_-1(500,0) /
ONOK ()

memV: null stateVarUpdates: null stateVars: {}

Run number : 2

Start learning from scratch 1 true

HypL index/#states after run 1 2/3

Membership queries 1 40

Membership inputs : 102

Running time of membership 94 ms = 0:00:00 (h:m:s)
Testing equivalence queries T2

Testing equivalence inputs 1 22

Running time of testing : 18 ms = 0:00:00 (h:m:s)
Ce analysis membership queries : 4

Ce analysis membership inputs : 40

Running time of counterexample analysis : 60 ms = 0:00:00 (h:m:s)
Learn resets 1 40

33

APPENDIX.

Learn inputs

Testing resets

Testing inputs

Ce Analysis resets

Ce Analysis inputs

Number

Number

num Ce
num Ce
num Ce

number

nodes in observation tree

end nodes in observation tree

inputs EquivOracle
inputs AfterLoopReduction
inputs AfterCeAnalysis

0f Reused CounterExamples

Abstraction refinement done

Store updates on CE

Store updates on inconsistency

Counterexample sent to learner

Description of run

. 74

: 38

11
100

: 38
: 23

. 20
. 20

o

o O O O

Termination Reason: concrete counterexample found!

concrete CE inputs:
[IFrame(100,0), IFrame(200,0), IFrame(0,0), IFrame(1,0),
IFrame (200,300), IFrame(1,0), IFrame(200,0), IPleaseAck(),

IPleaseAck(), IFrame(0,1)]

executed:

on Sut (with abstractions determined using statevars of sut):
IFrame_-1_0(100,0) / 00ut_p0(100) -> IFrame_-1_0(200,0) / ONOK() ->
IFrame_-1_0(0,0) / ONOK() -> IFrame_-1_0(1,0) / ONOK() ->
IFrame_-1_-1(200,300) / ONOK() -> IFrame_-1_0(1,0) / ONOK() ->
IFrame_-1_0(200,0) / ONOK() -> IPleaseAck() / 0OAck_c0(0) ->
IPleaseAck() / ONOK() -> IFrame_-1_-1(0,1) / 00ut_c0(0)

on Hyp (with abstractions determined using statevars of hyp):
IFrame_-1_0(100,0) / 00ut_p0(100) -> IFrame_-1_-1(200,0) / ONOK() ->
IFrame_-1_-1(0,0) / ONOK() -> IFrame_-1_-1(1,0) / ONOK(Q) ->
IFrame_-1_-1(200,300) / ONOK() -> IFrame_-1_-1(1,0) / ONOK() ->
IFrame_-1_-1(200,0) / ONOK() -> IPleaseAck() / 0Ack_c0(0) ->

34

C Contents of statistics.txt (output)

IPleaseAck() / ONOK() -> IFrame_-1_-1(0,1) / ONOKQ)

trace on sut

IFrame_-1_0(100,0) /
00ut_p0(100)

memV: [] stateVarUpdates: {} stateVars: {}
IFrame_-1_0(200,0) /
ONOK ()

memV: [] stateVarUpdates: {} stateVars: {}
IFrame_-1_0(400,0) /
ONOK ()

memV: [] stateVarUpdates: {} stateVars: {}
IFrame_-1_0(500,0) /
ONOK ()

memV: [] stateVarUpdates: {} stateVars: {}
IFrame_-1_-1(600,300) /
ONOK ()

memV: [] stateVarUpdates: {} stateVars: {}
IFrame_-1_0(700,0) /
ONOK ()

memV: [] stateVarUpdates: {} stateVars: {}
IFrame_-1_0(800,0) /
ONOK ()

memV: [] stateVarUpdates: {} stateVars: {}
IPleaseAck() /
0Ack_c0(0)

memV: [] stateVarUpdates: {} stateVars: {}
IPleaseAck() /
ONOK ()

memV: [] stateVarUpdates: {} stateVars: {}
IFrame_-1_-1(900,1) /
00ut_p0(900)

memV: [] stateVarUpdates: {} stateVars: {}

trace on hyp

35

APPENDIX.

IFrame_-1_0(100,0) /
00ut_p0(100)

memV: null stateVarUpdates: null stateVars: {}
IFrame_-1_-1(200,0) /
ONOK ()

memV: null stateVarUpdates: null stateVars: {}
IFrame_-1_-1(400,0) /
ONOK)

memV: null stateVarUpdates: null stateVars: {}
IFrame_-1_-1(500,0) /
ONOK ()

memV: null stateVarUpdates: null stateVars: {}
IFrame_-1_-1(600,300) /
ONOK ()

memV: null stateVarUpdates: null stateVars: {}
IFrame_-1_-1(700,0) /
ONOK ()

memV: null stateVarUpdates: null stateVars: {}
IFrame_-1_-1(800,0) /
ONOK)

memV: null stateVarUpdates: null stateVars: {}
IPleaseAck() /
OAck_c0(0)

memV: null stateVarUpdates: null stateVars: {}
IPleaseAck() /
ONOK ()

memV: null stateVarUpdates: null stateVars: {}
IFrame_-1_-1(900,1) /
ONOK ()

memV: null stateVarUpdates: null stateVars: {}

Run number : 3
Start learning from scratch : true
HypL index/#states after run 1 3/4

36

C Contents of statistics.txt (output)

Membership queries : 85

Membership inputs : 268

Running time of membership : 145 ms = 0:00:00 (h:m:s)
Testing equivalence queries : 500

Testing equivalence inputs : 5799

Running time of testing : 1136 ms = 0:00:01 (h:m:s)
Ce analysis membership queries : 0

Ce analysis membership inputs : 0

Running time of counterexample analysis : 0Oms = 0:00:00 (h:m:s)
Learn resets : 85

Learn inputs 1 144

Testing resets : 501

Testing inputs : 5809

Ce Analysis resets : 0

Ce Analysis inputs : 0

Number nodes in observation tree : 99

Number end nodes in observation tree : 56

num Ce inputs EquivOracle)
num Ce inputs AfterLoopReduction : 0
num Ce inputs AfterCeAnalysis : 0
number 0f Reused CounterExamples : 0
Abstraction refinement done : 0
Store updates on CE : 0
Store updates on inconsistency : 0
Counterexample sent to learner : 0
Description of run : no counterexample found
SUMMARY
Total running time : 547 ms = 0:00:01 (h:m:s)
¢-> with last run : 1683 ms = 0:00:02 (h:m:s)
Total running time of Membership : 321 ms = 0:00:00 (h:m:s)
Total running time of Testing : 58 ms = 0:00:00 (h:m:s)

37

APPENDIX.

‘-> with last run

Total running time of CounterExample analysis

Total processLearningResultTime

Total verificationTime

Total realTime

real start time

real end time

Total
Total
Total
Total

Total

Total
Total
Total
Total
Total
Total
Total

Learn

Learn

runs (include last test run)

membership queries

membership inputs

Testing equivalence queries

‘-> with last run

Testing equivalence inputs

‘-> with last run

Ce Analysis membership queries

Ce Analysis membership inputs

abstraction refinements

number
number
number

states

resets

inputs

of guard lookahead traces added
of output lookahead traces added

of counterexamples sent to learner:

in learned abstract Mealy machine :

Testing resets

Testing inputs

Ce Analysis resets

Ce Analysis inputs

Number nodes in observation tree

Number end nodes in observation tree

num Ce traces EquivOracle

38

1194 ms = 0:00:01 (h:m:s)
168 ms = 0:00:00 (h:m:s)

17 ms = 0:00:00 (h:m:s)
: O0ms = 0:00:00 (h:m:s)

: 2222 ms = 0:00:02 (h:m:s)

1656143646522 ms since Jan 1, 1970 GMT
= 2022-06-18 09:54:06
1656143648744 ms since Jan 1, 1970 GMT
= 2022-06-18 09:54:08

134

: 382

: 503
. 28
: 5827

» O O O O

134

. 228

: 50

19
142

: 99
: 56

D sut run

num Ce inputs EquivOracle : 32
num Ce traces AfterLoopReduction : 2
num Ce inputs AfterLoopReduction : 32

num Ce traces CeAnalysis
num Ce inputs AfterCeAnalysis

number O0f Reused CounterExamples

Termination Reason : Couldn’t find counterexample
after maxNumTraces applied

Learning Successfull : null

counter examples:

run 0: IPleaseAck() / ONOK_7() -> IFrame_7?_7(88,379) / ONOK_7() ->
IPleaseAck() / ONOK_?() -> IPleaseAck() / ONOK_7() ->
IFrame_7_7(379,379) / ONOK_?() -> IFrame_?7_7(0,0) / ONOK_7()

run 1: IFrame_7_7(22,0) / 00ut_7(22) -> IFrame_7_7(245,0) / ONOK_7() ->
IFrame_7?_7(0,0) / ONOK_?() -> IFrame_7?_7(1,0) / ONOK_?() ->
IFrame_7_7(245,273) / ONOK_?() -> IFrame_7_7(1,0) / ONOK_?() ->
IFrame_7_7(245,0) / ONOK_7() -> IPleaseAck() / 0Ack_7(0) ->
IPleaseAck() / ONOK_?() -> IFrame_7_7(0,1) / ONOK_7()

D sut run

D.1 Without verbose mode

$ sut_run model.xml --port 9999

SUT simulation socketserver

-> listening at port : 9999

-> verbose mode : OFF

-> the server has a timeout of 30 seconds

note: to prevent unnecessary servers to keep on running

New client...
Starting client...
New client...
New client...
Starting client...

New client...

39

APPENDIX.

Starting client...
New client...

Starting client...
Starting client...
New client...

Starting client...
Closing client...
Closing client...
Closing client...
Closing client...
Closing client...

Closing client...

D.2 Partial output with verbose mode

input: IFrame_109_1
output: ONOK

input: IFrame_1_1
output: ONOK

input: IFrame_0O_1
output: ONOK

input: IFrame_109_109
output: ONOK

input: IFrame_1_1
output: ONOK

input: IPleaseAck
output: ONOK

input: IFrame_0_0
output: 00ut_0
input: IFrame_1_109
output: ONOK

input: IFrame_109_1
output: ONOK

input: IFrame_109_0
output: ONOK

input: reset

reset sut

input: IFrame_373_0

40

E sut compare

output: 00ut_373
input: IPleaseAck
output: 0Ack_O
input: IFrame_373_1
output: 00ut_373
input: IFrame_O_1
output: ONOK

input: IFrame_0O_1
output: ONOK

input: IFrame_373_1
output: ONOK

input: IPleaseAck
output: OAck_1
input: IFrame_390_0
output: 00ut_390
input: IPleaseAck
output: 0Ack_O
input: IFrame_390_1
output: 00ut_390
input: IFrame_1_0
output: ONOK

input: IFrame_1_0
output: ONOK

input: IPleaseAck
output: OAck_1
input: reset

reset sut

E sut compare

$ sut_compare output/22-06-18_09.54.06_custom_abp/learnedConcreteModel.xml \
tomte-0.41/models/custom_abp/model.xml
{
"equal": true,
"fullOutput": "flatten first model to a cadp bcg file\n-------------
—————————————————————————————————— \n\n\"model.bcg\" =

41

APPENDIX.

generation of \'"model.lotos\"\n (* 10 states, 14
transitions, 2.4 Kbytes *)\n\nflatten second model to
a cadp bcg file\n------------ommm
—————————— \n\n\"model.bcg\" = generation of
\"model.lotos\"\n (* 10 states, 14 transitionmns,
2.4 Kbytes *)compare modell.bcg with model2.bcg with
cadp caesar\n---—--—--————-— -
—————— \nbcg_open: using ‘‘/home/gideon/cadp//bin.x64/
bisimulator.a’’\nbcg_open: running ‘‘bisimulator -diag
-bfs -strong model2.bcg’’ for ¢‘./modell.bcg’’\n\nTRUE"

"inputsCounterExample": null,

"outputsModell": null,

"outputsModel2": null

F Learned abstraction

Concrete alphabet:
IFrame(int, int)
IPleaseAck()
OAck(int)

ONOK ()

00ut (int)
Abstraction:
IFrame([], [cO, c1])
IPleaseAck()
0Ack()

ONOK ()

00ut ()

Abstract alphabet:

IFrame_-1_-1
IFrame_-1_0
IFrame_-1_1
IPleaseAck

42

G SUT implementation

Constants:
[0, 1]

G SUT implementation

package cav;

import java.io.IOException;

import java.net.URI;

import java.net.http.HttpClient;

import java.net.http.HttpRequest;

import java.net.http.HttpRequest.BodyPublishers;
import java.net.http.HttpResponse.BodyHandlers;
import java.util.ArrayList;

import java.util.List;

import java.util.Random;

public class Sut implements sut.interfaces.SutInterface {
// create a client

HttpClient client = HttpClient.newHttpClient();

private Random random = new Random(1234567890) ;

// Get fresh value

private int getRandomInt() {
return random.nextInt (10000000)+10000000;

// handling each Input

/* register an uid

*/

public OutputAction IRegister(int uid) throws IOException, InterruptedException {

String methodName = "ONOK";

List < Parameter > params = new ArraylList < Parameter > ();

String reqBody = "{\"uid\":" + uid + "}";

43

APPENDIX.

// create a request

var request = HttpRequest.newBuilder ()
.uri(URI.create("http://127.0.0.1:5000/register"))
.header ("Content-type", "application/json")
.POST (BodyPublishers.ofString(reqBody))
.buildQ);

// use the client to send the request

var response = client.send(request, BodyHandlers.ofString());

if (!response.body().trim().contains("failed")) {
var pwd = Integer.parselnt(response.body().trim());
methodName = "QOK";

params.add (new Parameter(pwd, 0));

return new OutputAction(methodName, params);

/* login an user with uid
*/
public OutputAction ILogin(int uid,int pwd) throws IOException, InterruptedException {
String methodName = "ONOK";

List < Parameter > params = new ArraylList < Parameter > ();

String regBody = "{\"uid\":" + uid + ", \"pwd\":" + pwd + "}";

// create a request

var request = HttpRequest.newBuilder ()
.uri(URI.create("http://127.0.0.1:5000/1ogin"))
.header("Content-type", "application/json")
.POST (BodyPublishers.ofString(reqBody))
.build();

// use the client to send the request

var response = client.send(request, BodyHandlers.ofString());

44

G SUT implementation

var result = Integer.parselnt(response.body().trim());
if (result == 1) {

methodName = "QOOK";

params.add(new Parameter (getRandomInt(), 0)); // none important fresh output

return new OutputAction(methodName, params);

/* ILogout

public OutputAction ILogout(int uid) throws IOException, InterruptedException {

String methodName = "ONOK";

List < Parameter > params = new ArrayList < Parameter > ();

String reqBody = "{\"uid\":" + uid + "}";

// create a request

var request = HttpRequest.newBuilder()
.uri(URI.create("http://127.0.0.1:5000/logout"))
.header ("Content-type", "application/json")
.POST (BodyPublishers.ofString(reqBody))
.build();

// use the client to send the request

var response = client.send(request, BodyHandlers.ofString());
var result = Integer.parselnt(response.body().trim());

if (result == 1) {

methodName = "QOOK";

params.add(new Parameter(getRandomInt(), 0)); // none important fresh output

return new OutputAction(methodName, params);

45

APPENDIX.

/* IChangePassword
*/
public OutputAction IChangePassword(int uid) throws IOException, InterruptedException {
String methodName = "ONOK";

List < Parameter > params = new ArraylList < Parameter > ();

String reqBody = "{\"uid\":" + uid + "}";

// create a request

var request = HttpRequest.newBuilder ()
.uri(URI.create("http://127.0.0.1:5000/change-password"))
.header("Content-type", "application/json")
.POST (BodyPublishers.ofString(reqBody))
build();

// use the client to send the request

var response = client.send(request, BodyHandlers.ofString());

if (!response.body().trim().contains("failed")) {
var pwd = Integer.parselnt(response.body().trim());
methodName = "0OOK";

params.add(new Parameter (pwd, 0));

return new OutputAction(methodName, params);

// handling all inputs
public OutputAction handle(InputAction inputAction) throws IOException, InterruptedExce
String methodName=inputAction.getMethodName() ;
if (methodName.equals("ILogout")) {
List < Parameter > params = inputAction.getParameters();
int uid=params.get(0).getValue();
return ILogout (uid);
} else if (methodName.equals("IRegister")) {
List < Parameter > params = inputAction.getParameters();

int uid=params.get(0).getValue();

46

G SUT implementation

return IRegister(uid);
} else if (methodName.equals("IChangePassword")) {
List < Parameter > params = inputAction.getParameters();
int uid=params.get(0) .getValue();
return IChangePassword(uid) ;
} else if (methodName.equals("ILogin")) {
List < Parameter > params = inputAction.getParameters();
int uid=params.get(0) .getValue();
int pwd=params.get(1).getValue();
return ILogin(uid,pwd);

throw new RuntimeException("SUT does not support the input:" + inputAction.getMet

@0verride
public sut.interfaces.OutputAction sendInput(sut.interfaces.InputAction origInputAction)
InputAction inputAction = new InputAction(origInputAction); // make copy to be safe!!
OutputAction outputAction;
try {
outputAction = handle(inputAction);
return outputAction; // outputAction implements sut.interfaces.OutputAction :
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();

throw new RuntimeException("Something went wrong");

@0verride
public void sendReset() {
// create a request
var request = HttpRequest.newBuilder()
.uri(URI.create("http://127.0.0.1:5000/reset"))

47

APPENDIX.

.header ("Content-type", "application/json")
.POST (BodyPublishers.ofString(""))
build();

// use the client to send the request

try {
client.send(request, BodyHandlers.ofString());

} catch (IOException | InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();

H Contents of config.yaml of custom SUT

learning:
mode: "stateVarN"
sutinfoFile: "sutinfo.yaml"

useExistingJarfile: "sut.jar"

no counterexample can be found
seed: 129977735602
useSutSimulation: true
reuseCounterExample: true
memVOrder: positionalHistory
reconstructAbstractions: true
reductionStrategies: ["loop","singleTransition"]
maxTime: 3000

testing:
methods: [randomWalk]
minValue: O
maxValue: 400
maxTracelLength: 100
maxNumTraces: 20000

verification:

48

I API

method: traces

verificationTraces:

TRegister(1)
IRegister(1)
IRegister(1)
TRegister(1)
IRegister (1)
IRegister(1)
IRegister(1)

learnResults:

IRegister(2)
IRegister(2)
IRegister(2)
IRegister(2)
TRegister(2)
IRegister(2)
IRegister(2)

outputDir: "output/${sutnamel}"

sutInterface:

sutImplementation:

logging:
childLoggerLevels
}

I API

from flask import Flask

directCall:

package: "cav"

className:

llSut n

modelFile: model.uppaal.xml

TRegister(3)
IRegister(3)
IRegister(3)
IRegister(3)
TRegister(3)
IRegister(3)
IRegister(3)

ILogin(2,-11) -> ILogin(1,-10)
IRegister(4) -> ILogin(3,-12) -
IRegister(4) -> IRegister(5) -
IRegister(4) -> IRegister(5) -:
ILogin(1,-10) -> IChangePasswos
ILogin(2,-10) -> IChangePasswos
ILogin(3,-10) -> IChangePasswor

modelFilePath: input/Do_FreshSimpleQutput/model.uppaal.xml
modelName: ${modelDirName}
projectClassPath: build

: q{

#abslearning.tree.trace.LookaheadSutTraceStateVar: "off",

from flask_restful import Resource, Api, reqparse

import ast, random

app
api

Api (app)

Flask(__name__)

Initialize statemachine constants,variables and locations

id2pwd = dict()

49

APPENDIX.

id2loggedin = dict()

loggedin_users = 0

MAX_REGISTERED_USERS = 2
MAX_LOGGEDIN_USERS = 1000000

Endpoints

class Register(Resource):
def post(self):
global MAX_REGISTERED_USERS
global id2loggedin
global id2pwd

parser = regparse.RequestParser() # initialize
parser.add_argument (’uid’, required=True) # add args
args = parser.parse_args()

uid = int(args[’uid’])

if ((not (uid in id2pwd)) and len(id2pwd) < MAX_REGISTERED_USERS) :
pwd = random.randint (100000, 1000000)
id2pwd[uid] = pwd
id2loggedin[uid] = False;

return pwd, 200
else:
return "failed", 200

class Login(Resource):
def post(self):
global loggedin_users
global MAX_LOGGEDIN_USERS
global id2loggedin
global id2pwd

parser = regparse.RequestParser() # initialize

parser.add_argument (’uid’, required=True)

50

I API

parser.add_argument (’pwd’, required=True)

args = parser.parse_args()

uid = int(args[’uid’])

pwd = int(args[’pwd’])
if ((uid in id2pwd) and (not id2loggedin[uid]) and pwd == id2pwd[uid] and logged:
loggedin_users = loggedin_users + 1

id2loggedin[uid] = True

return 1, 200
else:

return 0, 200

class Logout (Resource):
def post(self):
global id2loggedin
global loggedin_users

parser = reqparse.RequestParser() # initialize
parser.add_argument (’uid’, required=True) # add args
args = parser.parse_args()

uid = int(args[’uid’])

if ((uid in id2loggedin) and id2loggedin[uid]):
id2loggedin[uid] = False
loggedin_users = loggedin_users - 1
return 1, 200
else:
return 0, 200

class ChangePassword(Resource) :
def post(self):
global id2loggedin
global id2pwd

parser = reqparse.RequestParser() # initialize

parser.add_argument (’uid’, required=True) # add args

args = parser.parse_args()

51

APPENDIX.

uid = int(args[’uid’])

if ((uid in id2loggedin) and id2loggedin[uid]):
pwd = random.randint (100000, 1000000)
id2pwd[uid] = pwd
return pwd, 200

else:

return "failed", 200

class Reset(Resource):

api.

api
api

api

api.

def post(self):
global id2pwd
global id2loggedin
global loggedin_users

id2pwd = dict()
id2loggedin = dict()

loggedin_users = 0

add_resource(Register, ’/register’)

.add_resource(Login, ’/login’)
.add_resource(Logout, ’/logout’)

.add_resource (ChangePassword, ’/change-password’)

add_resource(Reset, ’/reset’)

Run server

if

_name__ == ’__main__’:

app.run(debug = False) # run our Flask app

52

	1 Introduction
	1.1 Passive automata learning
	1.2 Active automata learning

	2 Model Learning
	2.1 Target models
	2.1.1 Deterministic Finite Automata (DFA)
	2.1.2 Mealy machines
	2.1.3 Register Automata (RA)

	2.2 The L* algorithm
	2.3 Tools
	2.3.1 LearnLib
	2.3.2 Tomte

	3 Tomte tool
	3.1 Inner workings
	3.1.1 Determinizer
	3.1.2 Lookahead oracle
	3.1.3 Abstractor
	3.1.4 Equivalence checking
	3.1.5 Additional software

	3.2 Commands
	3.2.1 sut_run
	3.2.2 tomte_learn
	3.2.3 sut_uppaal2sutinfo
	3.2.4 sut_uppaal2layoutformat
	3.2.5 sut_compare
	3.2.6 Flattening

	3.3 Personal experience

	4 Experiments
	4.1 Generating a SUT
	4.2 Learning
	4.3 Results
	4.4 Using Tomte for real-world systems

	5 Conclusion
	References
	Appendix
	A Contents of sutinfo.yaml (input)
	B Contents of config.yaml (input)
	B.1 Options used for overwriting defaults
	B.2 All options used in tomte_learn

	C Contents of statistics.txt (output)
	D sut_run
	D.1 Without verbose mode
	D.2 Partial output with verbose mode

	E sut_compare
	F Learned abstraction
	G SUT implementation
	H Contents of config.yaml of custom SUT
	I API

