
Middleware Reconfiguration Relying on Formal Methods

Nelson Rosa

Universidade Federal de Pernambuco
Centro de Informática

Recife, Pernambuco, Brazil
Email: nsr@cin.ufpe.br

Abstract—Adaptive middleware is a software for developing
and executing distributed applications and can be reconfigured
at runtime without its complete stop. The need of reconfigu-
ration is usually triggered by changes in application’s require-
ments and environmental conditions, to fix bugs or to extend
the middleware’s functionality. The development of an adaptive
middleware still being a challenge due to the complexity of
dealing with adaptation issues, such as how, when and where to
reconfigure the middleware. Existing solutions to build adaptive
middleware concentrate on the use of software mechanisms like
aspect oriented programming and computational reflection to
face the issues behind the reconfiguration. In this paper, we
propose to reconfigure the middleware by moving adaptation
decisions and actions from the middleware to an external
and formally-based element. The whole adaptation process is
performed based on the behavioural analysis of the middleware
execution trace. In order to evaluate the proposed approach, we
carried experimental experiments to check the effectiveness of
the proposed adaptation mechanism and measure the overhead
caused by the proposed adaptation mechanism.

Keywords-middleware; adaptation; formal methods.

I. INTRODUCTION

Middleware platforms are widely recognised as complex

software systems [1][2]. This complexity comes mainly from

the need of providing an increasing number of transparen-

cies and services to distributed application developers. In

practice, application developers want to keep away from

the difficulty of treating with underlying concurrency, com-

munication, and distribution mechanisms, whilst they also

demand distributed services to aggregate values to their

application. As a consequence, it is expected that middle-

ware platforms should provide distribution transparencies

such as access, location, failure and migration that hide low

level distribution mechanisms. At the same time, the roll

of available middleware services usually includes security,

concurrency, licensing, deployment, and so on.
Adaptive middleware is a particular kind of middleware

whose behaviour can be modified at runtime without its

complete stop. Fours key aspects are usually considered

in the design of adaptive middleware systems [3]: why the

adaptation is necessary, when the adaptation must occur, how
the adaptation is carried out and where the adaptation code is

inserted in the middleware. The motivation for middleware

adaptation is based on the need of adapting to changes of ap-

plication’s requirements or application’s behaviour, adapting

to changes of environmental conditions, fixing middleware’s

bugs or extending the middleware functionality. The time

adaptation occurs is usually at development time, compila-

tion time, deployment time and runtime. The adaptation is

usually implemented using software enabling mechanisms

like computational reflection, and two traditional strategies

are usually adopted [3]: parameter adaptation, which mod-

ifies the middleware variables that determine its behaviour;

or compositional adaptation, which exchanges algorithmic

or structural middleware components with others to help the

middleware to fit to changes in its environmental conditions.

Finally, the place where the adaptive code is usually inserted

is variable: middleware layers or application code.

The development of an adaptive middleware still being

a challenge due to the complexity of deal with afore-

mentioned reconfiguration issues. Meanwhile, this is not a

recent topic in the middleware community [4][5][6]. More

recently, adaptive middleware systems have been developed

in several different application domains, such as large-

scale power systems [7], onboard sattellite systems [8], and

public transit system [9]. However, whatever the approach

or application domain, these approaches focus on adopting

(or even extending) an existing enabling technology (e.g.,

computational reflection) to solve the adaptation issues.

In this paper, we present an approach, namely MIs-

tRAL (MIddleware Reconfiguration Aid by formaLism),

for building adaptive middleware systems based on the

lightweight use of formal methods. MIstRAL works at

runtime; assumes that the reason for reconfiguration is

the existence of bad behaviour in the middleware (e.g.,

deadlock) or changes in the application requirements; uses

formalisms as enabling technology and does not incorporate

the reconfiguration activities into the middleware.

Similarly to the aforementioned approaches, MIs-

tRAL also releases middleware developers from adaptation

activities. However, MIstRAL advances in two different

directions in relation to existing solutions. Firstly, we use

a formal approach as our enabling software technology to

deal with the middleware adaptation (how). Secondly, we

do not insert the adaptation mechanism into the middleware

(where). The proposed mechanism is moved to an external

component that decides and takes needed actions to recon-

figure the middleware.

2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications;

Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing

978-1-5090-0154-5/15 $31.00 © 2015 IEEE

DOI 10.1109/CIT/IUCC/DASC/PICOM.2015.93

648

In practice, MIstRAL helps to identify that something

is not working properly in the middleware and then fix

its behaviour; and helps to identify that the application is

not working properly (e.g., due to the current middleware

configuration) and then adapt the middleware to fix the ap-

plication behaviour. It is worth observing that the perception

that something is wrong in the application behaviour is only

based on the view of its interaction with the middleware. On

the other hand, MIstRAL is unable to adapt the middleware

due to neither changes in the environmental conditions nor

the need of extending the middleware functionality. This is

not possible because MIstRAL is not able to monitor the

environmental conditions. It concentrates on monitoring be-

havioural aspects of the middleware execution by observing

its execution trace.

MIstRAL works by reconfiguring the middleware by

checking its execution trace against desired properties ex-

pressed in a temporal logic. The execution trace includes

application’s interactions with the middleware (not the ap-

plication internal behaviour) and all actions performed by

the middleware. For example, suppose a middleware starts

to have a bad behaviour (i.e., a middleware component

fails or does not respond to invocations), MIstRAL detects

these problems and then triggers the needed reconfiguration

actions at runtime. Another possibility is to identify that the

application is not working properly based on the middleware

execution trace.

Our unique contributions in this paper include: the moving

of the adaptation process to an element outside the mid-

dleware; the adoption of a non-invasive approach in which

existing middleware systems may be adapted without be

modified; the use of a lightweight formal approach to guide

the middleware adaptation; and the definition of formal

properties that model anomalies in the functioning of object

oriented middleware systems, which serve as basis for the

adaptation process. Further minor contributions are related

to the adoption of a pattern oriented approach to define the

anomalies, and the actual implementation of an adaptive

middleware in Java that uses the proposed approach.

This paper is organized as follows. Section II introduces

basic concepts of middleware. Next, Section III presents the

proposed approach to middleware reconfiguration. Section

IV makes an evaluation of the proposed approach. Section V

presents existing researches on design pattern formalisation.

Finally, Section VI presents conclusions and some future

work.

II. ADAPTIVE MIDDLEWARE

Middleware platforms facilitate the development of dis-

tributed applications by implementing distribution trans-

parencies (e.g., access, location and failure) and providing

distributed services (e.g., naming, security, and concurrency)

to developers. In practice, the middleware hides from ap-

plication developers the complexity of underlying com-

munication and concurrency mechanisms, distribution and

heterogeneity of operating systems, programming language,

hardware and network.

Despite the great diversity of middleware models and

products, they are usually structured into four layers [10]:

infrastructure layer serves as a wrapper to low level com-

munication and concurrency mechanisms of the operating

systems; (ii) distribution layer is the heart of the middleware

and defines the higher-level distributed programming models

made available to application developers, e.g., it defines

the programming abstractions (e.g., objects, components,

procedures) used to build applications; common services
layer that consists of generic services used by distribute

application despite their domain (e.g., security, naming,

transaction, concurrency); and specific services layer, which

include domain-specific services such as telecommunication,

e-commerce and e-learn.

Adaptive middleware is a particular kind of middleware

whose behaviour can be modified at runtime motivated

by the need of (i) adapting to changes of application’s

requirements, (ii) adapting to changes of environmental

conditions, (iii) fixing middleware’s bugs or (iv) extending

the middleware functionality. Alterations in the applica-

tion requirements are usually related to the need of a

new/improved functionality provided by the middleware,

e.g., an application that needs to be more secure demands

a new stronger encryption algorithm implemented by the

middleware security service. Changes in the environmental

conditions can occur due to hardware failures and network

traffic changes. Sometimes, however, the middleware adap-

tation can be motivated by the perception that something

is wrong with the middleware behaviour. Finally, the need

of adaptation is simply because the middleware should be

extended due to implementation of a new feature of the

middleware.

Adaptive middleware may be classified as static and

dynamic [11]. Static middleware is one whose adaptation

occurs at compile/start-up time, whilst in the dynamic mid-

dleware, the adaptation happens after the start-up time, i.e.,

at runtime. Adaptive middleware is typically implemented

using four enabling software technologies: computational re-

flection, component-based design, aspect-oriented program-

ming and software design patterns. By using computational

reflection, the middleware can reason and alters its own

behaviour. Meanwhile, in the component-based design, the

middleware can be built through putting together software

units that can be independently produced, deployed and

composed. In aspect-oriented programming, the middleware

can be composed of intervened cross-cutting concerns such

as security, fault-tolerance, and so on. Finally, software

design patterns specially defined to treat with adaptive con-

cerns (known as adaptive design patterns) can be employed

to develop the middleware, e.g., virtual component pattern,

component configurator, invocation interceptor and chain of

649

interceptors.

III. MISTRAL

MIstRAL (MIddleware Reconfiguration Aid by for-

maLism) is an approach that uses formal elements, in a

lightweight way, to guide the middleware reconfiguration

process. This approach allows the development of adaptive

middleware systems and has been defined using some basic

principles:

• Why: MIstRAL allows the middleware reconfiguration

motivated by the existence of middleware bugs and

changes in the application’s requirements and applica-

tion’s behaviour;

• When: the middleware reconfiguration should typically

occur at runtime. However, MIstRAL may also be use-

ful at middleware development time to detect undesired

middleware behaviours;

• How: the reconfiguration process should be based on

a formal tooling as the key enabling technology for

developing adaptive middleware systems. Furthermore,

the reconfiguration is compositional which means that

four operations are used to reconfigure the middleware:

add, remove, replace and reconnect structural middle-

ware components as defined in [3];

• Where: MIstRAL is not part of the middleware, which

means that the adaptation code is external to the mid-

dleware;

• Middleware agnostic: any middleware implementation

using the idea of ”chain of interceptors” (see Section II)

should be reconfigurated using the proposed approach.

It is worth observing that most existing middleware

implementations uses chain of interceptors and allow

their reconfiguration at runtime;

• Solution itself is reconfigurable: the solution itself

should be reconfigurable, i.e., it is possible to change

the temporal properties to be evaluated at runtime and

the reconfiguration policies; and

• Intensive use of design patterns: intensive use of adap-

tive middleware design patterns that facilitates the re-

configuration process.

In practice, MIstRAL reconfigures the middleware by

checking its execution trace against desired properties ex-

pressed in a temporal logic. For example, suppose a mid-

dleware starts to have a bad behaviour (i.e., a middleware

component fails or does not respond to invocations), MIs-

tRAL detects this problem and then triggers the needed

reconfiguration actions.

Figure 1 presents a general overview of the proposed

solution. The middleware execution trace is passed to MIs-

tRAL that takes responsibility of checking behavioural

properties and executing the needed reconfiguration without

a complete stopping of the middleware. In the case the

properties are not satisfied, the middleware is reconfig-

urated. The process is repeated according to some pre-

defined reconfiguration policy, e.g., every 5 minutes, every

5 minutes in normal conditions and every minute right after

the reconfiguration.

Figure 1. General Overview

The proposed approach involves three main steps: tracing,

checking and reconfiguration. In the tracing step (1), an

execution trace is generated by instrumenting the middle-

ware to log its operations, e.g., the component responsible

for marshalling messages must log proper information every

time it is invoked, or any send/receive operation performed

by the middleware must be registered. The checking step

(2) occurs simultaneously to the middleware execution, in

an independent way, and with the aid of a formal tooling. In

this step, the generated trace is checked against middleware

desired properties. Finally, the reconfiguration step (3) is

executed by reconfiguring the middleware, e.g., by replacing

a existing component or adding a new one.

More formally, given a middleware M , its execution trace

T , and a set of desired middleware temporal properties P ,

T must satisfy P (T � P). If for some reason, T does

not satisfy P (T � P), M is reconfigurated according to

a reconfiguration plan R. R consists of a set of actions A
performed on the middleware.

Next subsections present details of MIstRAL and for-

mally introduce the aforementioned elements.

A. Basic Definitions

Prior to present the formalisation of elements involved

in the MIstRAL approach, it is necessary to introduce

some basic concepts including our notion of middleware,

middleware component, component interface and invocation

interceptor.

Definition 1 (Component Interface). An interface is the

set of operations I = {op1, op2, ..., opn} performed by the

middleware component that expresses its functionality.

It is worth observing that for our particular purpose, the

signature of these operations, traditionally included in this

kind of definition, is not considered here. We are only

interested in the component behaviour, which is a sequence

650

of operations performed by the component whatever the

input and output parameters, and their respective types.

Definition 2 (Middleware Component) A middleware

component is a tuple C =< I,H >, where

• I is the component interface,

• H is the sequence of possible invocations to the com-

ponent interface.

Definition 3 (Middleware) Middleware is a tuple M =<
S,D, F,B >, where

• S is a set of components that make up the middleware

and can not be reconfigurated at runtime,

• D is a set of components that make up the middleware

and can be reconfigurated at runtime,

• F ⊆ DXD is a relation that defines how the reconfig-

urable components are connected,

• B is the sequence of observable actions that can occur

(be observed) at all components’ interfaces of the

middleware.

B. Tracing

Tracing is a key element of MIstRAL and refers to the

way the trace is generated and its content. The execution

trace is produced by registering observable actions executed

by the middleware during its execution.

Definition 4 (Execution Trace) Middleware execution

trace T is a sequence of actions T ⊆ B ∪ E performed by

the middleware, where

• B is the sequence of observable actions that may

occur at all components’ interface of the middleware

according to Definition 3, and

• E is the set of actions raised due to errors.

C. Checking

As mentioned before, the checking consists of verifying a

temporal logic property on the middleware execution trace.

The result of this verification defines whether the property

is satisified (T � P) or not (T � P) by the middleware

according to [12].

The properties adopted in this paper follows the set of

property patterns defined in [13]: a given action does not

occur within a scope (absence); a given action must occur

within a scope (existence); a given action must occur k times

within a scope (bounded existence); a given action occurs

throughout a scope (universality); an action a must always

be preceded by an action b (precedence); an action a must

always be preceded by an action b (response); a sequence

of actions a1, ..., an must always be preceded by a sequence

of actions b1, ..., bm (chain precedence); and a sequence of

actions a1, ..., an must always be followed by a sequence

of actions b1, ..., bm (chain of response). By adopting these

patterns and using the regular alternation-free μ-calculus

[12], we consider the property patterns shown in Table I.

Table I
Property patterns

No Description Formula
P1 ”α1 does not occur” [T ∗ .α1]F
P2 ”α1 does not occur before α2” [(¬α2)∗.α1.(¬α2)∗.α2]F
P3 ”α1 must occur before α2” [(¬α1)∗.α2]F
P4 ”α1 must occur after α2 [(¬α1)∗.α2]μY. < T > T [¬α1]Y
P5 ”α1 must occur between α2 and α3 [T ∗.α2.(¬(α1α3))∗.α3]F
P6 ”α1 must occur after α2 until α3 [T ∗.α2]μY. < T > T [α3]F [¬α1]Y
Deadlock No deadlock sequence is found [true∗] < true > true
Livelock No livelock sequence is found [true∗]muX.([”exit”]X)

It is worth observing that given a middleware execution

trace T , actions α1, α2, α3 ∈ T . Additionally, these proper-

ties must reflect the design pattern invocations as defined in

[14].

D. Reconfiguration

As mentioned before, the reconfiguration is triggered

when the verification of a temporal property (pi) on trace

produces a false result. As a consequence, a reconfiguration

plan (ri) must be executed to change the way the the

dynamic components are connected (see Definition 3).

Hence, we have

T � p1 → r1
T � p2 → r2
...

T � pn → rn

In particular, four kinds of reconfiguration plans (ri) can

be performed: add a new component to configuration, to

remove an existing component from configuration, to replace

an existing component or to reconnect existing components

of the configuration.

Definition 5 (Recofigurantion Plan) A reconfiguration

plan is a function r : FXF �→ F ′, where

• F , F ′ are relations that define how the middleware re-

configurable components are connected (see Definition

3).

Four reconfiguration plans are predefined as follows:

• r1(F, {(ci, cn)}) = F ∪ {(ci, cn)}, where ci ∈ D and

cn is the new component to be added to the middleware;

• r2(F, {(ci, co)}) = F \{(ci, co)}, where ci, co ∈ D and

co is the component to be removed;

• r3(F, {(ci, co), (ci, cn)}) = r1(F, {(ci, cn)}) ◦
r2(F, {(ci, co)}), where ci, co ∈ D, co is the

component to be removed and cn is the new

component to be added;

• r4(F, {(ci, cj), (ck, cl)}) = r1(F, {(ci, cj)}) ◦
r2(F, {(ck, cl)}), where ci, cj , ck, cl ∈ D).

D is defined as shown in Definition 3.

E. Implementation

MIstRAL was implemented in Java and uses the CADP

Toolbox1 to check the execution trace. Figure 2 presents

1http://cadp.inria.fr

651

a general overview of the proposed implementation. The

adaptive middleware maintains a configuration file that

defines the interceptors implemented by the middleware

and whose access is mandatory in every invocation of a

client/server application. It is worth observing that the list

of interceptors and the configuration file correspond to the

elements D (set of reconfigurable components) and F (how

the reconfigurable elements are connected) as introduced in

Definition 3.

Figure 2. MIstRAL Architecture

The trace (see Section III-B) is obtained by instrumenting

the middleware with a logger that takes responsibility of

logging actions executed by the middleware (1). The trace

is formatted by the Processor that formats the log according

to the file format accepted by the CADP Toolbox. The

Processor passes the formatted log to the Checker that

invokes the CADP Toolbox to check the behaviour properties

(2).

The response from CADP is evaluated by the Checker.

If a reconfiguration is necessary (T � P), the Checker
asks for the Configurator to perform the reconfiguration

plan according to the property that was not satisfied (3).

The reconfiguration plans (Definition 5) change the way the

interceptors are connected and have been implemented as

defined in the following Java interface definition:

public interface IReconfigurationPlans {
public void addInt (int idx, MyInterceptor newInt);
public void remInt(MyInterceptor oldInt);
public void repInt(MyInterceptor oldInt, MyInterceptor newInt);
public void recInt(MyInterceptor i1, MyInterceptor i2,

MyInterceptor i3, MyInterceptor i4);
}

The CADP was adopted as the formal toolbox, but other

tools like PROM2 or FDR33 should also be used. By using

the CADP Toolbox, it is possible to check the following

properties on the middleware trace (T): find deadlocks,

find livelocks, find execution sequences, verify temporal

formulas, reduce, compare, convert, find path to state, find

non determinism, find unreacheable states, generate tests and

2http://www.processmining.org
3https://www.cs.ox.ac.uk/projects/fdr/

evaluate performance. In particular, the reconfiguration as

proposed in this paper is performed by verifying temporal

formulas.

IV. EXPERIMENTAL EVALUATION

In order to evaluate the proposed approach, we initially

implemented an adaptive object-oriented middleware based

on the remoting patterns [14] and a simple client/server

application atop it (see Figure 3). The middleware was

implemented using the following design patterns: Requestor,

Invoker, Client Proxy, Client Request Handler(CRH), Server
Request Handler(SRH), Marshaller, ObjectID, Absolute Ob-
ject Reference, Lookup, Invocation Interceptor and Invoca-
tion Context [14]. Three different invocation interceptors

compose the Chain of Interceptors(Interceptor 1, Intercep-
tor 2, Interceptor 3) and they were implemented on the

server side in such way that every remote invocation from

the Client passes through them in an order defined in the

Descriptor). It is worth observing that according to Defi-

nition 3, the interceptors are the reconfigurable middleware

components (D).

Figure 3. Adaptive object-oriented middleware

Figure 3 shows in a simplified way (for lack of space)

the basic steps on how the middleware works. Steps 1 and

2 are the traditional ones in the client/server binding, whilst

Steps 3, 4, 5, 6 and 7 are also very common in object-

oriented middleware systems in which a client’s invocation

enters in the middleware through the Client Proxy and

then is sent to the server side. On the server side, the

invocation goes through Steps 8 and 9 before passes into the

interceptor chain (Steps 10, 11 and 12). At this point, it is

worth observing that the initial set of interceptors is defined

according to the Descriptor. However, this descriptor can

be reconfigurated at runtime according to the result of the

execution trace analisys.

The experimental evaluation was divided into two steps:

to show that the reconfiguration actually changes the middle-

ware behaviour (Section IV-A); and to measure the overhead

caused by the reconfiguration process, and to measure the

time spent from the beginning of a bad behaviour and its

proper fixing (Section IV-B).

652

A. Reconfiguration

To show that the reconfiguration actually works, we

initially implemented three interceptors, where one of then

(Interceptor 2) becomes slow and is replaced from time to

time by another one (Interceptor 3) that is faster. Figure

4 shows the behaviour of the response time while the

reconfigurations are triggered. The response time is the time

lapsed between the client invocation to a remote object

and the reception of the response. Every invocation passes

through the chain of interceptors that is subject to the

reconfigurations as mentioned before.

Figure 4. Reconfigurations of the chain of interceptors

As shown in Figure 4, the behaviour of the response time

is very clear. When the slow interceptor is in the chain of

interceptors, the response time is high. From the time this

interceptor is replaced by another one (faster), the response

time decreases until the next reconfiguration.

B. Performance Evaluation

As mentioned before, we also are interested in measuring

two different performance aspects: the overhead caused by

the reconfiguration process on the adaptive object-oriented

middleware; and the time spent from the misbehaviour

detection until the end of the reconfiguration that fixes this

misbehaviour. These experiments were performed as shown

in Figure 5 that presents the elements in which the invocation

passes through.

We consider the performance metric response time (see

Section IV-A) and the factor reconfiguration mechanism
having two levels: enabled and disabled. The experiment

executed in a Mac OS (OS X, version 10.8.5, processor 2.9

GHz Intel Core i7, 8 GB of RAM), where a client performs

10.000 invocations to a remote object, whose service time

was set to 10 ms. The time shown in Figure 5 is the mean

response time of the invocations.

As expected, this figure shows that there is an overhead

in the response time when the reconfiguration mechanism is

enabled. This overhead is 0,14 ms and it is only 1,45% of

the service time. Hence, in practice, the overhead caused by

the reconfiguration mechanism is very low when compared

to the time spent with the business itself.

Second experiment focuses on the time spent with the

reconfiguration. In practice, it is the time lasted from the

detection that something is not working properly in the

Figure 5. Overhead caused by the reconfiguration mechanism

Figure 6. Reconfiguration time

middleware until the time the problem is fixed, i.e., the

middleware is reconfigurated. Figure 6 depicts this time

considering 100 consecutive reconfigurations. The meantime

for reconfiguration is 1551,407 ms and standard deviation

27,302 ms, which shows that the reconfiguration time is very

stable. The need of reconfiguration was artificially injected

in the middleware by inserting an unexpected behaviour that

was responsible for triggering the reconfiguration process. It

is worth observing that the majority of this time is due to

the time needed to the CADP Toolbox checks the desired

property.

V. RELATED WORK

Related works about what is being proposed in this paper

may be organized into two main categories: works on the

design and implementation of adaptive middleware systems

and works on the use of formal description techniques (FDT)

in non-adaptive middleware platforms.

The design and implementation of adaptive middleware

is not a recent topic in the middleware community. Several

adaptive middleware systems have been proposed and im-

plemented since a long time ago. Pioneer examples include

the reflective middleware DynamicTAO [4], OpenORB [5]

and OpenCom [6]. More recently, adaptive middleware have

been built in several different application domains, such as

large-scale power systems [7], onboard sattellite systems

[8] and public transit system [9]. However, whatever the

653

approach or application domain, most approaches focus on

adopting (or even extend) an existing enabling technology

(e.g., computational reflection) as the key element to solve

the reconfiguration issues. Formal methods are not used in

any stage of the aforementioned middleware development

and execution.

Attempts to put together FDTs and non-adaptive middle-

ware are also not recent. Formal techniques have been used

in different phases of the development of middleware-based

applications and middleware development itself. It possible

to observe the use of formal description techniques in two

different ways: in all phases of middleware development

(minority) or in just one phase (majority). The use of formal

description techniques in all phases of the middleware

development is rare, but it has been already done using SDL

[15]. Meanwhile, the use of formalisms in individual phases

is widely found and it starts at the elicitation requirements

phase [16]. Most common, however, is the adoption of FDTs

associated to architectural aspects of the middleware [17]

and at design phase [18]. Finally, there are some works

on formalising the implementation phase [19] and when the

middleware is already running [20].

Whatever the development phase, it is also possible to

identify which aspects of middleware have been mainly

formalised: middleware mechanisms and components [21],

[22], middleware services [23], [24], [25] and middleware

models [21], [26]. Orthogonal to services, mechanisms,

components and models, the formalisation typically focuses

on behavioural [27] and structural [28] aspects whatever is

being specified. The behavioural aspects describe the tem-

poral ordering of middleware actions, whilst the structural

specifications describe the middleware elements and their

relationships.

Finally, the formalisation has been done in three different

ways: using existing general purpose formalism [29], design-

ing and using a formalism specially planned for middleware

[30] and through a formal framework/theory [31].

However, despite the large number of works on middle-

ware formalisation, none of the aforementioned approaches

treat with practical (lightweight) aspects of the use of formal

methods.

VI. CONCLUSION AND FUTURE WORK

This paper presented MIstRAL, an approach for building

adaptive middleware systems based on the lightweight use

of formal methods. MIstRAL use a formal approach as the

enabling software mechanism to deal with how the recon-

figuration is implemented. Meanwhile, MIstRAL does not

insert the adaptation mechanism into the middleware. The

mechanism is moved to an external component that decides

and takes needed actions to reconfigure the middleware.

Our unique contributions in this paper include: the moving

of the adaptation process to an element outside the mid-

dleware; the adoption of a non-invasive approach in which

existing middleware systems may be adapted without be

modified; the use of a lightweight formal approach to guide

the middleware adaptation; and the definition of formal

properties that model anomalies in the functioning of object

oriented middleware systems, which serve as basis for the

adaptation process. Further minor contributions are related

to the adoption of a pattern oriented approach to define the

anomalies, and the actual implementation of an adaptive

middleware in Java that uses the proposed approach.

We are now using the same strategy with a pub-

lish/subscribe middleware, by extending the set of mid-

dleware properties and configuration plans and policies,

which are being adapted to reflect the particularities of this

middleware model such as delivery guarantee and extensive

use of queues.

REFERENCES

[1] A. Campbell, G. Coulson, and M. Kounavis, “Managing
Complexity: Middleware Explained,” IT Professional, vol. 1,
no. 5, pp. 22–28, Sept.–Oct. 1999.

[2] D. Schmidt, D. Schmidt, and F. Buschmann, “Patterns,
Frameworks, and Middleware: Their Synergistic Relation-
ships,” in Proc. 25th International Conference on Software
Engineering, F. Buschmann, Ed., 2003, pp. 694–704.

[3] P. McKinley, S. Sadjadi, E. Kasten, and B. Cheng, “Compos-
ing adaptive software,” Computer, vol. 37, no. 7, pp. 56–64,
2004.

[4] F. Kon, M. Roman, P. Liu, J. Mao, T. Yamane, L. Magal-
haes, and R. Campbell, “Monitoring, Security, and Dynamic
Configuration with the dynamicTAO Reflective ORB,” in
Middleware 2000, ser. Lecture Notes in Computer Science,
J. Sventek and G. Coulson, Eds. Springer Berlin / Heidel-
berg, 2000, vol. 1795, pp. 121–143.

[5] G. S. Blair, G. Coulson, A. Andersen, L. Blair, M. Clarke,
F. Costa, H. Duran-Limon, T. Fitzpatrick, L. Johnston,
R. Moreira, N. Parlavantzas, and K. Saikoski, “The Design
and Implementation of Open ORB 2,” IEEE Distributed
Systems Online, vol. 2, pp. –, Jun. 2001.

[6] M. Clarke, G. Blair, G. Coulson, and N. Parlavantzas, “An
Efficient Component Model for the Construction of Adaptive
Middleware,” in Middleware 2001, ser. Lecture Notes in
Computer Science, R. Guerraoui, Ed. Springer Berlin /
Heidelberg, 2001, vol. 2218, pp. 160–178.

[7] S. Rusitschka, C. Doblander, C. Goebel, and H.-A. Jacobsen,
“Adaptive middleware for real-time prescriptive analytics in
large scale power systems,” in Proceedings of the Industrial
Track of the 13th ACM/IFIP/USENIX International Middle-
ware Conference, ser. Middleware Industry ’13. New York,
NY, USA: ACM, 2013, pp. 5:1–5:6.

[8] M. Fayyaz, T. Vladimirova, and J.-M. Caujolle, “Adaptive
middleware design for satellite fault-tolerant distributed com-
puting,” in Adaptive Hardware and Systems (AHS), 2012
NASA/ESA Conference on, June 2012, pp. 23–30.

654

[9] H. Rahnama, P. Kramaric, A. Sadeghian, and A. Shepard,
“Self-adaptive Middleware for the Design of Context-aware
Software Applications in Public Transit Systems,” in Pro-
ceedings of the 13th International Conference on Ubiquitous
Computing, ser. UbiComp ’11. New York, NY, USA: ACM,
2011, pp. 491–492.

[10] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-
Oriented Software Architecture - Patterns for Concurrent and
Networked Objects. John Wiley & Sons Ltd, 2006, vol.
Volume 2.

[11] S. M. Sadjadi, “A Survey of Adaptive Middleware,” Software
Engineering and Network Systems Laboratory, Department of
Computer Science and Engineering, Michigan State Univer-
sity, Tech. Rep., 2003.

[12] R. Mateescu and M. Sighireanu, “Efficient on-the-fly model-
checking for regular alternation-free mu-calculus,” Science
of Computer Programming, vol. 46, no. 3, pp. 255 – 281,
2003, special issue on Formal Methods for Industrial Critical
Systems.

[13] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns
in property specifications for finite-state verification,” in Pro-
ceedings of the 21st International Conference on Software
Engineering, 1999, pp. 411–420.

[14] M. Volter, M. Kircher, and U. Zdun, Remoting Patterns:
Foundations of Enterprise, Internet and Real Time Distributed
Object Middleware. John Wiley & Sons Ltd, 2005.

[15] M. Dı́az, D. Garrido, L. Llopis, and J. M. Troya, “Designing
distributed software with RT-CORBA and SDL,” Comput.
Stand. Interfaces, vol. 31, no. 6, pp. 1073–1091, Nov. 2009.

[16] M. Pradella, M. Rossi, D. Mandrioli, and A. Coen-Porisini,
“A formal approach for designing CORBA based applica-
tions,” in Proceedings of the 22nd international conference
on Software engineering, ser. ICSE ’00. New York, NY,
USA: ACM, 2000, pp. 188–197.

[17] M. Autili, C. Chilton, P. Inverardi, M. Kwiatkowska, and
M. Tivoli, “Towards a connector algebra,” in Proceedings of
the 4th international conference on Leveraging applications
of formal methods, verification, and validation - Volume Part
II, ser. ISoLA’10. Berlin, Heidelberg: Springer-Verlag, 2010,
pp. 278–292.

[18] N. S. Rosa, “Formalising middleware systems: A design
pattern-based approach,” in 37th IEEE Annual International
Computer Software & Applications Conference, 2013, pp.
658–667.

[19] N. S. Rosa, P. R. F. Cunha, and D. F. Sadok, “A methodology
for realization of LOTOS specifications in the ANSAware,”
in IFIP/IEEE International Conference on Distributed Plat-
forms, 1996, pp. 204–209.

[20] M. Kim, M.-O. Stehr, C. Talcott, N. Dutt, and N. Venkata-
subramanian, “Combining formal verification with observed
system execution behavior to tune system parameters,” in
Proceedings of the 5th international conference on Formal
modeling and analysis of timed systems, ser. FORMATS’07.
Berlin, Heidelberg: Springer-Verlag, 2007, pp. 257–273.

[21] S. De, S. Chakraborty, D. Goswami, and S. Nandi, “Formal-
ization of discovery and communication mechanisms of tuple
space based mobile middleware for underlying unreliable
infrastructure,” in 2nd IEEE International Conference on
Parallel Distributed and Grid Computing (PDGC), 2012, pp.
580–585.

[22] F. Arbab, “Puff, the magic protocol,” in Formal Modeling:
Actors, Open Systems, Biological Systems, ser. Lecture Notes
in Computer Science, G. Agha, O. Danvy, and J. Meseguer,
Eds. Springer Berlin Heidelberg, 2011, vol. 7000, pp. 169–
206.

[23] D. Basin, F. Rittinger, and L. Viganò, “A formal data-model
of the CORBA security service,” in ESEC/FSE-9: Proceed-
ings of the 8th European software engineering conference
held jointly with 9th ACM SIGSOFT international symposium
on Foundations of software engineering. New York, NY,
USA: ACM, 2001, pp. 303–304.

[24] B. Hafid, B. Mohamed, and E. hajji Said, “Verifying ODP
trader function by using Event B,” International Journal of
Computer Science, vol. 7, no. 9, pp. 17–22, 2010.

[25] N. Venkatasubramanian, M. Deshpande, S. Mohapatra,
S. Gutierrez-Nolasco, and J. Wickramasuriya, “Design and
implementation of a composable reflective middleware frame-
work,” in Proc. 21st Int Distributed Computing Systems Conf.,
2001, pp. 644–653.

[26] A. Ressouche, J.-Y. Tigli, and O. Carrillo, “Toward validated
composition in component-based adaptive middleware,” in
Proceedings of the 10th international conference on Software
composition, ser. SC’11. Berlin, Heidelberg: Springer-
Verlag, 2011, pp. 165–180.

[27] N. S. Rosa and P. R. F. Cunha, “A Formal Framework for
Middleware Behavioural Specification,” Software Engineer-
ing Notes, vol. 32, pp. 1–7, 2007.

[28] X. Renault, J. Hugues, and F. Kordon, “Formal modeling of a
generic middleware to ensure invariant properties,” in Formal
Methods for Open Object-Based Distributed Systems, ser.
Lecture Notes in Computer Science, G. Barthe and F. Boer,
Eds. Springer Berlin Heidelberg, 2008, vol. 5051, pp. 185–
200.

[29] G. S. Blair, A. Bennaceur, N. Georgantas, P. Grace, V. Issarny,
V. Nundloll, and M. Paolucci, “The Role of Ontologies in
Emergent Middleware: Supporting Interoperability in Com-
plex Distributed Systems,” in Middleware 2011, ser. Lecture
Notes in Computer Science, F. Kon and A.-M. Kermarrec,
Eds. Springer Berlin Heidelberg, 2011, vol. 7049, pp. 410–
430.

[30] A. Ahern and N. Yoshida, “Formalising Java RMI with
explicit code mobility,” Theoretical Computer Science, vol.
389, no. 3, pp. 341 – 410, 2007, semantic and Logical
Foundations of Global Computing.

[31] R. Baldoni, M. Contenti, S. Piergiovanni, and A. Vir-
gillito, “Modeling publish/subscribe communication systems:
towards a formal approach,” in Object-Oriented Real-Time
Dependable Systems, 2003. (WORDS 2003). Proceedings of
the Eighth International Workshop on, 2003, pp. 304–311.

655

