
FESCA 2004 Preliminary Version

A Software Architecture-Based Approach for
Formalising Middleware Behaviour

Nelson Souto Rosa 1 and Paulo Roberto Freire Cunha 2

Centro de Informática
Universidade Federal de Pernambuco

50732-970 Recife, Pernambuco - Brazil

Abstract

The number of open specifications of middleware systems and middleware services
is increasing. Despite their complexity, they are traditionally described through
APIs (the operation signatures) and informal prose (the behaviour). This fact of-
ten leads to ambiguities and makes difficult a better understanding of what is really
described. In this paper, we adopt software architecture principles for structuring
middleware together the LOTOS language for formalising their behaviour. The
adoption of software architecture principles makes explicit structural aspects of the
middleware. Meanwhile, the formalisation enables us to check behavioural proper-
ties of the middleware. In order to illustrate our approach, we present a LOTOS
specification of the well-known object-oriented middleware CORBA and its trans-
action service.

Key words: Middleware, Software Architecture, Behaviour,
Middleware.

1 Introduction

The number of open specifications of middleware systems and middleware
services is increasing. Those specifications include open standards such as
DCE (Distributed Computing Environment) [17], RM-ODP (Reference Model
- Open Distributed Processing) [10], EJB (Enterprise Java Beans) [12] and
CORBA (Common Object Request Broker Architecture) [16]. The open spec-
ifications of middleware services have also been popular through the JTS (Java
Transaction Service) and JMS (Java Message Service).

Middleware specifications are not trivial to be understood, as the middle-
ware itself is usually very complex [8]. Firstly, middleware systems have to

1 Email: nsr@cin.ufpe.br
2 Email: prfc@cin.ufpe.br

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Rosa

hide the complexity of underlying network mechanisms from the application.
Secondly, the number of services provided by the middleware is increasing,
e.g., the CORBA specification contains fourteen services. Finally, in addi-
tion to hide communication mechanisms, the middleware also have to hide
fails, mobility, changes in the network traffic conditions and so on. On the
point of view of application developers, they very often do not know how the
middleware really works. On the point of view of middleware developers, the
complexity places many challenges that include how to integrate services in a
single product [18] or how to satisfy new requirements of emerging applications
[7].

The aforementioned specifications are usually described through APIs. Es-
sentially, the service’s operations signatures are described in IDL (Interface
Definition Language) and the behaviour of individual operations is described
by informal prose. For example, the operations of CORBA common object
services (COS), such as security, transaction and naming, are described in
IDL CORBA and informal text [15]. In practical terms, developers who want
to implement those services have a hard task to produce a final product by
interpreting what the specifications describe.

In this context, we present an approach that uses software architecture
principles for structuring middleware systems. In the meantime, we propose
the adoption of LOTOS [1] for specifying the behaviour of those software
architectures. Initially, the middleware architecture is defined in terms of
software architecture elements such as components and connectors. Next, the
LOTOS language is used as an ADL (Architecture Description Language)
[14], in which the middleware behaviour is formally described. It is worth
observing that we are not interested in any particular middleware product or
middleware model.

On one hand, the adoption of software architecture principles is interest-
ing as it treats with the system complexity by explicitly separating commu-
nication and computation aspects. Additionally, the software architecture
enables us to have a better structural view of the middleware. On the other
hand, the use of LOTOS allows the checking of particular behavioural prop-
erties of middleware systems, e.g., deadlock, livelock and execution sequences.
Additionally, the language allows to automatically generate tests and check
the behavioural equivalence (e.g., strong equivalence, branching equivalence,
weak equivalence) between different middleware models and different middle-
ware service compositions. For example, if one desires to replace a message-
oriented middleware by a procedural middleware, it is possible to check if their
behaviours are equivalent. Finally, a formal specification eliminates ambigu-
ities in the middleware specification and provides a better understanding of
what is actually described.

Formal description techniques have been used together middleware in the
RM-ODP, in which the trader service is formally specified in LOTOS. Most
recently, the Z notation and high level Petri nets have been adopted for spec-

25

Rosa

ifying CORBA services [4], the Naming service [11], the Event service [5] and
the Security service [3]. All those works, however, do not adopt software archi-
tecture principles for structuring the service descriptions. In terms of software
architecture, a few ADLs include the possibility of describing behaviour, like
Wright [2]. However, there are not tools that enables us to check behaviour
properties. Medvidovic [13] has observed the convergence of middleware and
software architecture principles. However, he does adopt a formal approach.
Finally, it is possible to note that the software architecture principles are
widely adopted to build distributed applications (client and servers), but its
benefits are rarely applied to middleware that connect them.

This paper is organised as following: Section 2 presents how the middle-
ware architecture is defined in terms of software architecture elements. Next,
Section 3 presents the use of LOTOS for describing the middleware software
architecture. In Section 4, we adopt our approach for specifying CORBA. Fi-
nally, the last section presents the conclusions and some directions for future
work.

2 Middleware Software Architecture

Prior to describe our approach on how to define middleware software architec-
tures, we present the notion of middleware, middleware services and software
architecture.

Middleware

The middleware layer is placed between the application and the operating
system in order to hide the complexity of underlying network mechanisms [6].
This fact enormously facilitates the task of distributed application develop-
ers. For middleware developers, the middleware is viewed as a collection of
distributed services (or middleware services) that takes the primary responsi-
bility of communicating distributed applications. The middleware often also
provides additional services such as security, transaction, naming and events,
which ”aggregate” value to the communication between distributed applica-
tions.

Middleware Services

A middleware service is defined as a black box where it is known what is
provided at the interface but not how it is actually implemented. The middle-
ware service is specified by a set of interfaces (APIs) and protocols it supports.
The APIs are usually defined through IDLs, whilst the service’s behaviour is
informally described by prose. In terms of implementation, a middleware ser-
vice is distributed and includes entities (e.g., objects, components) that make
up a client part, which supports the service’s API running in the application’s
address space, and a server part that actually implements the service.

26

Rosa

Software Architecture

The definition of software architectures involves the use of three basic ab-
stractions: components, connectors and configurations. A component is a
unit of computation or a data store. Components represent a wide range of
different elements, from a simple procedure to an entire application, and have
an interface used to communicate the component with the external environ-
ment. A connector is an architectural building block used to model inter-
actions among components and rules that govern those interactions. Some
examples of connectors include client-server protocols, variables, buffers, se-
quence of procedure call and so on. A connector has an interface that contains
interactions points between the connector and the component and other con-
nectors attached to it. Finally, the configuration describes how components
and connectors are wired together [14].

Middleware

client server

(a) Middleware as a connector
(b) Middleware Abtsract Software architecture

Service1 Service2 Service3

Communication
Service

Middleware

Component Connectors

(c) Middleware Concrete Software architecture

Service’3 Service’2 Service’1

Middleware

Communication
service

Network

Service1 Service2 Service3

Middleware

Communication
Service

Fig. 1. Different Views of the Middleware Software Architecture

Using the aforementioned basic elements, the middleware software archi-
tecture is defined according to the following principles:

(i) The middleware is viewed at three different levels of abstractions: a sin-
gle connector (Fig. 1 (a)), the middleware abstract software architecture
(Fig. 1 (b)) and the middleware concrete software architecture (Fig. 1
(c)). The middleware viewed as a connector is usually used/understood
by application developers who are interested in the basic function of the
middleware and not in details on how the middleware actually works, i.e.,
the middleware as a black-box communication element. The middleware
abstract software architecture is typically adopted in open specifications,
which provide details of the services that made up the middleware (op-
eration signatures), but do not define how to actually implement those
services. The middleware concrete software architecture is essential for
middleware developers;

27

Rosa

(ii) The communication service, whatever the middleware model or product,
is the only mandatory service. Thus, it is explicitly defined in the ab-
stract middleware software architecture. Whether the middleware has
additional services or not, it depends on the middleware specification;

(iii) Each service provided by the middleware (e.g., security, event) defines a
component in the abstract software architecture, except the communica-
tion service, which is modelled as a connector. Meanwhile, according to
software architecture principles, a connector must always exist between
any two components (service);

(iv) The services in the middleware concrete software architecture are defined
through two parts, namely client (or sender) and server (or receiver)
parts. Additionally, each service may be defined as a composition of
fine-grained components. For example, the CORBA security service is
made up of a principal authenticator and a component responsible for
the cryptography;

(v) The underlying communication layers (e.g., transport and network layers)
are defined as a connector in the software architecture; and

(vi) The dashed line connector is a virtual connector [Medvidovic 02] that
models protocols between the client/sender and server/receiver parts of
the service. For example, the two-phase commit protocol commonly used
in the transaction service.

By observing those guidelines, some points have to be taken in account.
Firstly, since middleware systems do not perform any application-specific com-
putation, they are naturally modelled as connectors. Secondly, the middleware
provides further services in addition to the communication one. Hence, the
middleware may not be only considered as a simple connector. In the software
architecture discipline, however, only components (no connectors) are tradi-
tionally decomposed into smaller elements. Finally, it is worth observing that
the communication service enables other services (components) and applica-
tions to interact. Hence, it is also naturally differentiated from other services
and modelled as a connector.

Next, we present how those guidelines are followed in the definition of the
middleware software architecture behaviour.

3 Middleware Software Architecture in LOTOS

A LOTOS specification describes a system through a hierarchy of active com-
ponents, or processes. A process is an entity able to realize non-observable
internal actions, and also interact with others processes through externally
observable actions. The unit of atomic interaction among processes is called
an event. Events correspond to a synchronous communication that may occur
among processes able to interact with one another. Events are atomic, in the
sense that they happen instantaneously and are not time consuming. The

28

Rosa

point of an event interaction occurs is known as a port. Such event may or
may not actually involve the exchange of values. A non-observable action is
referred to as an internal action or internal event. A process has a finite set
of ports that can be shared.

In order to specify the middleware software architecture (defined according
to Section 2) in LOTOS, we adopt the following guiding principles:

(i) The basic architectural elements, namely components and connectors, are
modelled through the basic LOTOS abstraction, namely process;

(ii) The top-level specification defines the software architecture configuration;

(iii) Any two LOTOS processes that model components must be in a parallel
composition with a LOTOS process defined as a connector (see guideline
(iii) in Section 2);

(iv) The service specification consists of the temporal ordering of events exe-
cuted at the service’s interface. Each service specification S at the mid-
dleware software architecture is in monolithic style defined as S =

∑
ai;

Ai | i ∈ I for some finite index set I where each Ai is either a process
identifier or an expression in action prefix form; and

(v) Following the RM-ODP terminology, we call to invocation (inv) those
actions to activate the service and termination (ter) to the action of
return a result.

Following those principles, next sections present the LOTOS specification
of the middleware software architecture.

3.1 Middleware as a Connector

As mentioned in Section 2, the simplest architectural view of the middleware
is one that considers the middleware as a connector (Fig. 1 (a)). In this
particular case, the middleware is viewed as a black-box connector that has
the role of the communication service.

The LOTOS specification at the top-level of Fig. 1 (a) is a parallel com-
position (parallel operator ||) of the process Client (component client), the
process Server (component server) and the process Middleware (connector
middleware). The Client (4) communicates with the Server (8) through the
Middleware (6) as shown in the following:

(1) specification Client Server [invClt,terClt,invSrv,terSrv] : noexit
(2) library RESULT, SERVICES endlib
(3) behaviour
(4) Client [invClt, terClt]
(5) |[invClt, terClt]|
(6) Middleware [invClt, terClt, invSrv, terSrv]
(7) |[invSrv, terSrv]|
(8) Server [invSrv, terSrv]
(9) where

29

Rosa

(10) ...
(11) endspec

Having the role of the communication service, the middleware behaviour
is defined through the temporal ordering of invocation operations in the mid-
dleware interface. The middleware interface is made up of four ports: invClt
to invocations from Client, terClt to returns to Client, invSrv to invocations
from Server and terSrv to return to Server.

(1) process Middleware Connector[invClt, terClt, invSrv, terSrv] : noexit : =
(2) invClt ? s : SERVICE ? op : OPER;
(3) invSrv ! s ! op;
(4) terSrv ! s ? r : RESULT;
(5) terClt ! s ! r;
(6) Middleware [invClt, terClt, invSrv, terSrv]
(7) endproc

In this case, the middleware receives an invocation from the server (2) that
contains both the name of the requested service and the operation being re-
quested on the server (invClt ? s : SERVICE ? op : OPER;). The middleware
passes both of them to the server (3) and waits for the reply (4). Finally, the
middleware passes the reply containing the result to the client (5).

The behaviour of those components and connectors together is shown in
the following trace obtained by simulation in the CADP Toolbox.

(1) <initial state>
(2) ”i” (BIND TO SERVER [16]) /* the client binds to the server */
(3) ”INVCLT ! ‘Service’ ! ‘op1’” /* the client passes the request to the middleware */
(4) ”INVSRV ! ‘Service’ ! ‘op1’” /* the middleware passes the request to the server */
(5) ”i” (PROCESSOP1 [35]) /* the server processes the request */
(6) ”i” (SA [24]) /* the server updates it internal state */
(7) ”TERSRV ! ‘Service1’ ! ‘ok’” /* the server passes the reply to the middleware */
(8) ”TERCLT ! ‘Service1’ ! ‘ok’” /* the middleware passes the reply to the client */
(9) <goal state>

Next, we present the middleware abstract software architecture.

3.2 Middleware Abstract Software Architecture

According to guidelines presented in Section 2, the middleware abstract software ar-
chitecture is defined as a collection of services. Fig. 2 (a)(b) depicts the components
and connectors involved in a communication through the middleware abstract soft-
ware architecture. It is worth observing that both the number of available middle-
ware services and the way they are composed depends on the particular middleware
being considered.

In order to specify the middleware abstract software architecture, we assume
the configuration depicted in Fig. 2 (a) that is composed by three components
(Service1, Service2 and Service3) and a single connector (Communication Service).
The LOTOS specification at the top-level of this software architecture is a parallel
composition (parallel operator ||) of the set of basic services (parallel composition -

30

Rosa

ClientClient ServerServer ClientClient ServerServer

Service1
Service1 Service2

Service2 Service3
Service3

Communication
Service

Service1
Service1 Service2

Service2

(a) Usual middleware service composition (b) Alternative middleware service composition

Communication
Service

Fig. 2. Middleware Abstract Software Architecture

operator ||| - of the independent processes Service1, Service2 and Service3) and the
process CommunicationService (7).

(1) process Middleware Abstract [invClt, terClt, invSrv, terSrv] : noexit :=
(2) hide inv, ter in
(3) ((Service1[inv, ter] ||| Service2[inv, ter] ||| Service3[inv, ter])
(4) ||
(5) ServiceOrdering [inv, ter])
(6) |[inv, ter]|
(7) CommunicationService [inv, ter, invClt, terClt, invSrv, terSrv]
(8) where
(9) ...
(10) endproc

An important point of this specification is the ordering of composition of the
middleware services (5). We adopt the LOTOS constraint-oriented specification
style by defining the process ServiceOrdering that constrains the way the services
are composed. As a consequence, this LOTOS process is not part of the software
architecture itself, but a modelling element. In this particular case, according to the
constraints imposed by ServiceOrdering, after the request gets in the middleware,
it is passed to Service1 (2-3) followed by Service2 (4-5) and Service3 (6-7). Then,
the request is sent to Server where it is processed and sent back to Client.

(1) process ServiceOrdering [inv, ter] : noexit :=
(2) inv ! Service1 ? op : OPER;
(3) ter ! Service1 ? r : RESULT;
(4) inv ! Service2 ? op : OPER;
(5) ter ! Service2 ? r : RESULT;
(6) inv ! Service3 ? op : OPER;
(7) ter ! Service3 ? r : RESULT;
(8) ServiceOrdering [inv, ter]
(9) endproc

3.3 Middleware Concrete Software Architecture

According to Section 2, the definition of the middleware concrete software architec-
ture consists of explicitly decomposing the middleware services into the client and
server parts. The client part is the middleware service interface (remotely accessi-

31

Rosa

ble), whilst the server part is the implementation of the service itself. As mentioned
in Section 3.1, unlike other services, the communication service is a connector and
it is not designed using this client/server approach. Hence, the same communica-
tion services run in both sides of the architecture. The LOTOS specification of the
concrete software architecture at top-level is shown in the following:

(1) specification Middleware Concrete [reqClt, repClt, reqSrv, repSrv] : noexit
(2) library OPER, RESULT endlib
(3) behaviour
(4) hide reqCN, repCN, reqSN, repSN in
(5) (Client [reqClt, repClt]
(6) |[reqClt, repClt]|
(7) MiddlewareClient [reqClt, repClt, reqCN, repCN])
(8) |[reqCN, repCN]|
(9) Network [reqCN, repCN, reqSN, repSN]
(10) |[reqSN, repSN]|
(11) (MiddlewareServer [reqSrv, repSrv, reqSN, repSN]
(12) |[reqSrv, repSrv]|
(13) Server [reqSrv, repSrv])
(14) where
(15) ...
(16) endspec

The middleware in the server side (MiddlewareServer) and the middleware in
the client side (MiddlewareClient) are not the same. This is an interesting point
to be observed as middleware products are different in both sides. This fact has a
direct impact on how the middleware services are composed. Additionally, a service
(or some of its components) may be present in the server and absent in the client.
For example, the authentication component in the CORBA security service is not
present in the client. Hence, the ServiceOrdering process and the set of services in
both sides are different. For lack of space, we do not show the concrete middleware
behaviour, but it is composed by 48 actions when the client request an operation
followed by a reply.

4 Case Study: The CORBA Software Architecture

In order to illustrate our approach, we present how it may be applied to the mid-
dleware CORBA. Three main reasons have motivated the adoption of CORBA:
the number of middleware services available in CORBA is larger than any other
midddleware; the CORBA services are well detailed through API, which enables
us a better understanding on how the service actually works; and CORBA has an
explicit communication element (the ORB) that naturally acts as a connector.

Object-oriented middleware (OOM), such as RMI (Remote Method Invocation),
EJB and CORBA, provides the abstraction of an object that is remote yet whose
methods can be invoked just like those of an object in the same address space as the
caller. Two services are usually mandatory in the OOM, namely the naming service
and the communication service. The naming service (known as ”yellow pages”)
takes responsibility of registering business services provided by the servers. Clients

32

Rosa

that desire to make request to those services contact the naming service, which gives
direction on how to find the server previously registered that provides the required
service.

CORBA [16] is a standard that has been widely adopted for implementing mid-
dleware products. According to the CORBA specification, in addition to the com-
munication service known as ORB, fourteen distributed services should be provided
by the middleware: persistence, externalisation, events, transactions, properties,
concurrency, relationships, time, licensing, trader, query, collections, lifecycle and
security [15]. All these services are not usually implemented in a single product, but
at least the naming, life cycle and communication services are available in CORBA
complaint products.

Fig. 3 presents the CORBA software architecture at 3 different abstraction
levels, according to the guidelines presented in Section 2. Each CORBA Service,
known as COS (Common Object Services), is modelled as a component in the
CORBA software architecture. Additionally, the ORB (communication service) is
defined as a connector.

naming lifecycle transaction

ORB
CORBA

Transaction Skeleton POA

CORBA

ORB
ORB

stub lifecycle Transaction

CORBA

CORBA

client server

(a) CORBA as a connector

(b) CORBA Abtsract Software architecture

(c) CORBA Concrete
Software architecture

2pc

... ...

naming naminglifecycle

Network

Fig. 3. Object-oriented Middleware Model

Two points must be observed in the CORBA software architecture. Firstly, the
CORBA standard defines that the COS services may be either inside or outside the
ORB. In this particular architecture, we adopt the second approach. Secondly, the
stubs, skeletons and POA (Portable Object Adapter) have been incorporated by
the ORB and are no explicit elements in abstract software architecture (application
developers view). However, they are present in the concrete software architecture
(middleware developers view). After being defined the software architecture, next
sections present how the principles described in sections 3.1, 3.2 and 3.3 are adopted
to CORBA.

4.1 CORBA as a Connector

The behaviour of the CORBA as a connector is very similar to one shown in Section
3.1. In this case, the CORBA receives a request from the server and sends it to

33

Rosa

client. After being processed, the reply is sent back to the client via the middleware.
At this abstraction level, the software architecture does not present details on how
this task is actually performed. The behaviour of the connector CORBA is specified
as the temporal ordering of events executed in the CORBA interface. The CORBA
interface is made up of several other interfaces such as dynamic invocation, stub,
ORB, static skeleton, dynamic skeleton and POA interfaces.

In the following specification, the operations defined in each of the aforemen-
tioned interfaces are passed to the middleware through the event ”invClt ? s :
Service ? op : OPER;”, where s is the name of service being request and op the
operation.

process CORBA [invClt, terClt, invSrv, terSrv] : noexit :=
invClt ? s : Service ? op : OPER;
invSrv ! s ! op;
terSrv ! s ? r : RESULT;
terClt ! s ! r;
CORBA [invClt, terClt, invSrv, terSrv]

endproc

Next, we present the CORBA abstract software architecture that provides a
more detailed view of CORBA.

4.2 CORBA Abstract Software Architecture

The CORBA abstract software architecture is defined as a collection of services
as mentioned before. The top specification is a parallel composition of fourteen
different services (components) and the ORB (connector) as shown in the following:

process CORBA [invClt, terClt, invSrv, terSrv] : noexit :=
hide inv, ter in

((Naming [inv, ter] ||| Event [inv, ter] ||| Persistent [inv, ter] |||
LifeCycle [inv, ter] ||| Concurrency [inv, ter] ||| Externalization [inv, ter] |||
Relationship [inv, ter] ||| Transaction [inv, ter] ||| Query [inv, ter] |||
Licensing [inv, ter] ||| Property [inv, ter] ||| Time [inv, ter] |||
Security [inv, ter] ||| Trading [inv, ter])

||
ServiceOrdering [inv, ter])

|[inv, ter]|
ORB [inv, ter, invClt, terClt, invSrv, terSrv] (0)

where
...
endspec

As defined in Section 3.2, the LOTOS process ServiceOrdering is not an ar-
chitectural component, but it is defined in order to constrain the way the services
interact. In this particular case, the most important ordering constraint is one re-
lated to the naming service (process Naming). As widely known, every distributed
service must be registered in the naming before be used by clients (2). Additionally,
the client must obtain an interface reference to the service to use it (3).

34

Rosa

(1) process ServiceOrdering [inv, ter] : noexit :=
(2) inv ! COSnaming ! register;
(3) ter ! COSnaming ? r : RESULT;
(4) inv ! COSnaming ! lookup;
(5) ter ! COSnaming ? r : RESULT;
(6) ServiceOrdering [inv, ter]
(7) endproc

Next, we show the trace generated by the simulation of all those elements to-
gether. This trace reveals the constraint imposed by ServiceOrdering as the client
and server make requests to the naming service (2-11) before use the Service1 pro-
vided by the server (12-18).

(1) <initial state>
(2) ”INVSRV ! ‘COSnaming’ ! ‘register’” /* the server registers the service */
(3) ”i” (INV [68])
(4) ”i” (OPREGISTER [106])
(5) ”i” (TER [68])
(6) ”TERSRV ! ‘COSnaming’ ! ‘ok’”
(7) ”INVCLT ! ‘COSnaming’ ! ‘lookup’” /* the client looks for the service */
(8) ”i” (INV [68])
(9) ”i” (OPLOOKUP [106])
(10) ”i” (TER [68])
(11) ”TERCLT ! ‘COSnaming’ ! ‘ok’”
(12) ”INVCLT ! ‘Service1’ ! ‘op1’” /* the client makes a request to the server */
(13) ”INVSRV ! ‘Service1’ ! ‘op1’”
(14) ”i” (SA [28])
(15) ”i” (PROCESSOP1 [43])
(16) ”TERSRV ! ‘Service1’ ! ‘ok’”
(17) ”TERCLT ! ‘Service1’ ! ‘ok’”
(18) ”INVCLT ! ‘Service1’ ! ‘op1’”
(19) <goal state>

4.3 CORBA Concrete Software Architecture

According to the COS Transaction specification [15], the transaction service is
specified through 6 interfaces, namely Current, TransactionFactory, Terminator,
Coordinator, RecoveryCoordinator and Resource. These interfaces allow multiple,
distributed objects to cooperate to provide atomicity, consistency, isolation and
durability properties. Each interface is modelled by a component in the software
architecture.

For lack of space, we only present the concrete software architecture of the
CORBA transaction service. The top specification is very similar to one shown in
Section 3.3 that is a parallel composition of ServiceInterface and StateProc. The
process ServiceInterface models the interfaces of the transaction service, which is
made up of is 6 other interface as mentioned before: Current, TransactionFactory,
Terminator, Coordinator, RecoveryCoordinator and Resource.

process Transaction Service [inv, ter] : noexit :=

35

Rosa

hide sa in
ServiceInterface [inv, ter, sa] |[sa]| StateProc [sa]

where
process ServiceInterface [inv, ter, sa] : noexit :=

Current [inv, ter, sa] ||| TransactionFactory [inv, ter, sa] |||
Control [inv, ter, sa] ||| Terminator [inv, ter, sa] |||
Coordinator [inv, ter, sa] ||| RecoveryCoordinator [inv, ter, sa] |||
Resource [inv, ter, sa]
where

...
endproc

The whole specification of the transaction service has approximately 1200 lines
and it is not completely terminated.

5 Conclusions and Future Work

This paper has illustrated how to adopt LOTOS to describe the behaviour of mid-
dleware software architectures. The specification has been structured according to
software architecture principles, i.e., all middleware model elements are viewed as
components, connectors and configuration. This approach facilitates the under-
standing of the general structures of different middleware specification as it sepa-
rates computation and communication elements.

The adoption of LOTOS for describing the middleware enables us to check be-
haviour properties (we have used the CADP Toolbox) of each individual middleware
and middleware service specification. This is not possible in the case an ADL is
adopted instead LOTOS. We know that LOTOS has not been originally designed
to be used like an ADL. Its main limitations include lack of proper abstractions
to model component, connector and interface, and the language does not allow to
define architectural styles. However, its limitations are compensated by its powerful
ability for describing behaviour and availability of tools.

The presented LOTOS specifications serve as basis for very interesting future
work. We are now interested on the performance and reliability analysis of mid-
dleware models [9]. For this particular purpose, we are currently using the CADP
Toolbox to generate Petri Nets. The Petri Nets specifications of the middleware
models are more adequate to be analysed in terms of performance and reliability.
Additionally, the proposed formalisation also opens a new track on how to compose
middleware services, which is a basic task of adaptive middleware systems.

References

[1] ISO 15437. Enhancements to LOTOS. ISO/IEC JTC1/SC21/WG7, January
2001.

[2] Robert J. Allen. A Formal Approach to Software Architecture. PhD thesis,
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA,
May 1997. CMU-CS-97-144.

36

Rosa

[3] David Basin, Frank Rittinger, and Luca Viganó. A Formal Analysis of the
CORBA Security Service. In Lecture Notes in Computer Science, number 2772,
pages 330–349, 2002.

[4] Rẽmi Bastide, Philippe Palanque, Ousmane Sy, and David Navarre. Formal
Specification of CORBA Services: Experiences and Lesson Learned. In
OOPSLA 00, pages 105–117, 2000.

[5] Rẽmi Bastide, Ousmane Sy, David Navarre, and Philippe Palanque. Formal
Specification of CORBA Services: Experiences and Lesson Learned. In Formal
Methods for Open Object-Based Distributed Systems (FMOODS), pages 371–
396, September 2000.

[6] Philip A. Bernstein. Middleware: A Model for Distributed System Services.
Communications of the ACM, 39(2):87–98, February 1996.

[7] Gordon Blair, G. Coulson, R. Philippe, and M. Papathomas. An Architecture
for Next Generation Middleware. In Middleware 98, pages 191–206, 1998.

[8] Andrew T. Campbell, Geoff Coulson, and Michael E. Kounavis. Managing
Complexity: Middleware Explained. IT Professional, 1(5):22–27, 1999.

[9] Wolfgang Emmerich. Software Engineering and Middleware: A Roadmap. In
Second International Workshop on Software Engineering and Middleware, pages
119–129, Limerick. Ireland, June 2000.

[10] ISO. Reference model of open distributed processing Part 1 - overview.
ISO/IEC/JTC1/SC21/WG7, ISO 10746-1, Helsink, Finland, July 1995.

[11] D. Kreuz. Formal Specification of CORBA Services Using Object-Z. In
Second IEEE International Conference on Formal Engineering, pages 180–189,
December 1998.

[12] Vlada Matena and Mark Hapner. Enterprise JavabeansTM . Sun Microsystems,
March 1998.

[13] Nenad Medvidovic. On the Role of Middleware in Architecture-Based Software
Development. In 14th International Conference on Software Engineering and
Knowledge Engineering (SEKE), pages 299–306, 2002.

[14] Nenad Medvidovic and Richard N. Taylor. A Classification and Comparison
Framework for Software Architecture Description Languages. IEEE
Transactions on Software Engineering, 26(1):70–93, January 2000.

[15] OMG. CORBAServices: Common Object Services Specification, December
1998.

[16] OMG. Common Object Request Broker Architecture: Core Specification
(CORBA 3.0), December 2002.

[17] W. Rosenberry, D. Kenney, and G. Fisher. Understanding DCE. O’Reilly &
Associates,Inc., 1993.

[18] Nalini Venkatasubramanian. Safe Composability of Middleware Services.
Communications of the ACM, 45(6):49–52, June 2002.

37

