
A Formal Framework for Middleware Behavioural Specification
Nelson Souto Rosa and Paulo Roberto Freire Cunha

Universidade Federal de Pernambuco, Centro de Informática
Recife, Pernambuco

{nsr,prfc}@cin.ufpe.br

Abstract
The number of open specifications of middleware systems and
middleware services is increasing. Despite their complexity, they
are traditionally described through APIs (the operation signatures)
and informal prose (the behaviour). This fact often leads to ambi-
guities, whilst making difficult a better understanding of what is
actually described. This paper presents a formal framework, speci-
fied in LOTOS (Language Of Temporal Ordering Specification),
for the specification of middleware systems. The framework con-
sists of a set of basic/common middleware components and some
guidelines on how to compose them. The components of the
framework facilitate the formal specification of different middle-
ware systems. In order to illustrate how the framework may be
used, it is adopted to specify procedural (synchronous) and mes-
sage-oriented (asynchronous) middleware systems.

Keywords: Middleware, Formal Specification, LOTOS, Frame-
work

1 Introduction
Middleware specifications are not trivial to be understood, as the
middleware itself is usually very complex [7]. Firstly, middleware
systems have to hide the complexity of underlying network
mechanisms from the application. Secondly, the number of ser-
vices provided by the middleware is increasing, e.g., the CORBA
specification contains nineteen services [15][14]. Finally, in addi-
tion to hide communication mechanisms, the middleware also
have to hide fails, mobility, changes in the network traffic condi-
tions and so on. On the point of view of application developers,
they very often do not know how the middleware actually works.
On the point of view of middleware developers, the complexity
places many challenges that include: how to integrate services in a
single product [21], how to satisfy new requirements of emerging
applications [5], how to understand the middleware behaviour
prior to implementing it.

The main objective of this paper is to propose a framework that
helps to formally describe middleware behaviour by providing a
set of basic abstractions. These abstractions are specified in
LOTOS and basic/common in the sense that may be combined in
different ways in order to specify diverse middleware systems.
Main in our approach is the fact that the abstractions are defined
and organised according to their role in relation to the message
request. Hence, instead of adopting the traditional approach of
organising middleware systems in layers [17], the proposed ab-
stractions are defined considering their role in the message re-
quest. Hence, the abstractions are grouped into categories related
to storage, communication, dispatching, and mapping of message
requests. A message request is any message that an application
(e.g., client, server, sender, transmitter) sends to another applica-

tion.

This paper is organised as follows: Section 2 introduces basic con-
cepts of LOTOS and properties that may be checked using this
process algebra. Next, Section 3 presents the proposed framework.
Section 4 presents how the proposed framework may be used to
specify client-server and message-oriented middleware systems.
Section 5 present some related work. Finally, last section presents
an evaluation of the research until now and some future work.

2 Background
Prior to present the proposed framework, next section introduces
some basic concepts of LOTOS. Additionally, we present the tem-
poral logic used to express the temporal properties of LOTOS
specifications.

2.1 LOTOS
A LOTOS [11][6] specification describes a system through a hier-
archy of active components, or processes. A process is an entity
able to realize non-observable internal actions, and also interact
with other processes through externally observable actions. The
unit of atomic interaction among processes is called an event.
Events correspond to a synchronous communication that may oc-
cur among processes able to interact with one another. Events are
atomic, in the sense that they happen instantaneously and are not
time consuming. The point where an event interaction occurs is
known as a port. Such event may or may not actually involve the
exchange of values. A non-observable action is referred to as an
internal action or internal event. A process has a finite set of ports
that can be shared.

An essential component of a specification or process definition is
its behaviour expression. A behaviour expression is built by apply-
ing an operator (e.g., parallel operator “||”) to other behaviour
expressions. A behaviour expression may also include instantia-
tions of other processes, whose definitions are provided in the
“where” clause following the expression [7]. The complete list of
basic-LOTOS behaviour expressions is given in Table 1, which
includes all basic-LOTOS operators. Symbols 'B', 'B1', 'B2' in the
table stand for any behaviour expression, and “i” is an internal
action.

Next, we present the LOTOS specification of a simple client-
server system:

(1) specification Client_Server [request, reply]
 : noexit

Name Syntax Semantics
inaction Stop It cannot offer any-

thing to the environ-
ment, nor it can
perform internal ac-
tions.

action prefix
- unobserv-
able
- observable

i ; B
g; B

 It is capable of per-
forming action i (g)
and transform into
process B.

choice

B

(2) behaviour
(3) Client [request, reply]
 || Server [request, reply]
(4) where
(5) process Client [request, reply] : noexit :=
(6) request; reply; Client [request, reply]
(7) endproc
(8) process Server [request, reply] : noexit :=
(9) hide processRequest in
(10) request;
(11) processRequest;
(12) reply;
(13) Server [request, reply]

B1[]B2B
 It denotes a process
that behaves either
like B1 or like B2.

parallel com-
position
 - general
case
 - pure inter-
leaving
 - full syn-
chronization

B1|[g1,..,gn]|
B2

B

(14) endproc
(15)endspec

The top-level specification (3) is a parallel composition (operator
‘||’) of the processes Client and Server, i.e., every action ex-
ternally observable executed by the process Client must be syn-
chronised to the process Server. The process Client (5) performs
two actions, namely request and reply (6), and then re-
instantiate. The action-prefix operator (‘;’) defines the temporal
ordering of the actions request and reply (the action request occurs
before the action reply) in the Client. Informally, the Server (8)
receives a request (10), processes it (11) and then sends a reply
(12) to the process Client.

B1 ||| B2

BB1 || B2

A parallel composition
expression is able to
perform any action
that either component
expression is ready to
perform at a gate (not
in g1,…,gn) or any
action that both com-
ponents are ready to
perform at a gate in
[g1,…,gn].

hiding hide
g1,...,gn in
B

Hiding allows one to
transform some ob-
servable actions of a
process into unobserv-
able ones.

process in-
stantiation

P[g1,...,gn] It is used to express
infinite behaviours.

successful
termination

Exit exit is a process whose
purpose is solely that
of performing the suc-
cessful termination

sequential
composition
(enabling)

B

It is worth pointing out that LOTOS specifications may be com-
pared in order to check their behavioural equivalences such as
strong, observational and safety equivalences. All of them are
checked through the CADP Toolbox1.

3 LOTOS Specifications of Middleware
Components

As mentioned before, the proposed framework consists of a set of
abstractions that addresses a number of common functionalities of
middleware systems. The framework also defines how these ab-
stractions work together to formalise different middleware models.
For example, the abstractions may be combined to produce the
specification of a message-oriented middleware, whilst they also
may be combined to define a procedural middleware (client-server
applications) or a tuple space-based middleware.

B1 >> B2 BB2 is enabled only if
and when B1 termi-
nates successfully.

disabling B1 [> B2 BB1 may or may not be
interrupted by the first
action of process B2.

Table 1 - Syntax of behaviour expressions in LOTOS [6] The whole framework is “message-centric” in the sense that basic
elements of the framework are grouped according to how they act
on the message. Figure 1 shows a general overview of the pro-
posed approach in which the message is intercepted by both mid-
dleware elements on the transmitter and receiver sides. It is worth
observing that the message may be either a request in which the
transmitter ask for the execution of a task on the receiver side or a
simple information between loosely-coupled applications.

1 http://www.inrialpes.fr/vasy/cadp/

Transmitter Receiver
M

id
dl

ew
ar

e

M
id

dl
ew

ar
e

Network

Point of Interception
Middleware Element

Request

Processing

Figure 1 – Message-centric approach
The abstractions of the framework are categorised into four
classes: mappers (e.g., stub and skeletons), multiplexers (e.g., dis-
patcher), communication (e.g., communication channel), and stor-
age (e.g., queue and topic). Whatever the class of abstraction, it
intercepts the message, processes it and forwards the message to
the next element. The next element may be a local or remote one.
However, only communication elements may forward the message
to a remote element, i.e., an element only accessible through the
network. A non-communication element may need to communi-
cate with a remote element to carry out its task, but it does not
send the message directly to a remote element. For example, a
transaction service may need to obtain a remote lock before pass
the request to the next element of the middleware. In this case, the
transaction service uses a communication element to send the mes-
sage and obtains the lock.

3.1 Basic Abstractions
Mapper Elements Mapper elements typically represent remote
objects, serve as input points of the middleware, their basic
function is to (un)marshal application data (arguments and
results) into a common packet-level (e.g., GIIOP request), and are
usually found in middleware systems that support request/reply
applications in heterogeneous environments. Additionally, non-
conventional mappers may also compress data. The specification
of a typical mapper, namely Stub, is defined as shown bellow:

(1) process Stub [iStub, oStub] : noexit :=
(2) iStub ?m : Message;
(3) oStub !marshalling (m);
(4) iStub ?m : Message;
(5) oStub !unmarshalling (m);
(6) Stub [iStub, oStub]
(7) endproc

In this specification, the input (iStub) and output (oStub) ports
serves as interception points of the stub. Information sent to the
Stub from another abstraction is intercepted in the port iStub,
whilst information the Stub sends to another abstraction is passed
through the oStub. Hence, Stub receives a message sent by the
transmitter and intercepted by the middleware (2), marshals it (3),
passes it to the next element (4), and then waits for the reply from
the receiver. The reply is also intercepted by the middleware and
passed to the Stub (4) that takes responsibility of unmarshalling
the reply (5).

StubAbstraction1 Abstraction2

(2)

(3)

(4)

(5)

Figure 2 – Stub

Figure 2 depicts an intuitive view on how the stub actually works.
The numbering refers to the lines of the Stub specification. Unlike
other abstractions, the Stub both sends and receives information.
Additionally, Abstraction1 and Abstraction2 are local abstractions
in the sense that both are placed in the same local as the transmit-
ter.

Communication Elements Communication elements get a mes-
sage and communicate it to a remote element. They act as an inter-
face between the middleware and the operating system. The
structure of a communication element, named Channel, as fol-
lows.
(1) process Channel [iCh, oCh, comm] : noexit :=
(2) Send[iCh,oCh,comm]|||Receive[iCh,oCh,comm]
(3) where
(4) process Send [iCh, oCh, comm] : noexit :=
(5) iCh ?m : Message;
(6) comm !m;
(7) oCh;
(8) Send [iCh, oCh, comm]
(9) endproc
(10) process Receive[iCh, oCh, comm]:noexit :=
(11) iCh;
(12) comm ?m : Message;
(13) oCh !m;
(14) Receive [iCh, oCh, comm]
(15) endproc
(16) endproc

Similarly to the Stub, the input (iCh) and output (oCh) ports
serves as interception points of the element. However, communi-
cation elements have an additional port, named comm, used to
communicate the message to a remote element. Additionally, the
Channel is composed by the processes Send and Receive that
are responsible to send and receive messages, respectively. In this
case, the Channel receives a message sent by the local element
(5) and then communicates it to a remote element (6). Next, the
reply message is received by the Channel (12) from a remote
element and then it passes the message to the local element (13).
Figure 3 illustrates how the Channel works.

ChannelLocalAbstraction1 RemoteAbstraction1

(5)

(12)

(6)

(13)

Figure 3 – Channel

Dispatchers Dispatchers get the request and forward it to the right
object (service). The destination object is defined by inspecting
the message, in which the destination has been set during the bind-
ing. In practical terms, the dispatcher acts as a multiplexer inside
the middleware. The general structure of a dispatcher is depicted
bellow.
(1) process Dispatcher [iDis, oDis] : noexit :=
(2) iDis ?m : Message;
(3) oDis !m ! multiplexer(m);
(4) Dispatcher [iDis, oDis]
(5) endproc

The dispatcher receives a message (2) and inspects it, through the

function multiplexer, to define the destination object (3). Figure 4
illustrates how the multiplex work considering two different desti-
nation objects.

DispatcherAbstraction1

Abstraction2

(2)

Abstraction3

(3)

(3)

Figure 4 – Dispatcher

Storage Elements Storage elements express the need of some
middleware systems of store the message prior to send it, e.g., for
asynchronous communication or to keep a copy of the message for
recovery reasons. The general structure of a Storage element is
shown bellow.
(1) process Storage[iSto, oSto](q: Queue):
 noexit :=
(2) hide enq, fst, empt, deq in
(3) Manager [iSto, oSto, enq, fst, empt, deq]
(4) |[enq, fst, empt, deq]|
(5) Queue [enq, fst, empt, deq] (q)
(6) where
(7) process Manager [iSto, oSto] : noexit :=
(8) iSto ?m : Message;
(9) enq !m;
(10) oSto;
(11) Manager [iSto, oSto]
(12) endproc
(13) process Queue [enq, fst, empt, deq]
 (q : Queue) : noexit :=
(14) enq ?n : Nat;
(15) Queue[enq,fst,empt, deq]enqueue(q,n))
(16) []
(17) fst !first (q);
(18) Queue [enq, fst, empt, deq] (q)
(19) []
(20) deq;
(21) Queue[enq,fst,empt,deq](dequeue (q))
(22) endproc
(23) endproc

The storage element is modelled as a Queue that is administered
by the Manager. In this particular case, the Manager receives a
message (8) and then puts it in the Queue (9) which is inside the
Storage. In particular, the queue has a traditional structure as
shown in the specification that includes traditional queue opera-
tions such as: enqueue (14), to push the first element of the queue
(17) and dequeue (20). Figure 5 shows the basic functioning of the
Storage.

StorageAbstraction1

(8)

Figure 5 – Storage

It is worth observing that with minor changes to the storage ele-
ment, it may be defined as a buffer or a file.

3.2 Putting the Basic Abstractions Together
By using the basic abstractions defined in the previous section,
middleware systems may be specified by composing them accord-
ing to the desired distribution model. The general structure of any

specification according to the framework is defined as follows:
specification CompleteSystem [invC, terC,
 invS, terS, comm] : noexit

 (* abstract data type definitions *)

 behaviour
 (Transmitter[invC,terC]
 |[invC,terC]|
 LocalMiddleware[invC,terC, comm])
 |[comm]|
 RemoteMiddleware [invS,terS,comm]
 |[invS,terS]|
 Receiver[invS,terS])
 where
 (* behavioural specification *)
Endspec

where a Transmitter sends a message to the Receiver through
the middleware, which is made up of a local (LocalMidleware)
and remote middleware (RemoteMidleware) that communicates
through the port comm (e.g., it abstracts the whole network). What-
ever the middleware model, its internal structure is defined as fol-
lows (except for the number of components):
process LocalMiddleware[invC,terC,comm]:noexit:=
 hide iA1, oA1, iA2, oA2 in
 (A1 [iA1,oA1] ||| A2 [iA2,oA2,comm])
 |[iA1, oA1, iA2, oA2]|
 Interceptor [invC, terC, iA1, oA1, iA2, oA2]
 where
 (* behavioural specification *)
endproc

The middleware is composed of a set of abstractions (e.g., A1 and
A2), depending on its complexity. The composition is expressed in
the process Interceptor. As mentioned before, our approach is
message-centric. Hence, each abstraction initially “intercepts” the
request, processes it and then passes to the next one according to
the constraints imposed by the process Interceptor. The Inter-
ceptor plays a key role of defining the order the request is inter-
cepted by the abstractions. For example, the interceptor of a
LocalMiddleware in a client-server communication may be de-
fined as follows:
(1) process Interceptor [invC, terC, iStub,
 oStub, iCha, oCha] :
 noexit :=
(2) invC ?m : Message;
(3) iStub !m;
(4) oStub ?m1 : Message;
(5) iCha !m1;
(6) oCha;
(7) iCha;
(8) oCha ?m : Message;
(9) iStub !m;
(10) oStub ?m3 : Message;
(11) terC !m3;
(12) Interceptor [invC, terC, iStub,
 oStub, iCha, oCha]
(13) endproc
(14) endproc

Stub

Channel

(2)

In
te

rc
ep

to
r

Tr
an

sm
itt

er

RemoteMiddleware

(3)

(9)

(4)

(5)

(8)

(10)

(11)

LocalMiddleware

Figure 6 – Interceptor

Figure 6 shows the interaction among the elements that composes
a particular LocalMiddleware. In this case, according to the
interactions, the order imposed by the Interceptor defines that
after the LocalMiddleware receives the request from a Trans-
mitter, it is passed initially to the Stub and then to the Channel.
When the reply message arrives in the Channel from the Re-
moteMiddleware, it is passed back to the Stub and then to the
Transmitter.

4 Adopting the Framework Elements
In order to illustrate how the elements introduced in the previous
session may be used to facilitate the middleware specification, we
present the specification of a simple middleware (Figure 7) that
has a structure similar to CORBA and a message-oriented mid-
dleware (Figure 8).

Stub

Channel

Client

Dispatcher

Skeleton

Service1

Channel

Skeleton

Service2

Lo
ca

lM
id

dl
ew

ar
e

R
em

ot
eM

id
dl

ew
ar

e

Figure 7 – Client-server middleware

According to Figure 7, the specification presents a client-server
middleware where the local middleware is a composition of a stub
and channels elements. On the server side (remote), the middle-
ware is more complex, as it is composed by a communication ele-
ment (Channel), a dispatcher (Dispatcher) that forwards the
request to the proper skeleton, and some skeletons (Skeleton). It
is worth observing that additional middleware elements are easily
added to the middleware just including them in the parallel com-
position (|||) and changing the Interceptor element.

process RemoteMiddleware[invS,terS,comm]:noexit
:=
 hide iSkeleton,oSkeleton,iTcp,oTcp,iDis,oDis in
 ((Skeleton [iSkeleton, oSkeleton] (1)
 ||| Skeleton [iSkeleton, oSkeleton] (2)
 ||| Channel [iTcp, oTcp, comm]
 ||| Dispatcher [iDis, oDis])

 |[iSkeleton,oSkeleton,iTcp,oTcp,iDis,oDis]|

 Interceptor [invS, terS, iSkeleton, oSkeleton,
 iTcp, oTcp, iDis, oDis])
 where
 (* behavioural specification *)
endproc
The adoption of LOTOS enables us to use tools to check proper-
ties of middleware specifications defined using the framework. In
this particular case, the searching of deadlock has been carried out
in the CADP Toolbox (Cesar) . The trace resulting from this
evaluation is shown bellow
*** searching for sequence of the form:
<any>* . <deadlock>
*** using breadth-first search algorithm
*** no sequence found
*** no prefix of the sequence has been recognized

As mentioned before, the second middleware specification is a
message-oriented middleware (MOM). A MOM is characterised
by the use of a buffer to the asynchronous communication and it is
widely adopted to communicate loosely coupled applications.

Storage

Channel

Transmitter Receiver

Channel

Storage

Lo
ca

lM
id

dl
ew

ar
e

R
em

ot
eM

id
dl

ew
ar

e

Figure 8 – Message-Oriented Middleware

This MOM (Figure 8) has two elements, namely Channel and
Storage. The abstraction Channel is similar to Figure 7, whilst
Storage is defined as presented in Section 3.1. MOMs that exe-
cute on the transmitter side are usually similar to one on the re-
ceiver (remote) side. The general structure of the MOM
specification is shown bellow
Process LocalMiddleware[send,receive,comm]:
noexit :=
hide iSto, oSto, iCh, oCh in
 ((Storage[iSto,oSto] ||| Channel[iCh,oCh,comm])

 |[iSto, oSto, iCh, oCh]|
 Interceptor[send,receive,iSto,oSto,iCh,oCh])

where
 (* behavioural specification *)
endproc

5 Related Work
The basic idea of the formalisation of middleware systems is to
use a formal description technique for specifying several aspects
of middleware. In particular, formal description techniques such as
E-LOTOS [11], Z notation [7], and Petri Nets [3] [4] have been

used to specify functional aspects, whilst Petri nets have also been
adopted to model middleware performance aspects [23][10].

In the RM-ODP [11], the trader service is formally specified
through an extension of basic LOTOS named E-LOTOS [12]. By
comparing with our approach, the main and significant difference
is the absence of software architecture principles and abstraction
levels of specification in order to structure the trader specification.
This fact makes very difficult to understand the whole specifica-
tion. E-LOTOS may effectively be adopted in the future due to its
improvements to LOTOS, but there still having a lack of tools to
support the automatic verification of properties and refinement.

Bastide [3][4] adopts the Cooperative Objects (CO) formalism to
specify middle-ware behaviour. CO is a dialect of object-
structured, high-level Petri nets used to generate tests and verify
inconsistencies of the OMG specification of CORBA Event ser-
vice. In a similar way to E-LOTOS, the basic difference of our
approach refers to the use of software architecture principles and
abstraction levels to threat with the complexity of middleware
system specifications. Another point that may be mentioned is the
better readability of LOTOS specification compared to Petri nets.

Basin [2] focuses on the uses the Z notation to analyse the
CORBA Security Ser-vice. Having the main objective of taking
advantage of formalisation to make proofs of properties, this ap-
proach concentrates on defining a formal-data model to the
CORBA Security Service. There is a significant difference to our
approach that refers to the fact we addresses behaviour aspects
instead data. Hence, despite being formal, the objects being for-
malised are completely different.

Fernandes [10] and Souza [23] also adopt Petri nets for describing
middleware aspects. However, their focus are on the generation of
formal models that include performance elements. The proposed
models do not serve to check properties such as deadlock freedom
or safety, but only quantitative and qualitative properties. Hence,
in a similar way to the use of Z notation, this approach has not the
focus on the behaviour itself.

Finally, our previous work [17] presented an approach for struc-
turing the middleware architecture using software architecture
principles. The middleware software architecture is defined at
three different levels of abstractions, which are usually adopted by
application developers, standard bodies and middleware develop-
ers. At the same time, we propose the adoption of the LOTOS
language [7] for describing the behaviour of these software archi-
tectures. In fact, LOTOS is used as an ADL (Architecture Descrip-
tion Language) that allows to formally specify the behaviour of
middleware software architectures.

6 Conclusion and Future Work
This paper has presented a framework useful to formalise middle-
ware behaviour based on LOTOS. The framework consists of a set
of common elements usually found in the development of mid-
dleware systems. The framework is now being defined, but it is
possible to observe that a formalisation approach centred on the
message request instead of middleware layer facilitates the treat-
ment of middleware complexity: simple abstractions are highly
reusable (see abstraction Channel in Section 3) and easier to find

specification errors and verify desired behaviour properties; and
the way of composing middleware abstractions considering the
order they intercept the message request enormously facilitate the
composition of middleware abstractions.

We are now extending the proposed set of abstractions including
more sophisticated communication and concurrent elements.
Meanwhile, it is also planned to include the specification of mid-
dleware services in such way that composition constraints may
also consider middleware service composition.

References

[1] Basin, D., F. Rittinger, L. Viganò (2002): A Formal Analysis
of the CORBA Security Service. Lecture Notes in Computer
Science, 2272, pp. 330-349.

[2] Bastide, R., O. Sy, D. Navarre, P. Palanque (2000): A Formal
Specification of the CORBA Event Service. In FMOODS –
Formal Methods for Open Object-Based Distributed Systems,
pp. 371-396.

[3] Bastide, R., P. Palanque, O. Sy, D. Navarre (2000): Formal
Specification of CORBA Services: Experience and Lessons
Learned. In OOPSLA – Object-Oriented Programming, Sys-
tems, Languages, and Applications, pp. 105-117.

[4] Bernstein, P. A. (1996): Middleware: A Model for Distributed
System Services. Communications of the ACM, 39 (2), pp.
87-98.

[5] Blair, G., G. Coulson, R. Philippe, M. Papathomas (1998): An
Architecture for Next Generation Middleware. In Middle-
ware, pp. 191-206.

[6] Bolognesi, T., E. Brinksma (1987): Introduction to the ISO
Specification Language LOTOS. Computer Networks and
ISDN Systems, 14(1), pp. 25-59.

[7] Campbell, A. T., G. Coulson, M. E. Kounavis, M. E. (1999)
Managing Complexity: Middleware Explained. IT Profes-
sional, 1(5), pp. 22-28.

[8] Emmerich, W. (2000): Software Engineering and Middle-
ware: A Roadmap. In Second International Workshop on
Software Engineering and Middleware, pp. 119-129.

[9] Fernandes, S. F. L., W. J. Silva, M. J. C. Silva, N. S. Rosa, P.
R. M. Maciel, D. F. Sadok. (2004): On the Generalised Sto-
chastic Petri Net Modelling of Message-Oriented Middleware
Systems. In 23rd IEEE International Performance, Comput-
ing, and Communications Conference, pp. 783-788, 2004.

[10] ISO (1995): ISO 10476-1: Reference Model of Open Distrib-
uted Processing (Part I) – Overview.

[11] ISO (2001): ISO 15437: Enhancements to LOTOS (E-
LOTOS).

[12] Kreuz, D. (1998): Formal Specification of CORBA Services
Using Object-Z. In Second IEEE International Conference on
Formal Engineering Methods.

[13] Matena, V., M. Hapner (1998): Enterprise JavaBeans. Sun

Microsystems.

[14] OMG (1998): CORBAservices: Common Object Services
Specification.

[15] OMG (2002): Common Object Request Broker Architecture -
Core Specification (CORBA 3.0)

[16] Plasil, F., S. Vinosky (2002): Behaviour. Protocols for Soft-
ware Component. IEEE Transactions on Software Engineer-
ing, 28(11): 1056-1076.

[17] Rosa, Nelson S. and Paulo R. F. Cunha (2004): A Software
Architecture-Based Approach for Formalising Middleware
Behaviour, Electronic Notes in Theoretical Computer Science
108, pp. 39–51.

[18] Schmidt, Douglas and Buschmann, Frank (2003): Patterns,
Frameworks, and Middleware: Their Synergistic Relation-
ships, In 25th international conference on Software Engineer-
ing, pp. 694-704.

[19] Souza, F. N., R. D. Arteiro, N. S. Rosa, P. R. M. Maciel
(2006): Using Stochastic Petri Nets for Performance Model-
ling of Application Servers. In Performance Modelling,
Evaluation, and Optimisation of Parallel and Distributed Sys-
tems, pp. 1-8.

[20] Sun Microsystems, Inc. (1999): JavaTM Transaction Service
Specification. http://java.sun.com/products/jts/.

[21] Sun Microsystems, Inc. (2002): Java Message Service Speci-
fication. http://java.sun.com/products/jms/.

[22] Venkatasubramanian, N. (2002). Safe Composability of Mid-
dleware Services. Communications of the ACM, 45(6), pp.
49-52.

[23] Vinoski, S. (2002). Where is Middleware? IEEE Internet
Computing, 6(2), pp. 83-85.

