
Negotiation Among Web Services
Using LOTOS/CADP

Gwen Salaün, Andrea Ferrara, and Antonella Chirichiello

DIS - Università di Roma ”La Sapienza”
Via Salaria 113, 00198 Roma, Italia
Contact salaun@dis.uniroma1.it

Abstract. It is now well-admitted that formal methods are helpful for
many issues raised in the web service area. In a previous work, we ad-
vocated the use of process algebra to describe, compose and reason on
web services at an abstract level. In this paper, we extend this initial
proposal, which only dealt with behavioural aspects, to cope with the
question of representing data aspects as well. In this context, we show
how the expressive process algebra LOTOS (and its toolbox CADP) can
be used to tackle this issue. We illustrate the usefulness of our proposal on
an important application in e-business: negotiation among web services.
The connection between abstract specifications and running web services
is made concrete thanks to guidelines enabling one to map LOTOS and
the executable language BPEL in both directions.

Keywords: Web Services, Formal Methods, LOTOS, CADP, Negotia-
tion, BPEL.

1 Introduction

Web services (WSs) are distributed and independent pieces of code solving spe-
cific tasks which communicate with each other through the exchange of messages.
Some issues which are part of on-going research in WSs are to specify them in
an adequate, formally defined and expressive enough language, to compose them
(automatically), to discover them through the web, to ensure their correctness,
etc. Formal methods provide an adequate framework (many specification lan-
guages and reasoning tools) to address most of these issues (description, com-
position, correctness). Different proposals have emerged recently to abstractly
describe WSs, most of which are grounded on transition system models [2,11,
18,10,14] and to verify WS description to ensure some properties on them [18,7,
17]. In a previous work [19], we advocated the use of process algebra (PA) [3] for
WSs. Being simple, abstract and formally defined, PAs make it easier to specify
the message exchange between WSs, and to reason on the specified systems (e.g.
using bisimulation notions to ensure the correctness of composition).

In this initial proposal [19], we especially experimented the use of the simple
process algebra CCS. However, CCS turns out to be only adequate for the spec-
ification of (and reasoning on) dynamic behaviours. What was missing in this
proposal was to handle data. This allows a much finer (less abstract) level of

L.-J. Zhang and M. Jeckle (Eds.): ECOWS 2004, LNCS 3250, pp. 198–212, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Negotiation Among Web Services Using LOTOS/CADP 199

specification, which is clearly needed in some cases. In this paper, we argue that
the process algebra LOTOS [12] and its toolbox CADP are useful respectively
to describe WSs and to reason on them. We also propose a two-level description
of WSs: an abstract one (using LOTOS) and an executable one (using WSDL
and BPEL) Following such an approach, we can develop WSs considering the
formal and verified specification as a starting point. In the other direction, we
can abstract a deployed system to a description in LOTOS. The interest of such
an abstract description is that the formality of this language and its readily ex-
isting tools enable one to validate and verify specifications through animation
and proofs of temporal properties.

To illustrate the interest of such an approach in WSs, we focus on the problem
of negotiation in which both data and dynamic aspects have to be dealt with. The
perspective of intelligent/automated WSs which would be able to automatically
perform the necessary negotiation steps to satisfy their user’s request in the
most satisfactory possible way emerged from artificial intelligence and multi-
agent systems. This problem is a typical example of services involving both
data (prices, goods, stocks, etc) and behaviours. Negotiation issues appear when
several participants (clients and providers) have to interact to reach an agreement
that is beneficial to all of them. Our goal is to show how LOTOS/CADP may
be used to ensure trustworthy and automated negotiation steps.

The organization of this paper is as follows. First, we introduce in Section
2 the different entities involved in negotiation. Section 3 presents the LOTOS
language and its toolbox CADP. They are used in Section 4 to describe nego-
tiating processes at an abstract level, and to reason on them. Section 5 gives
some guidelines to map LOTOS specifications and BPEL code in both direc-
tions. Related works are introduced in Section 6 and compared with the current
proposal. Finally, we draw up some concluding remarks in Section 7. This paper
is a shorter version of [20] in which the reader can find much more details.

2 What Does Negotiation Involve?

In this section, we introduce what is involved in negotiation cases. Specification
and implementation of such aspects are resp. described in Sections 4 and 5.

Variables. They represent entities on which processes should negotiate, e.g.
a price. Many variables may be involved in a negotiation at the same time
(availability of different products, fees, maximum number of days for a delivery).

Constraints. They represent conditions to respect (called invariants as well)
while trying to reach an agreement. Such an invariant is actually a predicate
which can be evaluated replacing free variables with actual values. For a requester
who is trying to buy by auction a product, such an invariant could be that (s)he
is ready to pay €300 at most with a delivery within 10 days, or to accept a
possible late delivery if there is a price reduction of 10% at least.

Exchanged information. To reach an agreement, both participants should
send values to the other. A simple case is a price, but they can also exchange
more advanced constructs (a record of values, a constraint on a value, etc).

200 G. Salaün, A. Ferrara, and A. Chirichiello

Strategies. “An agent’s negotiation strategy is the specification of the se-
quence of actions (usually offers or responses) the agent plans to make during
the negotiation.” [16]. Strategies may take into account other considerations. For
instance, a participant can try to reach an agreement as soon as possible, or to
minimize a price. Therefore, strategies are related to minimizing or maximizing
objective functions.

In this proposal, we discard lots of possible variants which possibly appear in
negotiations such as evolution of the constraints (a requester who is not finding
a product less than €300, modifies his/her constraint to pay up to €320 from a
certain point in time) or the level of automation (complete automation or inter-
vention of human people). Consequently, all these variations may be combined
and may end up to many possible scenarios of negotiation. It is obvious that no
negotiation process is better than another. The right process should be selected
depending on the bargaining context.

3 LOTOS and CADP in a Nutshell

LOTOS is an ISO specification language [12] which combines two specification
models: one for static aspects (data and operations) which relies on the algebraic
specification language ACT ONE and one for dynamic aspects (processes) which
draws its inspiration from the CCS and CSP process algebras.

Abstract Datatypes. LOTOS allows the representation of data using al-
gebraic abstract types. In ACT ONE, each sort (or datatype) defines a set of
operations with arity and typing (the whole is called signature). A subset of these
operations, the constructors, are sufficient to create all the elements of the sort.
Terms are obtained from all the correct operation compositions. Axioms are first
order logic formulas built on terms with variables; they define the meaning of
each operation appearing in the signature.

Basic LOTOS. This PA authorizes the description of dynamic behaviours
evolving in parallel and synchronizing using rendez-vous (all the processes in-
volved in the synchronization should be ready to evolve simultaneously along the
same gate). A process P denotes a succession of actions which are basic entities
representing dynamic evolutions of processes. An action in LOTOS is called a
gate (also called event, channel or name in other formalisms). The symbol stop
denotes an inactive behaviour (it could be viewed as the end of a behaviour)
and the exit one depicts a normal termination. The specific i gate corresponds
to an internal evolution.

Now, we present the different LOTOS operators. The prefixing operator G;B
proposes a rendez-vous on the gate G, or an independent firing of this gate,
and then the behaviour B is run. The nondeterministic choice between two
behaviours is represented using []. LOTOS has at its disposal three parallel
composition operators. The general case is given by the expression B1 |[G1, ...,
Gn]| B2 expressing the parallel execution between behaviours B1 and B2. It
means that B1 and B2 evolve independently except on the gates G1, ..., Gn on
which they evolve at the same time firing the same gate (they also synchronize

Negotiation Among Web Services Using LOTOS/CADP 201

on the termination exit). Two other operators are particular cases of the former
one to write out interleaving B1|||B2 which means an independent evolution of
composed processes B1 and B2 (empty list of gates), and full synchronization
B1||B2 where composed processes synchronize on all actions (list containing all
the gates used in each process). Moreover, the communication model proposes
a multi-way synchronization: n processes may participate to the rendez-vous.

The operator hide G1, ..., Gn in B aims at hiding some internal actions for
the environment within a behaviour B. Consequently, the hidden gates cannot
be used for the synchronization between B and its environment. The sequential
composition B1 � B2 denotes the behaviour which executes B2 when B1 has
successfully terminated (stop or exit). The interruption B1 [> B2 expresses
that the B1 behaviour can be interrupted at any moment by the behaviour B2.
If B1 terminates correctly, B2 is never executed.

Full LOTOS. In this part, we describe the extension of basic LOTOS to
manage data expressions, especially to allow value passing synchronizations. A
process is parameterized by a (optional) list of formal gates Gi∈1..m and a (op-
tional) list of formal parameters Xj∈1..n of sort Sj∈1..n. The full syntax of a
process is the following:

process P [G0, ..., Gm] (X0:S0, ..., Xn:Sn) : func := B endproc

where B is the behaviour of the process P and func corresponds to the
functionality of the process: either the process loops endlessly (noexit), or it
terminates (exit) possibly returning results of sort Sj∈1..n (exit(S0, ..., Sn)).

Gate identifiers are possibly enhanced with a set of parameters (offers). An
offer has either the form G!V and corresponds to the emission of a value V , or
the form G?X:S which means the reception of a value of sort S in a variable
X. A single rendez-vous can contain several offers. A behaviour may depend
on Boolean conditions. Thereby, it is possible that it be preceded by a guard
[Boolean expression] → B. The behaviour B is executed only if the condition is
true. Similarly, the guard can follow a gate accompanied with a set of offers. In
this case, it expresses that the synchronization is effective only if the Boolean
expression is true (e.g., G?X:Nat[X>3]). In the sequential composition, the
left-hand side process can transmit some values (exit) to a process B (accept):

... exit(X0, ..., Xn) � accept Y0:S0, ..., Yn:Sn in B

To end this section, let us say a word about CADP1 which is a toolbox for
protocol engineering. It particularly supports developments based on LOTOS
specifications. It proposes a wide panel of functionalities from interactive sim-
ulation to formal verification techniques (minimization, bisimulation, proofs of
temporal properties, compositional verification, etc).

1 http://www.inrialpes.fr/vasy/cadp/

202 G. Salaün, A. Ferrara, and A. Chirichiello

4 Negotiation Using LOTOS/CADP

In this section, we do not argue for a general approach specifying any possible
case of negotiation (even though many negotiation variants can be described
in LOTOS). Our goal is to illustrate the use and interest of LOTOS/CADP
for negotiating services. Consequently, we introduce our approach on a classical
case of peer-to-peer sale/purchase negotiation involving one client (it works with
more clients but we explain with one) and many providers. The goal of a formal
representation and hence of automated reasoning is to prove properties so as to
ensure a correct and safe automated negotiation between involved processes.

An assumption in this work is that we have a privileged view of all the partic-
ipants and their possible behaviours (particularly in case of reverse engineering
approach). Consequently, from our point of view, processes are glass boxes. This
hypothesis is essential in any situation where we want to reason on interact-
ing processes. An alternative approach would be to consider processes as black
boxes and to reason on visible traces. However, it is almost impossible given such
inputs, in which little information is available, to ensure critical properties.

Aspects involved in negotiation and itemized in Section 2 may be encoded
in LOTOS in different ways. Let us show now an outline of the description we
propose (see further for detailed explanations).

• Datatypes are defined using ACT ONE algebraic specifications and are
afterwards used to type variables locally defined as parameters of processes.

• A specific datatype (Inv) is defined to describe constraints to be respected
by participants while negotiating.

• Exchanged information are represented by variables. They can represent
simple values (natural numbers) or more complex ones (a constraint on multi-
type values). Values are exchanged between processes along gates.

• Strategies are much trickier because they are encoded either in the dy-
namic processes – the way a participant proposes some values and more generally
interacts with other participants – and in the local variables managed by pro-
cesses – initial value, computation of the next ones, constraints to be respected.

In this section, we introduce the main ideas of the negotiation situation at
hand and illustrate them with short pieces of specification borrowed from the
comprehensive one2. Additionally, this section does not make any assumption
regarding the development approach (design approach or reverse engineering).

Case Study. We illustrate our proposal using an on-line auction sale. This
case involves a client who interacts with book providers (one after the other)
to purchase a book respecting some constraints. In the following, we choose to
simplify the case for the sake of readability and comprehension (purchase of a
single book, negotiating only the price). However, our approach works for more
complex cases and many negotiation variants, as it has been experimented3:
generalization of data management, handling of bigger sets of books, negotiations
on several values and accordingly encoding of more complex invariants.
2 http://www.dis.uniroma1.it/∼salaun/LOTOS4WS/BASIC
3 http://www.dis.uniroma1.it/∼salaun/LOTOS4WS/GEN

Negotiation Among Web Services Using LOTOS/CADP 203

Data Descriptions. First, the ADT abilities of LOTOS are useful to rep-
resent the data variables handled during the negotiation as well as the more
complex data managed by processes. With regards to our negotiation problem,
we need the datatypes gathered on the left-hand side in Figure 1 with their im-
port links (Nat and Bool are already defined in the CADP library). A book is
represented using four values: an identifier, a price, the delivery time, the pos-
sibility to return the book or not. A bookstore is described as a set of books.
Each entry in the bookstore also contains the number of available books and
the invariant to be respected, then deciding of the offer acceptance or refusal.
Several operations are defined to access, modify and update these datatypes.

Constraints are represented using a generic datatype. They are encoded using
the Inv sort which defines as many invariants as needed and a conform function
evaluating invariants with actual values. In the example below (right-hand side
in Fig. 1), the invariant means that the maximum price to be paid is €3 (client
condition), the corresponding meaning of the conform function is written out
using the judicious comparison operator on natural numbers. Another example
shows how more complex invariant can be expressed (the price has to be less
than or equal to three, the delivery within 5 days and the return possible).

BookStoreInvComp

BoolBookNat

pMax3 (*! constructor *) : -> Inv
conform : Nat, Inv -> Bool
...
eqns forall p: Nat, b: Book
ofsort Bool (* type of the result *)
conform(p, pMax3) = (p<=3);
conform(b, myInv) = (price(b)<=3) and

(days(b)<5) and returnok(b);

Fig. 1. Datatype dependence graph (left) and sample of the datatype for constraint
descriptions (right)

The computation of the initial value to be negotiated and of the next value to
be proposed (e.g. adding up one to the price) are also encoded in a generic way
using the Comp sort. For example, it is done for the price using some operations
extending the Nat existing datatype.

Negotiating Processes. Now, let us define the processes involved in the
negotiation steps. In the current negotiation example, we advocate a fully dele-
gated negotiation service (the user does not intervene into search of an agreement
and negotiation rounds). In Figure 2, boxes correspond to nested processes and
lines to interactions between processes (they hold the gates used by the processes
to communicate). Nested processes mean that, at one moment, there is only one
control flow: one parent process instantiates another one and waits for the end of
its fork before continuing its behaviour. It is compulsory in LOTOS because the
use of an intermediate process is the single way to express a looping behaviour
inside a bigger one.

The Controller process is run by the client with judicious parameters: the
identifier of the book to purchase, an initial value to be proposed for the book

204 G. Salaün, A. Ferrara, and A. Chirichiello

NegotiateC

Controller

Requester

Provider

NegotiateP

request, reply

order, refusal, givingup

sendpriceP, sendpriceR

Fig. 2. Processes involved in our negotiation process

while negotiating, an invariant to be respected during the negotiation steps, a
function computing the next proposal. Its exit statement is accompanied with
a Boolean which indicates an order or a failure of the negotiation rounds. On
the other hand, each provider has at its disposal a set of books, a function to
compute a first value (to be proposed while negotiating) from the actual price
as stored in the book set, and a function to compute the price of the book for
the next negotiation round. Many parts of our encoding favour reusability, but
values involved in the negotiation remain close to the current problem (book
identifier, book price, bookstore). Accordingly, adjustments of these parameters
are needed to reuse such negotiating processes in another context.

Let us sketch the behaviour of the controller. First, it initiates the interaction
with a provider by sending the identifier of the book to be sought, then receives
a Boolean answer denoting the availability of the book. A false reply implies a
recursive call. A true response induces the instantiation of the negotiation process
NegotiateC and the waiting for an answer accompanied with a status which is
true in case of an order (and then exit alerting the client of the success) and false
in case of a failure (recursive call to try another provider). At any moment, the
controller may give up and exit alerting the client that every negotiation attempt
has failed. Each provider has to be willing to interact with such a controller, and
then is made up of the symmetrical behaviour.

process Controller
[request,reply,order,refusal,sendpriceP,sendpriceR,givingup]
(ref: Nat, pi: Nat, inv: Inv, computfct: Comp): exit(Bool) :=

request!ref; reply?b:Bool;
(
([b] ->
NegotiateC[order,refusal,sendpriceP,sendpriceR,givingup]
(pi, inv, computfct) >> accept status: Bool in
(
[not(status)] -> (* case of a failure *)
Controller[request,reply,order,refusal,sendpriceP,...]
(ref, pi, inv, computfct)

[]
[status] -> exit(true) (* case of an order *)

))
[]
([not(b)] -> (* let us try another bookstore *)
Controller[request,...]

Negotiation Among Web Services Using LOTOS/CADP 205

(ref, pi, inv, computfct))
)
[]
exit(false) (* the controller stops the negotiation *)

endproc

Below, we show the body of the NegotiateC process in charge of the nego-
tiation on behalf of the controller. Negotiation steps are composed of classical
information exchanges. One of both participants proposes a price to the other.
The other participant accepts whether this price satisfies its local constraints.
Otherwise, it refuses and calls recursively itself. The caller updates its local
value (price here) for the next proposal using the local function dedicated to
such computations. At any moment, the negotiation may be abandoned by one
of the participants.

process NegotiateC [order,refusal,sendpriceP,sendpriceR,givingup]
(curp: Nat, inv: Inv, computfct: Comp): exit(Bool) :=

sendpriceP?p:Nat; (* the provider proposes a value *)
([conform(p,inv)] -> order;exit(true) (* agreement *)
[]
[not(conform(p,inv))] -> refusal;
NegotiateC[order,refusal,sendpriceP,sendpriceR,givingup]
(curp, inv, computfct))

[] (* proposal of a value to the provider *)
([conform(curp,inv)] -> sendpriceR!curp;
(
order; exit(true) (* agreement *)
[]
refusal; NegotiateC[order,refusal,sendpriceP,sendpriceR,givingup]

(compute(curp,computfct),inv,computfct)
))

[] (* the client stops because results not satisfactory *)
givingup; exit(false)

endproc

Let us introduce an example of a concrete system in which one requester is
seeking a book among three possible providers. First of all, the needed data are
described using appropriate algebraic terms. A simple example of a bookstore is
the following one containing eight books (we experimented our approach with
stores handling tens of books). For illustration purposes, the first book (identified
by 0) has three copies still available and has to be sold at least €3.

bs1: BookStore =
add2BS(book(0,2,6,true), 3, pMin3,
...
add2BS(book(7,3,2,false), 3, pMin5, emptyBS)...)

206 G. Salaün, A. Ferrara, and A. Chirichiello

A lightweight view of the system is now given. This instance (and some
variants of it modifying the number of possible providers) is used in the next
subsection to assess the reasoning capabilities. The requester is seeking the book
identified by 0, with 2 as initial negotiating value, pMax3 as price constraint and
a computation of the next value obtained adding up one.

Requester [request,reply,order,refusal,...] (0,2,pMax3,add1)
|[request,reply,order,refusal,sendpriceP,sendpriceR,givingup]|

(
Provider [request,reply,order,refusal,...] (bs1,times2,minus1)
||| Provider[...] (bs2,times2,minus1) ||| Provider[...] (...)

)

Reasoning. Our purpose here is to validate our negotiation system and to
verify some properties on it. All the steps we are going to introduce have been
very helpful to ensure a correct processing of the negotiation rounds. Several
mistakes in the specification have been found out (in the design, in the interaction
flows, in the data description and management). Simulation has been carried
out and proofs have been verified using Evaluator (a CADP on-the-fly model
checker) and the prototype version Caesar 6.3 [9] building smaller graphs than
in the current distribution of CADP. Safety, liveness and fairness properties
written in µ-calculus have been verified (examples are resp. introduced below).

A first classical property is the absence of deadlocks (actually there is one
deadlock corresponding to the correct termination leading in a sink state). An-
other one (P1) ensures than an agreement is possible (because it exists one
branch labelled by ORDER in the global graph). The property P2 expresses that
the firing of every SENDPRICER gate (also checked with SENDPRICEP) is either fol-
lowed by an order or a refusal. P3 verifies that after the firing of a REPLY!TRUE

action, either SENDPRICEP and SENDPRICER are fireable.

< true* . "ORDER" > true (P1)
[true* . "SENDPRICER!*"] <("ORDER" or "REFUSAL")> true (P2)
[true* . "REPLY!TRUE"] <"SENDPRICEP" and "SENDPRICER"> true (P3)

We end with a glimpse (Tab. 1) of experimentations we carried out on this
system to illustrate from a practical point of view the time and space limits of
our approach (and of the use of CADP). We especially dealt with one user since
the goal is to ensure properties for a given user even if proofs can be achieved
with several ones as showed below (however in this case the existence of an agree-
ment P1 is meaningless). We used a Sun Blade 100 equipped with a processor
Ultra Sparc II and 1.5 GB of RAM. To summarize, though we can reason on
rather realistic applications, our approach is limited by the state explosion prob-
lem due especially in our case to the increase of: the number of processes (and
underlying new negotiation possibilities), the number of values to be negotiated
(if constraints are relaxed, negotiations can be hold on more values), the size of
data (above all the number of books managed by each provider).

Negotiation Among Web Services Using LOTOS/CADP 207

Table 1. Practical assessment of the approach

Number of processes Nb of states Nb of trans. P1 P2 P3
Example 1 (1 user & 1 provider) 32 47 3.84s 2.15s 2.21s
Example 2 (1 user & 5 providers) 2,485 5,124 4.88s 3.57s 3.57s
Example 3 (1 user & 7 providers) 17,511 42,848 4.64s 27.70s 27.35s
Example 4 (1 user & 8 providers) 35,479 88,438 5.02s 101.96s 102.27s
Example 5 (1 user & 10 providers) 145,447 374,882 5.10s 1326.94s 1313.16s
Example 6 (2 users & 4 providers) 300,764 944,394 5.31s 117.41s 117.79s

5 Two-Way Mapping Between LOTOS and WSDL/BPEL

First of all, we highlight once again the need of equivalences between behaviours
written out in both languages, consequently each one can be obtained from the
other. In this section, our goal is not to give a comprehensive mapping between
both languages, that is a mapping taking into account all LOTOS and BPEL
concepts. Herein, we focus particularly on the notions that we need for the
negotiation problem as mentioned in the LOTOS specification introduced in
the previous section. For lack of space, it is not possible to introduce BPEL.
Accordingly, the reader who is not used with the language should refer to [1].

Two related works are [7,8]. Comparatively, our attempt is more general at
least for three reasons: (i) the expressiveness of properties is better in CADP
thanks to the use of the µ-calculus (e.g. only LTL in [8]), (ii) our abstract
language does not deal only with dynamic behaviours; we can specify advanced
data descriptions and operations on them at the abstract level (more complex
than in [8] where operations cannot be modelled as an example) as well as at
the executable one, (iii) we prone a mapping in two ways, useful to develop WSs
and also to reason on deployed ones (the latter direction was the single goal of
mentioned related works).

LOTOS Gates/Rendez-vous and BPEL Basic Activities. The ba-
sic brick of behaviour in LOTOS, the so-called gate, is equivalent to messages
described in WSDL which are completely characterized using the message, port-
Type, operation and partnerLinkType attributes. Most of the time abstract gates
are accompanied of directions (emissions or receptions) because they are involved
in interactions. Each action involved in a synchronization maps the four previ-
ous elements, and conversely. It is impossible to specify independent evolution of
one process in BPEL: everything is interaction. Therefore, synchronizing gates
are equivalent to BPEL interactions, especially in our case in which we deal
only with binary communication (the core of the BPEL process model being the
notion of peer-to-peer interaction between partners).

An abstract action accompanied with a reception (noted with a question
mark ’?’ in LOTOS) may be expressed as a reception of a message using the
receive activity in BPEL. On the other side, an emission (noted with an excla-
mation mark ’ !’) is written in BPEL with the asynchronous invoke activity. At
the abstract level, an emission followed immediately by a reception may be en-
coded using the BPEL synchronous invoke, performing two interactions (sending

208 G. Salaün, A. Ferrara, and A. Chirichiello

a request and receiving a response). On the opposite side, the complementary
reception/emission is written out using a receive activity followed by a reply one.

Data Descriptions. There are three levels of data description: type and
operation declarations, local variable declarations, data management in dynamic
behaviours. We discuss the two first ones in this part and we postpone the latest
one in the next subsection.

First, LOTOS datatypes, and operations on them, are specified using alge-
braic specifications. In BPEL, types are described using XML schema in the
WSDL files. Elements in the schema can be simple (lots are already defined) or
complex types. Data manipulation and computation (equivalent to operations
in LOTOS) is defined in BPEL using the assign activity, and particularly using
adequately XPath (and XPath Query) to extract information from elements.
XPath expressions can be used to indicate a value to be stored in a variable.
Within XPath expressions, it is possible to call several kinds of functions: core
XPath functions, BPEL XPath functions or custom ones. Complex data manip-
ulation may be written using XSLT, XQuery or JAVA (e.g. BPELJ makes it
possible to insert Java code into BPEL code) to avoid a tricky writing with the
previous mentioned means. Another way to describe and manage data is to use
a database and corresponding statements to accessing and manipulating stored
information. The data correspondence between both languages is not straight-
forward, although expressiveness of both data description techniques makes it
possible to map all specifications from one level to the other.

In LOTOS, variables are either parameters of processes or parameters of a
gate. In BPEL, variables can represent both data and messages. They are defined
using the variable tag (global when defined before the activity part) and their
scope may be restricted (local declarations) using a scope tag. A (WSDL) mes-
sage tag corresponds to a set of gate parameters in LOTOS. A part tag matches
with a parameter of a gate in LOTOS. In LOTOS, only process parameters need
to be declared (not necessary for gate variables) whereas in BPEL either global
and local variables involved in interactions have to be declared.

LOTOS Dynamic Constructs and BPEL Structured Activities. First
of all, the sequence activity in BPEL matches with the LOTOS prefixing con-
struct ’;’. Intuitively, the LOTOS choice (possibly multiple) corresponds either
to the switch activity defining an ordered list of case (a case corresponds to a
possible activity which may be executed) or to the pick one. Let us clarify the
two possible equivalences between LOTOS and BPEL depending on the presence
or not of guards: (i) absence of guards, a choice is translated with a pick activity
with onMessage tags, (ii) presence of guards, the mapping is straightforward us-
ing the switch operator. The termination used in the LOTOS specification maps
with the end of the main sequence in BPEL.

Recursive process calls match with the while activity. The condition of the
while is the exit condition of the recursive process. Sometimes, abstract recursive
behaviours match BPEL non recursive services. It is the case when dealing with
the notion of transaction (defined as a complete execution of a group of interact-
ing WSs working out a precise task) because in this context, only one execution

Negotiation Among Web Services Using LOTOS/CADP 209

of a process is enough (each transaction corresponds to a new invocation then
instantiation of each involved service).

Now, let us focus on the constructs involving dynamic behaviours and data:
parameters of messages and processes (in case of recursive calls for the latter),
conditions of guards, local definition and modification of data. We have already
discussed in the subsection dedicated to the data descriptions how to describe
parameters of gates and processes in BPEL. LOTOS guards correspond to BPEL
case tags of the switch construct. The BPEL assign tag, and more precisely the
copy tag matches the four next cases in LOTOS: (i) let Xi:Ti=Vi in B means
the initialization of variables Xi of types Ti with values Vi (∀i ∈ 1..n) in the
behaviour B, (ii) B1; exit(Yi) � accept Xi:Ti in B2 denotes the modification
of variables Xi (replaced by new values Yi), (iii) P(Xi) is an instantiation of a
process or a recursive call meaning assignments of values Xi to the parameters
of the process P , (iv) send(Xi) corresponds to an emission of data expressions
which have to be built and assigned to variable Xi before sending.

LOTOS and BPEL Processes. BPEL services and LOTOS processes cor-
respond to each other. An external view of such interacting WSs shows pro-
cesses/services running concurrently. Such a kind of global system in LOTOS
is described using a LOTOS main behaviour made up of instantiated processes
composed in parallel and synchronizing together. Let us observe that the main
LOTOS specification does not match with a BPEL process. The correspondence
is that each LOTOS instantiated process, therefore pertaining to the global sys-
tem mentioned previously, matches a BPEL WS. Accordingly, the architecture
of the specification is preserved.

In BPEL, variables, messages/operations/port types/partner links and its
main activity match respectively in LOTOS process parameters, action declara-
tions and its behaviour. Due to the possible correspondence between while loops
and recursive processes, an adequate use of the scope activity is needed to map
the local variables of such nested processes.

The Negotiation Case in BPEL. The negotiation issue focused on in this
paper has been implemented in BPEL and the resulting services work correctly.
In this experimentation, we used guidelines in the development stage way, but the
opposite direction could be tackled as well using them. Experimentations have
been carried out using Oracle BPEL Process Manager 2.04 that enables one to
design, deploy and manage BPEL processes, and BPEL Designer (an Eclipse
plug-in) which is a graphical tool to build BPEL Processes. For lack of space,
it is impossible to introduce pieces of BPEL code in the paper. However, all the
WSDL and BPEL files implemented for this problem are available on-line5.

6 Related Work

We split this survey of related works into two separate parts: (i) use of formal
methods for WSs, (ii) contribution wrt the negotiation issue. We first outline
4 http://www.collaxa.com/
5 http://www.dis.uniroma1.it/∼salaun/LOTOS4WS/BPEL

210 G. Salaün, A. Ferrara, and A. Chirichiello

some existing proposals arguing for the use of formal methods as an abstract
way to deal with WSs (especially description, orchestration, reasoning). At this
abstract level, lots of proposals originally tended to describe WSs using semi-
formal notations, especially workflows [15]. More recently some more formal
proposals grounded for most of them on transition system models (LTSs, Mealy
automata, Petri nets) have been suggested [11,18,10,2,14]. Regarding the rea-
soning issue, works have been dedicated to verifying WS description to ensure
some properties of systems [8,18,7,17]. Summarizing these works, they use model
checking to verify some properties of cooperating WSs described using XML-
based languages (DAML-S, WSFL, BPEL, WSCI). Accordingly, they abstract
their representation and ensure some properties using ad-hoc or existing tools.

In comparison to these existing works, the strenght of our alternative ap-
proach is to work out all these issues (description, composition, reasoning) at an
abstract level, based on the use of expressive (especially compared to the former
proposals) description techniques and adequate tools (respectively LOTOS and
CADP), while keeping a two-way connection with the executable layer (BPEL).

A lot of research works about negotiation have been proposed in different
research domains and aim at working out different issues. Main issues in negoti-
ation are to describe negotiating systems, to verify the existence of an agreement
(and possibly other properties) and to speed up its reaching. Most of the propos-
als belong to the multi-agent system area. Let us illustrate with former works
dedicated to describe and automate negotiations [23,22,6]. As an example, in
[22], the authors proposed to use logic-based languages for multi-agent negoti-
ation. Then, they can verify from a given history that an agreement has been
reached and for a given protocol that an agreement will be reached.

Other existing works advocate some description frameworks, see [4,21] as
examples, to represent all the concepts (profiles, policies, strategies, etc) used
in negotiations and to ensure trust negotiations. In [21], the authors advocated
a model-driven trust negotiation framework for WSs. Their model is based on
state machines extended with security abstractions. Their approach allows dy-
namic policy evolution as well. Another proposal related to WSs [5] suggested a
flexible meta-model based on contracts for e-negotiation services. From this ap-
proach, negotiation plans can be derived and implementations can be performed
in recent WS platform like .NET. [13] proposed some experiments on automated
negotiation systems using WSs. The authors implemented a RFQ-based simple
negotiation protocol using the BPEL executable language.

Compared to these existing works, we first propose a formal representation
of negotiation situations. The formality of our approach implies the ability to
reason on it to ensure correctness of interacting processes (either developing
concrete WSs or abstracting away from an executable one) particularly to prove
the existence of an agreement. We also claim that the use of WSs is adequate
to negotiating systems due to many of their characteristics: interoperability,
autonomy and automation, expressiveness of description, deployment on the
web, etc.

Negotiation Among Web Services Using LOTOS/CADP 211

7 Concluding Remarks

The recent advent of WSs raised many promising issues in the web computing
area. In this paper, we emphasized that the use of an expressive, formal, tool-
equipped PA is convenient to abstractly describe and reason on negotiating WSs.
It was reinforced in this paper through the double-mapping we introduced to
map abstract and executable layers. On a wider scale, our two-level (abstract and
concrete) approach is worthy because it can be used with any kind of interacting
WSs and not only for the negotiating ones on which we focused on herein.

When using PA for WSs, during the choice of the description language, an
adequate trade-off should be chosen between expressiveness of the calculus and
verification abilities of its support tool. For example, LOTOS is adequate to
represent negotiation aspects, but is therefore limited at the verification level due
to the state explosion problem ensuing the management of data expressions. All
the same, we stress that (i) we already tackled and verified realistic applications,
(ii) CADP is one of the most efficient tool dealing with automated reasoning on
input formats involving mixed descriptions (behaviours and complex data).

Our approach can easily be generalized in many ways. First, during the design
stage from PA to WSs, some negotiation patterns can be extracted, simplifying
the reusability of our process description. Hence, adjustments should be per-
formed to reuse these processes for other negotiation variants. As an example,
we have already experimented multiple issue negotiation (price, time delivery,
possible return, etc) implying exchanges of several values and invariants involv-
ing several parameters. Secondly, for reverse engineering purposes, guidelines to
abstract BPEL code are enough to tackle most of the negotiation situations.
Though, they may be complemented to deal with more complex variants.

A first perspective is to propose a methodology formally defining how to
use LOTOS/CADP in the context of WSs. A possible application would be the
development of certified WSs from scratch to executable BPEL code, with inter-
mediate steps of specification and verification using LOTOS/CADP. A related
perspective is to develop a tool automating the two-way mapping to obtain LO-
TOS or BPEL skeletons. This implementation should be performed from the
guidelines (only experimented manually so far) defined in this paper.

Acknowledgments. The authors thank Lucas Bordeaux and Marco Schaerf
for judicious comments and fruitful discussions we had on this work, as well
as Nicolas Descoubes, Hubert Garavel and Wendelin Serwe for their help on
doing experimentations with CADP. This work is partially supported by Project
ASTRO funded by the Italian Ministry for Research under the FIRB framework
(funds for basic research).

References

1. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Specification:
Business Process Execution Language for Web Services Version 1.1. 2003.

212 G. Salaün, A. Ferrara, and A. Chirichiello

2. D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. Au-
tomatic Composition of E-services That Export Their Behavior. In Proc. of IC-
SOC’03.

3. J. A. Bergstra, A. Ponse, and S. A. Smolka, editors. Handbook of Process Algebra.
Elsevier, 2001.

4. E. Bertino, E. Ferrari, and A. C. Squicciarini. Trust-chi: An XML Framework for
Trust Negotiations. In Proc. of CMS’03.

5. D. K. W. Chiu, S.-C. Cheung, and P. C. K. Hung. Developing e-Negotiation
Process Support by Web Service. In Proc. of ICWS’03.

6. S. S. Fatima, M. Wooldridge, and N. R. Jennings. An Agenda-based Framework
for Multi-issue Negotiation. Artificial Intelligence, 152(1):1–45, 2004.

7. H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based Verification of Web
Service Compositions. In Proc. of ASE’03, pages 152–163, Canada, 2003. IEEE
Computer Society Press.

8. X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPEL Web Services. In Proc.
of WWW’04.

9. H. Garavel and W. Serwe. State Space Reduction for Process Algebra Specifica-
tions. In Proc. of AMAST’04.

10. R. Hamadi and B. Benatallah. A Petri Net-based Model for Web Service Compo-
sition. In Proc. of ADC’03.

11. R. Hull, M. Benedikt, V. Christophides, and J. Su. E-Services: a Look Behind the
Curtain. In Proc. of PODS’03.

12. ISO. LOTOS: a Formal Description Technique based on the Temporal Order-
ing of Observational Behaviour. Technical Report 8807, International Standards
Organisation, 1989.

13. J. B. Kim, A. Segev, and M. G. Cho A. K. Patankar. Web Services and BPEL4WS
for Dynamic eBusiness Negotiation Processes. In Proc. of ICWS’03.

14. A. Lazovik, M. Aiello, and M. P. Papazoglou. Planning and Monitoring the Exe-
cution of Web Service Requests. In Proc. of ICSOC’03.

15. F. Leymann. Managing Business Processes via Workflow Technology. Tutorial at
VLDB’01, Italy, 2001.

16. A. R. Lomuscio, M. Wooldridge, and N. R. Jennings. A Classification Scheme for
Negotiation in Electronic Commerce. International Journal of Group Decision and
Negotiation, 12(1):31–56, 2003.

17. S. Nakajima. Model-checking Verification for Reliable Web Service. In Proc. of
OOWS’02, satellite event of OOPSLA’02.

18. S. Narayanan and S. McIlraith. Analysis and Simulation of Web Services. Com-
puter Networks, 42(5):675–693, 2003.

19. G. Salaün, L. Bordeaux, and M. Schaerf. Describing and Reasoning on Web Ser-
vices using Process Algebra. In Proc. of ICWS’04.

20. G. Salaün, A. Ferrara, and A. Chirichiello. Negotiation among Web Services using
LOTOS/CADP. Technical Report 13.04, DIS - Università di Roma ”La Sapienza”,
2004. Available on the G. Salaün’s webpage.

21. H. Skogsrud, B. Benetallah, and F. Casati. Trust-Serv: Model-Driven Lifecycle
Management of Trust Negotiation Policies for Web Services. In Proc. of WWW’04.

22. M. Wooldridge and S. Parsons. Languages for Negotiation. In Proc. of ECAI’00.
23. G. Zlotkin and J. S. Rosenschein. Mechanisms for Automated Negotiation in State

Oriented Domains. Journal of Artificial Intelligence Research, 5:163–238, 1996.

	Introduction
	What Does Negotiation Involve?
	LOTOS and CADP in a Nutshell
	Negotiation Using LOTOS/CADP
	Two-Way Mapping Between LOTOS and WSDL/BPEL
	Related Work
	Concluding Remarks

