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Abstract

Aim Prostate cancer represents the most common cancer alicting men. It may be asymptomatic at the early stage. In this 

paper, we propose a methodology aimed to detect the prostate cancer grade by computing non-invasive shape-based radiomic 

features directly from magnetic resonance images.

Materials and methods We use a freely available dataset composed by coronal magnetic resonance images belonging to 

112 patients. We represent magnetic resonance slices in terms of formal model, and we exploit model checking to check 

whether a set of properties (formulated with the support of pathologists and radiologists) is veriied on the formal model. 

Each property is related to a diferent cancer grade with the aim to cover all the cancer grade groups.

Results An average speciicity equal to 0.97 and an average sensitivity equal to 1 have been obtained with our methodology.

Conclusion The experimental analysis demonstrates the efectiveness of radiomics and formal veriication for Gleason grade 

group detection from magnetic resonance.

Keywords Formal methods · Model checking · Radiomics · Gleason grade group · Prostate

Introduction

Prostate cancer is commonly diagnosed by prostate biopsy 

or during trans-urethral resection for prostatic hyperplasia. 

The grade group describes the aggressiveness, and it is the 

grade that is the major determinant as to whether the patient 

undergoes deinitive treatment or active surveillance [5, 21].

When the cancer is found, the pathologist assigns to the 

cancer a grade, called Gleason Score or Gleason grade 

group.

To assign the cancer grade, the pathologist checks the 

prostate tissue samples to see how much the tumour tissue 

is like the normal prostate tissue and to ind the two main 

cell patterns [26]. The primary pattern describes the most 

common tissue pattern, and the secondary pattern describes 

the next most common pattern [9]. Each pattern is given a 

grade, with minimum grade related to the most like normal 

prostate tissue and the maximum one representing the most 

abnormal. The two grades are then added to obtain a Glea-

son grade groups.

In this way, a diagnosed prostate cancer can be marked 

with one of the following pathology-deined group: Gleason 

grade group 3 + 3 = 6 (GG1), Gleason grade group 3 + 4 

= 7 (GG2), Gleason grade group 4 + 3 = 7 (GG3), Gleason 

grade group 4 + 4 = 8 (GG4) and Gleason grade group 9-10 

(GG5).

In last years, the ield of medical image analysis has 

attracted interest by research community [4, 18], with an 

increased number of pattern recognition tools and datasets 

freely available for research purposes [6, 33].

By analysing the state-of-the-art literature, we speculated 

that it can be possible to analyse medical images to obtain, 

through appropriate mathematical methods and algorithms, 

quantitative information [25] that cannot be detected through 
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their simple visual observation by the specialist. This prac-

tice is called radiomics [2, 24].

In the state-of-the-art literature, there exist several 

research papers discussing the potential of radiomics to build 

predictive models for cancer detection, mainly exploiting 

artiicial intelligence [19, 20, 20, 25, 35]. The main draw-

back related to the application of artiicial intelligence in 

the medical context is the lack of explainability and reli-

ability [7, 12, 30]: as a matter of fact, the model knowledge 

is provided by well-known algorithms, that automatically 

are able to output the prediction, making radiologists uncon-

scious about the process that determined a certain decision. 

In contrast to artiicial intelligence, we propose the use of 

formal veriication techniques, where the domain experts 

(in this case the pathologists and radiologists) formulate a 

series of properties to be veriied, therefore encapsulating 

the own knowledge and experience within the system predic-

tive, making the decision of the system no longer unaware 

and based on an algorithm, but based on the knowledge of 

domain experts. Moreover, formal veriication does not 

require a great amount of data for the property generation, 

diferently from solutions based on artiicial intelligence [5]; 

this avoids also the introduction of bias in training set.

For these reasons, in this paper a method to detect the 

prostate cancer grade group exploiting formal methods [10, 

16] is presented. In particular, we exploit a set of radiomic 

features, obtained from magnetic resonance images (i.e. 

MRIs), and thus, by exploiting formal veriication tech-

niques, we label a prostate cancer MRI with the related 

Gleason grade group. This is resulting in a non-invasive 

approach from the patient’s point of view (i.e. to detect the 

cancer grade group the biopsy is not required).

Materials and method

In this section, we irst illustrate the materials used (dataset, 

patient population, imaging, radiomic features, statistical 

analysis), and then, we explain the proposed formal meth-

odology to detect the prostate cancer grade.

Materials

First of all, we use a dataset from the Cancer Imaging 

Archive,1 a large archive of tumour medical images available 

for research purpose. The dataset is available at the follow-

ing url: https ://wiki.cance rimag ingar chive .net/displ ay/Publi 

c/SPIE-AAPM-NCI+PROST ATEx+Chall enges .

The dataset contains the pathologist report with the Glea-

son grade group details.

The prostate MR imaging was performed at the Radboud 

University Medical Centre (Radboudumc) in the Prostate 

MR Reference Center under supervision of prof. Dr. Bar-

entsz, located in Nijmegen, The Netherlands. The dataset 

was collected for research in computer-aided diagnosis of 

prostate MR under supervision of Dr. Huisman, Radbou-

dumc. We considered T2-weighted (T2W) images on coro-

nal plane. T2-weighted images were acquired using a turbo 

spin echo sequence and had a resolution of around 0.5 mm 

in plane and a slice thickness of 3.6 mm. The segmentation 

was manually performed by exploiting the 3D Slicer soft-

ware,2 an open source software platform for medical image 

informatics, image processing and visualization. Moreover, 

for image visualization we take into account the LIFEx soft-

ware,3 a freeware software for medical images visualization.

To decide the patients to include in the study, the radiolo-

gist indicated areas of suspicion with a score per modality 

using a point marker. When an area was considered likely for 

cancer a biopsy was performed. In detail, the areas of sus-

picion related to each patient are the central gland (CG) and 

the peripheral zone (PZ) outlines marked by Drs. Nicolas 

Bloch (Boston University School of Medicine) and Mirabela 

Rusu (Case Western University) or Drs. Henkjan Huisman, 

Geert Litjens or Jurgen Futterer at RUNMC Netherlands. All 

biopsies were performed under MR guidance, i.e. in-bore 

MRI-guided biopsies and conirmation scans of the biopsy 

needle in situ were made to conirm accurate localization. 

Biopsy specimen was subsequently graded by a pathologist, 

and these results were used as ground truth.

The MRI was collected from diferent continents, for 

instance from the University of Chicago to the Harvard 

University. In total 15 institutions contributed to build the 

full dataset. Ethics committee/IRB was obtained and patient 

informed consent was obtained.

Below, we describe the radiomic features. To be precise, 

four radiomic features are considered to generate the formal 

model: we consider shape features, i.e. features independent 

from the grey level intensity distribution in the cancer region 

of interest (i.e. ROI) [34].

The details about the radiomic features are shown in 

Table 1.

To evaluate the method in prostate cancer Gleason grade 

group detection, we consider following metrics: speciicity, 

Sensitivity, Positive Predictive Value and Negative Predic-

tive Value.

The sensitivity of a test is the proportion of people who 

test positive among all those who actually have a certain 

Gleason grade group and it is deined as:

1 https ://wiki.cance rimag ingar chive .net/.

2 https ://www.slice r.org/.
3 https ://lifex soft.org/.
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where tp indicates the number of true positives and fn indi-

cates the number of false negatives

The speciicity of a test is the proportion of people who 

test negative among all those who actually do not have that 

grade group and it is deined as:

where tn indicates the number of true negatives.

The Positive Predictive Value (PPV) is the probability 

that following a positive test result, that individual will truly 

have that speciic Gleason grade group. It is deined as:

The Negative Predictive Value (NPV) is the probability that 

following a negative test result, that individual will truly 

not have that speciic Gleason grade group. It is deined as:

where fn indicates the number of false negatives.

The radiomic features are obtained using a Python script 

developed by authors invoking pyradiomics,4 a library for 

radiomic features computing from medical imaging.

Methods

Below we describe the method, discussing the formal meth-

odology to automatically infer the Gleason grade group. In 

particular, we discuss how we generate the formal model 

and its veriication through the properties generated with the 

knowledge of pathologists and radiologists.

Figure 1 shows the work-low of the proposed approach 

for detecting prostate cancer Gleason grade group.

Sensitivity =
tp

tp + fn

Specificity =
tn

tn + fp

PPV =
tp

tp + fp

NPV =
tn

tn + fn

In a nutshell, the proposed method takes as input an MRI 

and it generates a formal model from the MRI slices. Thus, 

this model is veriied with a set of properties (one property 

for each Gleason grade group) with the formal veriication 

tool. If the formal veriication tool output is true, the MRI 

is marked with the Gleason grade group indicated by the 

property. In the following, we depict the proposed approach 

in details.

Our analysis starts directly from MRIs. Once the patient 

MRI is obtained, it is possible to invoke the proposed 

method by gathering the MRI directly from the Picture 

Archiving and Communication System (PACS in Fig. 1). 

Each MRI is composed by several slices (Slices in Fig. 1), 

which are marked by the Radiologist to produce the Slices 

segmentation. In particular, ROI-segmented coronal slices 

are considered in this work. Once obtained the MRI slices 

and the relative segmentation, in the Radiomic Features 

Extraction step in Fig. 1, we compute the numeric values 

(in mm) for the RF1, RF2, RF3 and RF4 features from each 

slice belonging to the patient MRI.

The next step of the Formal Model Generation is the 

Discretization, invoked to discretize each numeric feature. 

We consider the method proposed by authors in [13] for the 

discretization. In a nutshell, we divide the features in three 

intervals: low, basal and up with the equal-width partition-

ing. The discretized features are converted into a formal 

model described in the Language Of Temporal Ordering 

Specification (LOTOS) process, a process calculus [22]. For 

further details, we suggest [3, 28].

To understand the way in which the formal model is gen-

erated, let us consider the example in Fig. 2.

The proposed method starts by analysing a set of seg-

mented slices and, from each slices, the shape-based radi-

omic features are computed. Thus, we discretize the numeric 

features into three intervals (i.e. low, basal and up). Discre-

tization is required for obtaining an appropriate solution. It 

transforms the initially continuous problem into a discrete 

problem. This is necessary due to the inite nature of the 

formal model we have to generate and to restrict the space 

of possible values that radiomic features can exhibit and also 

minimizing the impact of outliers. In particular, each line 

Table 1  The four shape radiomic features involved in the study: MinorAxisLength, MajorAxisLength, Maximum2DDiameterColumn and Maxi-

mum2DDiameterSlice

Feature Name Description

RF1 MinorAxisLength This feature yields the second-largest axis length of the ellipsoid

RF2 MajoraxisLength This feature considers the largest axis length of the ROI-enclosing ellipsoid and is calculated using the 

largest principal component

RF3 Maximum2DDiameterColumn It is deined as the largest pairwise Euclidean distance between tumour surface mesh vertices in the 

row-slice plane

RF4 Maximum2DDiameterSlice It is deined as the largest pairwise Euclidean distance between tumour surface mesh vertices in the 

row-column plane

4 https ://pyrad iomic s.readt hedoc s.io.
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Fig. 1  The work-low of the 

proposed approach: it is visible 

the model checker that consid-

ers as input the formal model 

and the prostate grade property
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represents the discretized values of the radiomic features for 

a single slice, which is formalized into LOTOS processes. 

We have used a simpliied version of the LOTOS syntax for 

a better readability.

In the following, a list of the used operators is reported:

• the “;” operator represents the sequentialization of 

actions. For example, a; b means that the event b must 

be performed after the event a.

• the “|[ ]|” operator represents the parallelism among 

events, i.e. the interleaving of the radiomic features. 

For example, a |[]| b means that either the event b and 

the event a must be performed, in any order (both the 

sequence a b and the sequence b a ) are considered.

In the irst line of the LOTOS process fragment depicted in 

Fig. 2 (i.e. the formal model), we observe that the RF1, RF2, 

RF3 and RF4 exhibit a low value, coherently with the dis-

cretized values previously obtained. These events are com-

bined using the “|[ ]|” operator, while the second MRI slice, 

belonging to the same patient and modelled by the LOTOS 

process P2 is composed using the “;” operator. P2 represents 

the radiomic features that exhibit the same low values.

In the third line, the P3 LOTOS process in Fig. 2 codi-

ies the radiomic features exhibit basal values, while the P4 

LOTOS process codiies the fourth line, where RF1, RF2 

and RF3 exhibit an up value, while RF4 shows a basal one. 

The LOTOS process codiies the ifth slice in a similar way.

The model has been generated to consider all points 

of the image, and it is analysed by a computer (not by a 

man) in order not to lose any details. Thus, the formal 

model is used to evaluate the properties formulated by 

pathologists and radiologists. In fact, with the support of 

pathologists and radiologists, for each prostate Gleason 

grade group, a property is formulated to detect the speciic 

grade group and, depending on the Gleason grade group to 

verify, the relative property is selected, as shown in Fig. 1. 

We highlight that the Gleason grade group properties were 

assessed by expert pathologists inding conirmation of the 

properties efectively relecting the grade group to detect 

in two diferent patients for each Gleason grade group.

Once the radiologist selected the property to check, the 

model checker is invoked: if the formal model satisies the 

property, the MRI is labelled with the Gleason grade group 

related to the checked property; otherwise, the MRI is not 

related to Gleason grade group checked. The veriication 

process is shown in detail in Fig. 3.

The model checker, coherently with the work-flow 

shown in Fig. 1, accepts two inputs: the formal model and 

the property. In Fig. 3, an example of property is depicted. 

The properties are expressed in 𝜇-calculus logic [32], an 

extension of the propositional modal logic adding the least 

ixed point operator and the greatest ixed point operator. 

Reader unfamiliar with mu-calculus can ind more infor-

mation in [32]. In detail, the property is aimed to verify 

whether there is at least a sequence of a low value for 

RF1, another low value for RF1 and three up values for 

RF1, RF2 and RF3. Clearly, between these values there 

may be other values: this example of property veriies 

whether this sequence is present in the formal model. For 

this it is crucial that the property efectively relects the 

Gleason grade group to detect. In practice, in the property 

the pathologists and radiologists formalize its knowledge. 

In the example in Fig. 3, the sequence in the property is 

Fig. 2  Formal model gen-

eration: from the magnetic 

resonance slices to the radiomic 

features for generating the 

formal model
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present in the formal model, for this reason the model 

checker outputs true.

The pathologists and radiologists formulated ive difer-

ent properties: the irst one aimed to detect the GG1, the

second one to detect the GG2, the third one to identify the 

GG3, the forth one related to the GG4 detection and the last

one aimed to detect the GG5. The properties are expressed 

in a temporal logic to capture the variation of the cancerous

area slices related to the same patient magnetic resonance.

For lack of space, we present the property describing the

GG5, shown in Table 2. The property describes the radiomic 

features in the GG5 prostate cancer: the irst slice is showing

a basal value for the radiomic feature RF1 and an up value 

for RF4 ( 𝜑 in Table 2). The second slice is showing up value

for the RF2 and RF4 features ( 𝜑
2
 in Table 2). The 𝜑

3
 , 𝜑

4
 , 𝜑

5
 

are related to up values for the RF3, RF4 and RF5 features.

With regard to the 𝜑
6
 , it checks whether the RF2, RF3 and 

RF4 exhibit an up value, while the last slice considered in

the property, 𝜑
7
 is showing up values for the RF2 and the 

RF4 features. As shown by the property of the grade group

5 prostate cancer, all the features involved show up values 

(except for a basal value initially shown by RF1 in 𝜑 ): this

is symptomatic that the cancer area is present and also really 

extended, and the continuous progression of the radiomic

features to up values is conirming this. Properties were 

formulated with the assistance of expert pathologists and

radiologists. In fact, pathologists and radiologists suggested, 

for instance, that for the GG5, the pattern above explained

can be related to GG5 prostate cancer. In particular, for the 

pathologists and radiologists, the repeated presence of the

RF2, RF3 and RF4 with an up value in several slices can 

suggest the GG5 grade.

The properties are checked against the patient models 

we have obtained from the radiomic feature set by exploit-

ing using the Construction and Analysis of Distributed 

Processes [15] (CADP), a widespread formal verification

environment providing several techniques for specifying 

and verifying finite-state concurrent systems. When the

CADP formal verification environment outputs true when 

verifying a logic property on a LOTOS model, it means

that the proposed method labelled the formal model as 

belonging to the grade group specified by the analysed

property. Otherwise, the formal verification environment 

outputs false, meaning that the model under analysis is

not belonging to the grade group described in the ana-

lysed formula. We recall that the properties were formu-

lated with the help of expert pathologists and radiolo-

gists. In fact, pathologists and radiologists formulated

Fig. 3  The veriication process: 

the pathologists and radiolo-

gists formulate the properties 

that represent the input (with 

the formal model) to the model 

checker

Table 2  Property formulated with the help of expert pathologists and radiologists for GG5 detection

𝜑 = 𝜇X. ⟨RF1_basal⟩ ⟨RF4_up⟩ 𝜑2 ∨ ⟨−⟩ X

𝜑2 = 𝜇X. ⟨RF2_up⟩ ⟨RF4_up⟩ 𝜑3 ∨ ⟨−⟩ X

𝜑3 = 𝜇X. ⟨RF1_up⟩ ⟨RF2_up⟩ ⟨RF4_up⟩ 𝜑4 ∨ ⟨−⟩ X

𝜑4 = 𝜇X. ⟨RF1_up⟩ ⟨RF2_up⟩ ⟨RF4_up⟩ 𝜑5 ∨ ⟨−⟩ X

𝜑5 = 𝜇X. ⟨RF1_up⟩ ⟨RF2_up⟩ ⟨RF4_up⟩ 𝜑6 ⟨−⟩ X

𝜑6 = 𝜇X. ⟨RF2_up⟩ ⟨RF3_up⟩ ⟨RF4_up⟩ 𝜑7 ∨ ⟨−⟩ X

𝜑7 = 𝜇X. ⟨RF2_up⟩ ⟨RF4_up⟩ 𝚝𝚝 ∨ ⟨−⟩ X
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the properties by looking at the discretized features for 

the several Gleason grade groups under analysis and they 

found, followed by their expertise, a common feature pat-

tern for each Gleason grade group.

This paper represents an extension of the work pro-

posed in [3]. We highlight below the novelties we have 

introduced in this work:

• we propose a method to detect the several prostate can-

cer grades starting from the magnetic resonance analy-

sis. The work in [3] considers only 4 different Gleason 

grade groups (i.e. 3+3, 3+4, 4+3 and 4+4) without 

considering the most aggressive Gleason grade group 

(9-10, the GG5) that we take in account in this paper;

• we evaluate a more extended dataset if compared 

with the one experimented in [3]. In fact, in [3] MRIs 

belonging to 60 patients were evaluated, while in this 

work an extended dataset of 112 patients is consid-

ered;

• in [3], we consider an algorithm to automatically infer 

the properties directly from a restricted set of models, 

while in this paper the properties are formulated by 

pathologists and radiologists, this is reflecting in bet-

ter performances, as evidenced by the experimental 

analysis. This is confirming the effectiveness of the 

proposed properties for Gleason grade group detection 

aimed to formalize the knowledge of pathologists and 

radiologists;

• we obtain a sensitivity ranging between 0.95 and 1 

and a specificity equal to 1 outperforming the per-

formances reached in [3]. In fact, a sensitivity rang-

ing from 0.75 to 1 and a specificity equal to 1 was 

obtained in [3].

We recall that the aim of the paper is to automatically 

detect the grade group of prostate cancer MRI. To do 

this, we generate a formal model from the patient MRI. 

Thus, a set of properties are veriied, where each prop-

erty is related to a diferent prostate cancer grade group. 

By invoking a formal veriication environment, we check 

whether the properties are veriied on the model: if a prop-

erty is satisied on a certain model, this model is labelled 

with the grade group indicated by the property.

Results

Below we present the experiment we performed to dem-

onstrate the efectiveness of the proposed approach for 

prostate grade group detection

In Table 3, we show the number of MRI for each grade 

groups in the evaluated dataset and the number of MRI 

labelled as true by the formal veriication environment.

Each row in Table 3 is related to the MRI formal model 

resulting true for the properties deined by pathologists 

and radiologists for each grade group. The Total MRIs 

column shown in Table 3 gives the details about MRIs 

involved in the experiment: a total of 112 MRIs distributed 

in 36 MRIs marked by pathologists and radiologists with 

GG1, 41 MRIs marked by pathologists and radiologists 

with GG2, 20 MRIs marked by pathologists and radiolo-

gists with GG3, 8 MRIs marked by pathologists and radi-

ologists with GG4 and 7 MRIs marked by pathologists and 

radiologists with GG5. In particular, the GG1 property 

correctly labelled 35 MRI on 36 belonging to the GG1, the 

GG2 property corrected labelled 39 MRI on 41, the GG3 

property correctly detected 19 MRI on 20, the GG4 prop-

erty correctly labelled all the 8 MRIs marked by patholo-

gists and radiologists with the GG4 disease. Finally, the 

GG5 property is able to correctly detect all the 7 MRIs 

with the GG5 disease belonging to the analysed dataset.

To evaluate the performance of the proposed approach 

following metrics we consider: Speciicity, Sensitivity, 

Positive Predictive Value and Negative Predictive Value.

Table 4 shows the performance results.

Table 3  Confusion matrix

In bold the patients correctly detected in the right grade group, in italic the misclassiications

Total MRIs GG1 GG2 GG3 GG4 GG5

Grade Group 1 36 35 0 1 0 0

Grade Group 2 41 1 39 1 0 0

Grade Group 3 20 0 0 19 1 0

Grade Group 4 8 0 0 0 8 0

Grade Group 5 7 0 0 0 0 7

Table 4  Performances: sensitivity ranging between 0.95 and 1 is 

obtained, while the speciicity is equal for the analysed grade groups

Sensitivity Speciicity PPV NPV

Grade Group 1 0.97 1 1 0.98

Grade Group 2 0.95 1 1 0.97

Grade Group 3 0.95 1 1 0.98

Grade Group 4 1 1 1 1

Grade Group 5 1 1 1 1
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As shown by Table 4, the proposed method obtains a sen-

sitivity ranging between 0.95 (for the GG1 and GG3 detec-

tion) and 1 (for the GG4 and GG5 detection). With regard 

to the speciicity a value equal to 1 is reached for all the 

grade groups.

Discussion

In this section, we discuss and explain the choices we made 

in the materials and methods. We also examine the limita-

tions of our method, and inally, we compare our results 

to those available from the literature to highlight our 

advancements.

In analysing MRIs, three planes can be considered: sag-

ittal, coronal and axial. In designing our methodology, we 

have investigated the plan that led to better results. In the 

current literature, several papers have proved that coronal 

plane is the best choice, for prostate but also for other organs. 

In particular, for prostate lesion, in [31], the authors say that 

“Interestingly, models based on features extracted from T2 

coronal sequence obtained much better overall performance 

in comparison to sagittal and transaxial sequences.”

Moreover, for internal auditory canal pathology, in [1] 

the authors say that “Coronal T2WI better demonstrates the 

hypointense lesion”. And still in [23], the authors write “In 

both oncologic and rheumatologic applications, the coronal 

plane is often preferred because it enables extensive cover-

age and straightforward investigation of the skeleton.”

As stated in the previous section, our methodology pro-

vides very good results, even if it sufers of some weak-

nesses. The main limitations of our methodology are related 

to the following issues.

• Manual deinition of the formulae. The logic rule-set 

characterizing the prostate cancer grade needs to be 

designed and deined. Writing the correct rules can be a 

rather complex task. The positive side, however, is that 

once the formulae have been deined, they can be used 

without any modiication and the methodology becomes 

completely automatic, and it does not require any other 

input from the user. Nevertheless, to help the designer 

to write simple temporal properties, it is possible to use 

the user-friendly interface (UFI) developed by one of the 

authors in [17]. UFI has the aim of simplifying the writ-

ing of the logic properties.

• Time performances. Our methodology has been imple-

mented in a research prototype tool whose main aim is 

to demonstrate the efectiveness in prostate cancer grade 

identiication; thus, the time performances are not the 

core. Although the time to obtain the results are still high, 

the positive counterpart is the efectiveness of the results. 

The problem we are dealing with is of vital importance; 

thus, it is better to wait even a little longer times, but 

obtain an average sensitivity equal to 1.

Overall, we think that these limitations do not severely 

restrict the applicability of our method. Our method, as the 

experimentation demonstrated, should be considered as a 

good check to get a reasonable trust in the correctness of 

detecting prostate cancer grade. Moreover, our method has 

a great advantage over machine learning techniques because 

it does not need training cohorts. The training phase is all 

transferred into the experience of the pathologists and radi-

ologists that helps in the formulation of the temporal formu-

lae. Therefore, our data set constitutes the validation cohort.

We now review the current state-of-the-art focused on 

prostate cancer detection, highlighting our advancements.

Authors in [20] design an approach for the identiication 

of prostate cancer through Bayesian networks, while authors 

in [11] exploit ive features to demonstrate that the median of 

texture features is unable to discriminate between the Glea-

son grade groups.

Researchers in [8] train machine learning classiiers using 

a set of radiomic features to evaluate the classiication per-

formance of the built models.

Researchers in [35] achieve an accuracy equal to 0.85 

in prostate cancer detection considering machine learning.

In reference [14], authors exploit a set of texture features 

to build Bayesian classiiers. They reach an accuracy equal 

to 88%.

Authors in [19] design a deep learning network to detect 

low-grade and high-grade tumours, by reaching an accuracy 

of 70%.

In [29], the possibility to identify prostate cancer exploit-

ing machine learning is investigated. Authors obtain an 

accuracy of 83%.

Authors in [5] considers real-time veriication for prostate 

cancer Gleason grade group detection through the UPPAAL 

formal veriication environment [27]. Diferently from the 

proposed work, in reference [5] the most aggressive Gleason 

grade (i.e. GG5) is not considered.

This discussion conirms the novelties of the proposed 

contribution formal methods based, overcoming the perfor-

mances obtained by the research methods currently proposed 

in the literature. Furthermore, the cited works generally do 

not consider the diferent grade groups.

Conclusions

An approach model checking-based to detect the can-

cer grade group is proposed in this paper. We model the 

patient MRIs through a LOTOS model, and we evaluate the 

obtained models through the CADP formal veriication envi-

ronment. A set of properties, related to each grade group, is AQ4
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formulated with the help of pathologists and radiologists. 

As future work, we plan to model patients afected by other 

kind of cancers. Furthermore, we will investigate whether 

the proposed method can be exploited in the precision medi-

cine context, a promising research ield allowing doctors to 

select treatments that are most likely to help patients based 

on a genetic understanding of their disease.
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