
Architectural Unit Testing

Giuseppe Scollo and Silvia Zecchini1 ,2

Department of Computer Science
University of Verona

Verona, Italy

Abstract

A formal testing methodology is outlined in this paper, that proves applicable to validation of
architectural units in object-oriented models, and its use is illustrated in the context of the design of
a robot teleoperation architecture. Automated generation of test cases to validate the functionality
of the robot trajectory generation unit showcases the key features of this methodology. A disciplined
use of UML state diagrams, to model the unit’s dynamics consistently with its static properties
as modeled by class diagrams, enables one to provide such models with Input/Output Labelled
Transition Systems (IOLTS) semantics, whence a rich machinery of testing theories and tools based
on those theories become readily available. Our case study tells that, besides black-box testing
of final implementation units, white-box analysis of architectural units may greatly benefit from
the flexibility of parameterized I/O-conformance relations. Test purposes turn out to be a useful
methodological link between functional requirements, which they are drawn from, and conformance
relations, which they help one to instantiate, thereby delimiting test selection to purposeful tests.
Contingent aspects of our methodology include: a mechanical translation of state diagrams in
Basic LOTOS, a non-mechanical, use-case driven synthesis of test purposes, expressed in the same
language, and the use of the TGV tool for automated test case generation. Other choices in these
respects are well possible, without affecting the characteristic traits of the proposed methodology,
that are rather to be found in: 1) the combination of object-oriented architectural modeling with
IOLTS semantics; 2) the aim at maximizing the potential for test generation from UML models, in
a broad view of testing which applies throughout the development process; 3) the specific proposal
to consider internal actions as testable actions, in view of a better coordination between testing
(discovery of faults) and debugging (discovery of internal sources of faults).

Keywords: formal testing methods, white-box testing, test purpose, test selection, automated
test case generation.

1 Email: giuseppe.scollo@univr.it
2 Email: silvia.zecchini@univr.it

Electronic Notes in Theoretical Computer Science 111 (2005) 27–52

1571-0661/$ – see front matter © 2004 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.12.006

mailto:giuseppe.scollo@univr.it
mailto:silvia.zecchini@univr.it
http://www.elsevier.com/locate/entcs

1 Introduction

The analysis, design and construction of a complex system can be made con-
ceptually more tractable if one describes the software architecture by a formal
specification [21]. A specification of such type enables engineers and designers
to check which components’ functionalities, described in the system require-
ments, are satisfied and to verify the intended interactions of those compo-
nents. The formal specification of a software architecture provides a solid
foundation for developing architecture-based testing techniques [22].

The testing of architectural abstractions allows one to detect defects in
the initial phases of the software lifecycle, rather than after implementation
or during system integration, as is common practice, and thus to prevent their
propagation through the subsequent phases.

In very complex software systems, the amount of information in the sys-
tem implementation is, typically, more than a single person could understand.
A common way to deal with these systems is by using a model of the sys-
tem. The availability of a model derives, obviously, from the application to
realize. Clearly, in a model we must include all the relevant information for
our purpose, but we must pay attention to exclude the information that is
not necessary. Indeed, a model with too much information may be difficult to
comprehend. The name “model-based testing” is a general term used to refer
to an approach that bases testing activities, such as test case generation and
evaluation, on models of the application under test [6,1,4].

Object-oriented models have found in the Unified Modeling Language
(UML) [20] a standard notation, supported by a wide variety of model de-
velopment tools. This enables one to model design concerns, requirements as
well as decisions, at different abstraction levels, or perspectives [3], ranging
from the conceptual modeling perspective through a more prescriptive spec-
ification perspective, down to concrete implementation perspective. Clearly,
all of these prove useful, albeit in different phases of the software develop-
ment process, but we argue that there’s even room in between. Of particular
interest to this paper is an architectural perspective, which is more prescrip-
tive than conceptual modeling in that it fixes design decisions of architectural
relevance such as naming of components (packages, classes) and connectors
(associations, operations, inheritance relations), as well as ordering of inter-
actions between objects, yet not so complete in its prescriptive character as a
specification perspective would be.

In the next section we characterize with some more precision the level of
formal detail which is adopted in the architectural perspective taken in the
subject case study. For the time being we just point out that several types of

G. Scollo, S. Zecchini / Electronic Notes in Theoretical Computer Science 111 (2005) 27–5228

UML diagrams prove useful to express architectural requirements of various
kind, e.g. package diagrams to partition an architecture into separate layers,
class diagrams to represent static structure requirements, interaction and/or
state diagrams to highlight dynamic properties of the architecture envisaged
and of components or connectors thereof, etc.

One may wonder what sort of relevance or meaning should be ascribed to
testing in an architectural modeling perspective. Since this applies at an early
design stage, there’s no such a thing as an “implementation under test” to
talk about, unless the architectural model would be usable for some kind of
prototype generation—a more frequent situation with constructive specifica-
tion models though. Now, traditional views of testing, such as the so-called
V-model [23], assign different testing scopes (system, integration, unit) to dif-
ferent phases of software development, and in particular defer unit testing to
the coding phase. On the contrary, we believe that all testing scopes are of
relevance to each phase, but under different testing perspectives. Architectural
testing thus is testing of architectural requirements; this may be understood
either as analysis and verification of architectural models, e.g. to test whether
they comply with given user requirements, or as an early stage in the design
of testers which are to be employed at later development phases, viz. their
modeling in an architectural perspective.

Architectural unit testing is thus, in the first sense, testing of architectural
units against functional requirements, while in the second sense it means ar-
chitectural modeling of unit testing code. This activity need not wait for the
coding phase to start, insofar as theory and tools are available to assist it
on the basis of early available architectural models. Furthermore, a clever
combination of architectural unit testing in both senses provides one with a
kind of validation of functional requirements, in that in the first sense it maps
them to architectural unit models, which are just early abstractions of unit
specifications, and then in the second sense it enables designers to see whether
those models give rise to sensible unit testing schemes for those requirements,
whose testability is thereby assessed. In both cases, architectural unit testing
is viewed as relative to given functional requirements here; this will be aided
by translating each requirement into a suitable test purpose for a given ar-
chitectural unit, that will drive test selection and test case generation for the
given requirement and architectural unit.

UML models most relevant to architectural unit testing are: class dia-
grams, for static requirements, such as the input alphabet of each unit (we
take operation names as atomic constituents of an object’s input alphabet, as
it will be explained in the next section), and state diagrams for dynamic re-
quirements, i.e. those which apply to the object’s behaviour and constrain its

G. Scollo, S. Zecchini / Electronic Notes in Theoretical Computer Science 111 (2005) 27–52 29

interaction capabilities with its environment. A disciplined use of UML state
diagrams, to model the unit’s dynamics consistently with its required static
properties, will be the starting point of our methodology for architectural unit
testing.

2 Test methodology

The architectural perspective adopted in the subject case study takes the form
of a few style prescriptions with respect to the form and level of detail put in
UML models.

2.1 Architectural class diagrams

Static structure is conveyed by class diagrams, where each class element ac-
tually is a partial description of a class interface; more precisely, it consists of
a class name and a list of operation names with no parameters. Relations be-
tween elements are the standard ones as in UML class diagrams. A refinement
of an architectural class diagram to turn it into the specification perspective
would have to complete the interface signatures, that is to say, to add any
other required operation not included in the architectural perspective, and
to define parameters and return types for all operations. Moreover, further
relations as well as attributes may be added by specification refinements.

2.2 Architectural state diagrams

Dynamic requirements on architectural units are modelled by UML state di-
agrams, under a few assumptions and style prescriptions. We assume each
state diagram refers to the behaviour of a generic instance of the architectural
unit, which is a class belonging to (only) one architectural class diagram. The
I/O alphabet of such an object is defined by:
inputs: the operation names defined on the instance by its class, including
inherited operation names;
outputs: the operation names (defined in any class element of any class di-
agram of the architectural model) which occur as actions in transition labels
of the state diagram.

Simple states have parsimonious, minimal descriptions in the diagrams of
present concern, that is, just an optional name, obviously absent for pseu-
dostates; only initial and final pseudostates are admitted here. Richer de-
scriptions are only available for composite, nonconcurrent states, in the form
of a state diagram over the substates of the (named) composite state; named
substates may be simple as well as composite themselves, recursively.

G. Scollo, S. Zecchini / Electronic Notes in Theoretical Computer Science 111 (2005) 27–5230

We recall that the syntax of transition labels of UML state diagrams con-
sists of a triple event guard / action, where each of the three components may
be absent 3 . Our style prescriptions so far amount to only use input operation
names as events, whereas actions are output operation names. Furthermore,
a limited form of guard is admitted, written [bCond], where bCond is just a literal
for a boolean condition (thus a possibly negated name).

Other prescriptions for architectural state diagrams are defined as follows,
only motivated by the wish to translate them into Basic LOTOS, which fea-
tures a fairly limited expressiveness, and to do so in a straightforward manner:

• the state diagram has an initial (pseudo)state;

• every transition label consists of at most one of the three components al-
lowed by UML syntax, viz. event, guard, action, which respectively corre-
spond to input, internal action and output;

• anonymous states are made use of as intermediate states when conventional
UML transitions with multiple-component labels are splitted into sequences
of single-component labelled transitions, in order to satisfy the previous
prescription;

• there are no cycles in the state diagram that only cross anonymous states;

• a limited form of guard conditions is adopted, in that such a condition is
just a literal for a boolean condition, as just explained;

• the initial transition edge (viz. that from initial state to default state) has
empty label (no action thus), both at top-level and within any composite
state, at any nesting depth;

• incoming edges to the final state have empty label, both at top-level and
within any composite state, at any nesting depth.

The main motivation for the following style constraints comes from good
design practices. For example, transitions should be preserved by abstraction
of a composite state to a simple state as well as by refinement of the latter to
the former. This motivates the following restriction:

all edges that enter or leave a composite state must have their ending at
the composite state contour, rather than at some inner state.

The following simple example, although deprived of explanations, should
look familiar to most readers. The example aims at illustrating the method-
ological significance of the aforementioned restriction, as well as the use of the
previously stated prescriptions—those which were rather motivated by ease of
translation into Basic LOTOS.

3 The slash is only present if the action component is present.

G. Scollo, S. Zecchini / Electronic Notes in Theoretical Computer Science 111 (2005) 27–52 31

Idle Check

[not satisfiableRequest]

UpdateBalance

[satisfiableRequest]/cashWithdraw

cashRequest

Fig. 1. A cash dispenser service

A basic state diagram of a cash dispenser service is depicted in Figure 1.
The state diagram in Figure 2 refines it in two respects:

(i) a more detailed description of state Check: state refinement takes place
in the cleanest manner, in that by simply ignoring the composite state
structure one gets back the abstract state, with no need to redirect edges.

(ii) a more detailed account of the internal processing that follows a suc-
cessful completion of the Check: the action refinement illustrated in this
case enables one to identify and reason about potential sources of mis-
behaviour of the service, e.g. if balance update and cash withdrawal are
not implemented as an atomic action.

Fig. 2. A refined cash dispenser state diagram

For the transitions specified by edges that enter or leave a composite state,
the aforementioned restriction implies that 4

4 Consistently with the UML 1.5 standard conventions w.r.t. transitions from/to the initial
and final pseudostates of composite states, whereby 1) the transition from the initial state
of a composite state must be unlabelled and represents any transition to the enclosing
state (this initial transition may have an action, though), and 2) a transition to a final
state represents the completion of activity in the enclosing state, which is exited thus—the
unlabelled outgoing transition from the composite state contour represents the transition
from its inner final state. Also recall that final states have no outgoing edges and initial

G. Scollo, S. Zecchini / Electronic Notes in Theoretical Computer Science 111 (2005) 27–5232

(i) incoming transitions always lead to the initial state of the composite
state,

(ii) unlabelled outgoing transitions always come from the final state of the
composite state,

(iii) every labelled outgoing transition is to be allowed from all of the inner
states of the composite state, excluding the initial and final (pseudo)states.

Finally, we assume there are no incoming edges to a state if, and only if,
this is an initial state, be it the top-level initial state or the initial state of a
composite state.

2.3 Semantics of architectural state diagrams

UML state diagrams under the aforementioned style restrictions have a straight-
forward interpretation as I/O Labelled Transition Systems (IOLTS), where the
key fact consists in seriously taking the classic OO view of message exchanges
between objects as operation invocations. A distinct benefit of this view is
that it helps one to retain traceability of requirements throughout the design
process, insofar as high-level interactions, which are basic building blocks of
requirement specification, can be traced through the operation invocations
which make up them in design and test specification. On the basis of this cor-
respondence, the tracing of functional requirements onto corresponding test
cases in the test suite should prove easier to maintain.

The following, standard definition will then take a distinct pragmatic
flavour, once the use of (a set of) internal actions in this context will be
made clear.

Definition 2.1 [IOLTS]
An IOLTS (Input-Output Labelled Transition System) is an LTS
M = (QM , AM ,→M , qM

init) where QM is the set of states, qM
init is the initial state,

→M⊆ QM × AM × QM is the transition relation and AM = AM
I ∪ AM

O ∪ IM ,
where AM

I and AM
O are respectively the input and output alphabet, while IM

are the internal or unobservable actions, all three alphabets being pairwise
disjoint.

Unobservable actions evidently occur in UML state diagrams whenever all
three components of a transition label are absent. Should this be the only case
for internal actions, then a singleton for the internal action alphabet IM would
do the job, as it happens in traditional Labelled Transition Systems (LTS) such
as those employed in process algebras like CCS [19] or CSP [12]. However,

states no incoming edges, according to UML 1.5.

G. Scollo, S. Zecchini / Electronic Notes in Theoretical Computer Science 111 (2005) 27–52 33

when message input to an object is viewed as an invocation of an operation on
that object, and output conversely, then I/O interaction is no longer tied to
value passing, but to a server/client relationship—the invoked operation being
a provided service. Now, what if an object invokes an operation of its own?
This phenomenon, often termed self-delegation in OO terminology, whereby
server and client coincide, obviously corresponds to internal action, too.

Furthermore, suppose one would consider a variant of the IOLTS definition
deprived of internal actions, but where the input and output alphabets would
not be required to be disjoint (thus allowing for self-delegation, which can be
statically enforced by declaring private visibility of operations). This variant
is immediately recasted into the standard IOLTS definition by removing the
intersection of the input and output alphabets from these and putting it into
the set of internal actions. This corroborates the OO view of treating both
I/O and internal actions as operation invocations, a view that has a straight-
forward interpretation in the IOLTS model of concurrency. Our architectural
style prescriptions thus require that names of boolean conditions occurring in
guards of transition labels of an object’s state diagram be declared as (private)
operations of that object’s class, in some class diagram.

Now, the question arises whether the set of those internal actions which
correspond to self-delegation coincides with the whole set of internal actions.
A negative answer is immediate from the fact that unlabelled edges are allowed
in architectural state diagrams. We then let IM include a single “absolutely
unobservable” internal action, which corresponds to the empty label in state
diagrams. The other internal actions thus get a “limited observability” status
in our methodology, in that they are 1) unobservable by any other object in
the architectural model (they are only used for self-delegation), yet 2) observ-
able by testers—which seems meaningful in the context of white-box testing,
e.g. for debugging purposes. These actions will be referred to as the testable
internal actions.

Finally, the semantics of output actions deserves attention; they model
operation invoications on other server objects, but we deliberately disregard
consideration of including the server object reference into the action itself.
This is motivated by the inherently local character of architectural unit test-
ing, whereas collaboration between objects is of concern to integration testing
proper. As a preliminary hint to questions for further research, concurrent
state diagrams, interaction diagrams and activity diagrams seem to be the
appropriate models where collaboration between objects is to be specified,
thus providing the appropriate basis for integration testing suites.

G. Scollo, S. Zecchini / Electronic Notes in Theoretical Computer Science 111 (2005) 27–5234

2.4 Test methodology implementation

Once the syntax and semantics of architectural unit modeling are fixed as
outlined above, it becomes possible to look for tool support to architectural
unit testing in the rich machinery that has flourished as offspring of IOLTS
theories during recent years [26,8,15,7,27,11,13]. Now, our methodology aims
at test case generation for specific test purposes, associated to user require-
ments, where the generated test case is viewed as an architectural model of
the testing code for that purpose. This aim follows from a view of test selec-
tion as not only being the practically viable alternative to exhaustive testing,
but also proving beneficial to structuring tests according to user requirements,
thus obeying to the basic principle of separation of concerns.

The view of the generated test case as an architectural abstraction of test-
ing code also entails that it need not be restricted to black-box testing. Archi-
tectural abstraction does already intrude into the system internals, insofar as
it is aimed at driving the organization and construction of internal structure.
White-box testing code checks those internals too, insofar as it aims not only
at detection of failures to meet externally observable requirements but also
at discovering the internal sources of those failures. Generation of test cases
where internal actions could be included in the tester’s observation capability
proves thus desirable in the context of our testing methodology.

Contingent aspects of our methodology include: a mechanical translation
of architectural state diagrams in Basic LOTOS [2], a non-mechanical, use-
case driven synthesis of test purposes, expressed in the same language, and
the use of the TGV (Test Generation using Verification techniques) tool [8] for
automated test case generation. Other choices in these respects are well pos-
sible, without affecting the characteristic trait of the proposed methodology,
that is rather to be found in the combination of object-oriented architectural
modeling with IOLTS semantics.

The rest of this section recalls the relevant Basic LOTOS concepts and
then gives an outline of the three steps of the aforementioned implementation
of our test methodology, that has been experimented in the subject case study.

2.5 State diagrams in Basic LOTOS

LOTOS (Language of Temporal Ordering Specifications) is an ISO standard
language [14] for the specification of concurrent, distributed and non-determin-
istic systems. A tutorial introduction to LOTOS is available in [2]. Roughly,
LOTOS consists of two parts: Basic LOTOS, for specifying interactions and
flow of control, and ACT ONE, for the algebraic specification of abstract data
types. The structural operational semantics of a LOTOS specification is given

G. Scollo, S. Zecchini / Electronic Notes in Theoretical Computer Science 111 (2005) 27–52 35

by a LTS, and is defined by a set of inference rules. In general, a LOTOS spec-
ification describes a system using a process hierarchy. A process is an entity
that may execute internal, unobservable actions, and may interact with other
processes through its gates, or interaction points. Complex interactions be-
tween processes are built up of elementary units of synchronization which are
called events, or (atomic) interactions, or simply actions. A system consists
of a set of interacting processes. The environment of a system may also be
seen as an observer process, which could be a human, that is assumed to be
always ready to observe any observable action at the system interface. Plenty
of examples of analysis and verification of properties of LOTOS specifications
can be found in the literature, such as [18,24,25], to mention but a few.

To verify the conformance of an architectural unit to required functional-
ities, its state diagram is translated to Basic LOTOS, which fact proves me-
chanically feasible when the aforementioned style restrictions on UML state
diagrams are obeyed. A detailed outline of this translation is presented in the
next subsection. The Basic LOTOS “disabling” operator [> proves very useful
in that it allows an almost direct translation of labelled outgoing transitions
from composite states in UML state diagrams.

Practically, verification and test case generation are based on a possibly
partial exploration of the LTS that describes the behaviour of the system un-
der test. IOLTS semantics is somewhat different from LTS semantics because
of the partitioning of the action alphabet into I/O and internal actions. This
is circumvented, in our methodology as well as in IOLTS-based test gener-
ation tools, by declaring the action partitioning outside the (Basic) LOTOS
specification.

2.6 Translation UML → Basic LOTOS

In this section a mechanical translation of UML state diagrams in Basic LO-
TOS is worked out in detail, under the style prescriptions defined in section
2.2. Before presenting the recursive definition of the translation rules, it’s

G. Scollo, S. Zecchini / Electronic Notes in Theoretical Computer Science 111 (2005) 27–5236

useful to introduce some notation which proves convenient to this purpose.

Notation:

ε : the empty label (in state diagrams);

SD : the set of states in diagram D, partitioned into:

ND : the set of named states in D (we let them coincide with their names),

UD : the set of anonymous states in D;

CD : the set of composite states in diagram D,with CD ⊆ ND ;

initD : the initial state in diagram D;

dsD : the default state in diagram D (target state of unique outgoing edge
from initD);

Ds : the state diagram inside the region of composite state s ∈ CD;

LD : the set of edge labels in diagram D;

s
a→D: if a is the (possibly empty) label of some outgoing edge from

state s in D;

sucD : SD × LD
.→ SD : the partial map such that sucD(s, a) ↓ iff s

a→D,

in which case it’s the target state of the a-labeled edge outgoing from
state s ;

OutD(s) = {a | s
a→D}, partitioned into:

NOutD(s) = {a | s
a→D sucD(s, a) ∈ ND},

UOutD(s) = {a | s
a→D, sucD(s, a) ∈ UD} ;

∑
a∈L

a; Ba =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L = ∅ : stop

L = {a} : a; Ba

L = {a} ∪ L′ : a; Ba []
∑
a′∈L′

a′; Ba′ (a /∈ L′)

(well defined up to associativity and

commutativity of [])

where the last definition is standard notation for Basic LOTOS behaviour
expressions in normal form, viz. only using stop, action prefix and choice; L
is a finite set of nonempty labels here, possibly extended with i, the LOTOS
symbol for the absolutely unobservable internal action. Owing to LOTOS

G. Scollo, S. Zecchini / Electronic Notes in Theoretical Computer Science 111 (2005) 27–52 37

concrete syntax, a bijective relabeling l : LD → (LD\{ε})∪{i} is defined, with
subscript argument, whereby lε = i, la = a if a �= ε.

For each named state in the diagram a corresponding LOTOS process
is defined, with the name of that state. The diagram D itself is translated
to a specification having LD\{ε} as gate set and functionality FD defined
to be exit if D has a top-level final state, noexit otherwise; the same gate
set and functionality are ascribed to every process definition that is defined
for a top-level named state, viz. a named state that is not a substate of a
composite state. Named substates of composite states take the gate set and
functionality defined as above, but for the diagram Ds that lies inside the
region of their closest containing composite state s, thus LDs\{ε} as gate set,
and functionality FDs = exit iff a final state is a direct substate of s. The map
GD : ND → 2LD\{ε} sends every named state s to the gate set ascribed to the
process definition for s.

For a given state diagram D, we now define a map BD sending each state
s ∈ SD to a Basic LOTOS behaviour expression over the appropriate set of
gates. The map BD will provide:

(i) the Basic LOTOS specification with its top-level behaviour expression
BD(initD), and

(ii) the process definition of each named state s ∈ ND with its defining be-
haviour expression BD(s),

thereby completing the definition of the translation of architectural state di-
agrams in Basic LOTOS. Map BD is recursively defined as follows.

The BD-image of any (anonymous) final state (be it the top-level final state
or the final state of any composite state) is the LOTOS exit process.

The BD-image of any (anonymous) initial state (be it the top-level initial
state or the initial state of any composite state) depends on whether the
subsequent default state is named:

BD(initD) = BD(dsD) if dsD ∈ UD

BD(initD) = dsD[GD(dsD)] if dsD ∈ ND

For any other state s ∈ SD, if s is simple (i.e. not composite, see below for
this case), then

BD(s) =
∑

a∈NOutD(s)

la; sucD(s, a)[GD(sucD(s, a))] []
∑

a∈UOutD(s)

la;BD(sucD(s, a))

G. Scollo, S. Zecchini / Electronic Notes in Theoretical Computer Science 111 (2005) 27–5238

The BD-image of a composite state is built by means of the sequential
composition and disabling operators, in addition to the previous constructs.
The disabling operator is employed to take care of the labelled outgoing tran-
sitions from the composite state, thus rendering the fact that such transitions
may occur from any of the inner (non pseudo)states of the composite state.
The sequential composition operator is employed to specify behaviour after
termination of the composite state process, whenever this has exit functional-
ity. The BD-image of s ∈ CD is an instance of one of the following behaviour
expression schemes, depending on which case applies, with Bi ranging over
behaviour expressions (i = 1, 2, 3):

(B1 [> B2) >> B3 if FDs = exit and OutD(s)\{ε} �= ∅
B1 [> B2 if FDs = noexit and OutD(s)\{ε} �= ∅

B1 >> B3 if FDs = exit and OutD(s) = {ε}
B1 if FDs = noexit and OutD(s) = ∅

where the constituent behaviour expressions are recursively defined as follows:

B1 = BD(initDs)

B2 =
X

a∈NOutD(s)\{ε}
a; sucD(s, a)[GD(sucD(s, a))] []

X

a∈UOutD(s)\{ε}
a;BD(sucD(s, a))

B3 = BD(sucD(s, ε))

2.7 Test purposes

A test purpose is an abstract description of a subset of a specification, that
allows one to choose behaviours to test, and consequently, helps one to reduce
the extent of specification exploration. This is interpreted as an IOLTS where
two disjoint subsets of final states are distinguished. Final states of the test
purpose graph are: either accepting states (this means that the purpose is
reached) or refusing states (this means that parts of the specification are
rejected). A test purpose can thus be formalized by an IOLTS with selected
marked states [8,16], as follows.

Definition 2.2 [Test Purpose]
A test purpose is an IOLTS, TP = (QTP , ATP ,→TP , qTP

init), with a set of states
ACCEPT ⊆ QTP , that define the verdict Pass, and a set of states REFUSE ⊆ QTP ,
that define the verdict Fail.

G. Scollo, S. Zecchini / Electronic Notes in Theoretical Computer Science 111 (2005) 27–52 39

Test purposes enable tools to limit the specification graph exploration by
taking a synchronous product of the specification with the test purpose, where
specified actions that are not in the I/O alphabets of the test purpose IOLTS
are considered as internal actions of the specification. By giving priority to test
purpose actions, an effective pruning of the specification graph is obtained.
This is explained in some more detail as follows.

2.8 Automatic test generation

The third step of our methodology implementation is concerned with auto-
matic test case generation using TGV. This is a tool for the generation of test
suites based on verification technology [8,7], that is integrated into the CADP
toolbox [15,11,13].

TGV takes two inputs as arguments: a specification of the system’s be-
haviour, defined in a language with IOLTS semantics, and the test purpose,
which is made use of to select a purposeful subset of the system’s behaviour
to be tested.

To produce automatically the appropriate test case, TGV uses algorithms
that are peculiar to systems verification technology, such as Tarjan’s Algo-
rithm. The generation is done “on-the-fly” on the synchronous product of the
specification with the test purpose. This product avoids states explosion by
only exploring the particular fragment of the specification selected according
to the test purpose. Thereupon TGV produces a test case, represented by
an IOLTS, in which transitions may be labelled with the test verdicts, that
are pass, fail or inconclusive. Therefore, a test case is a set of sequences of
actions describing all possible interactions between the implementation under
test (IUT) and a tester aimed at checking whether the implementation con-
forms to the specification according to a given test purpose, insofar as this is
concerned.

In the present architectural setting, significance of test case generation is
twofold: 1) the testability of user requirements is validated by generating test
cases for test purposes which are deemed to reflect those requirements in the
given model; and 2) the generated test cases are architectural specifications
of testers for those test purposes, and may thus be taken as early models for
their design, well in advance of implementation and coding phases. In this
perspective, reference to the (envisaged) IUT is meaningful although no IUT
may be actually available when architectural test case generation takes place.

The system specification and the test case (or tester) TC are both IOLTS,
and the output alphabet of TC is a subset of the output alphabet of specifica-
tion, ATC

O ⊆ AS
O. In practice, in the test case, every trace, that is a transition

sequence, describes a corresponding interaction sequence between tester and

G. Scollo, S. Zecchini / Electronic Notes in Theoretical Computer Science 111 (2005) 27–5240

IUT. Basically, the conformance relation is the ioco� relation described in [26].
Informally, the conformance relation states that a IUT I conforms to a speci-
fication S, according to a set of traces � if, after every observable trace in �,
the outputs of I is included in the outputs of S. In our methodology, � is the
subset of the traces of S that in the test purpose lead to an accepting state.

To use the TGV tool, the specification must be defined as a Binary Coded
Graph (BCG), spec.bcg, or as a LOTOS specification, while the test purpose
must be described as a BCG, say file tp.bcg, or in Aldebaran format, say file
tp.aut [13,17].

In the present application of our methodology we describe the test purpose
in Basic LOTOS and we translate the obtained file in Aldebaran format using
the CAESAR/ALDEBARAN Development Package (CADP) tools. Descrip-
tions of this package can be found in [11,13,15].

3 A robot teleoperation case study

An application example is worked out in this section, that should help the
reader to grasp the basic features of the testing methodology proposed here.
The case study is drawn from the software architecture design documented in
[29].

The class TrajectoryGen we use for this purpose is defined in the context
of a package for robot motion control and manipulation, where this class
is responsible for trajectory generation, uses forward and inverse kinematics
of the robots for this computation, and checks whether the final position is
reachable, as well as for possible collisions. The class operations are shown in
figure 3.

Fig. 3. The TrajectoryGen class

3.1 State diagram of TrajectoryGen

Figure 4 shows the state diagram of a TrajectoryGen object.

G. Scollo, S. Zecchini / Electronic Notes in Theoretical Computer Science 111 (2005) 27–52 41

Idle
desiredPosition

newPoint

[not reachablePoint]
Check

[withinBounds]
TestPosition TestObstacle

[reachablePoint]

/newTrajectory

newObject

Approach

WaitGetT

getTrajectory

CompNewT CompModT

[trajectoryModification][trajectoryGeneration]

[computedNew
Trajectory]

[computedModified
Trajectory]

TrajReady
/newTrajectory

newObject

[collisionDetected]

[not collisionDetected]

/newTrajectory

[not trajectoryExists]

CheckTraj

Control

[trajectoryExists]

Fig. 4. State diagram of TrajectoryGen class

According to the style prescriptions defined in section 2.2 for architectural
state diagrams, we let every nonempty transition label consist of only one
out of the three label components allowed by UML syntax, viz. event, guard,
action, resp. corresponding to input, internal action, output.

Upon creation, a TrajectoryGen object is in the Idle state, waiting for new
data and, in particular, new positions for the controlled robot(s). When it
receives these data, the object moves to the Check state, to see whether the final
position is within reach (TestPosition) and, if so, for the absence of obstacles
and possible collisions (TestObstacle). If the verification succeeds, the object
moves to the WaitGetT state, otherwise it goes back to Idle.

In the WaitGetT state the object waits for a getTrajectory input. When this
occurs, the condition whether the position received is either a modification
of a previous trajectory, or a new position used to generate a new trajectory,
fires a transition, resp. to CompModT or to CompNewT. When the computation in
either state terminates, the object moves to state TrajReady, where it outputs

G. Scollo, S. Zecchini / Electronic Notes in Theoretical Computer Science 111 (2005) 27–5242

the /newTrajectory to the robot(s), unless a newObject input occurs, signaling a
new obstacle in the environment.

If the presence of a new obstacle is signalled, the object moves to the
Control state, where it checks whether a collision with the obstacle may occur
([collisionDetected]). If so, then the object goes to the Approach state, where
the previous trajectory is modified, so that the robot approaches the obsta-
cle without collisions. The new trajectory is output to the robot, and the
trajectory generator goes to the Check state again, where the new trajectory is
computed, to reach the final position from the newly reached point. When the
new obstacle does not lie on the trajectory, the trajectory generator outputs
the computed trajectory to the robot and moves back to Idle.

When the object is in the Idle state and a new obstacle is detected in the
robot work environment, a transition to the CheckTraj state fires, where it is
checked whether or not there is a trajectory followed by the robot already. If
there is such a trajectory, then the object moves to the Control state, where the
possibility of collisions with the new obstacle is checked, otherwise it moves
back to Idle.

4 Sample application of the test methodology

In this section we apply our test methodology to the TrajectoryGen state dia-
gram, see figure 4.

4.1 State diagram translation in Basic LOTOS

A direct translation of the TrajectoryGen state diagram in Basic LOTOS is
possible, since this diagram satisfies the constraints prescribed in section 2.2,
hence the translation defined in section 2.6 is applicable.

Now, the presence of a composite state, such as Check, with outgoing transi-
tions is no problem as far as translation to Basic LOTOS is concerned, thanks
to the availability of the disable operator [>. However, the Caesar compiler
complains about our translation using this feature, as we explain later. The
following translation thus departs from the TrajectoryGen state structure in this
respect: we collapse state TestPosition to its parent superstate Check, whose out-
going transitions are replicated for its substate TestObstacle. We thus obtain
an equivalent state diagram with no composite state.

For the sake of conciseness, we map operation names to shorter gate names,
and observe the convention that all names of internal actions have an i prefix.
This mapping is as follows.

G. Scollo, S. Zecchini / Electronic Notes in Theoretical Computer Science 111 (2005) 27–52 43

Input actions:
nP : newPoint

dP : desiredPosition

gT : getTrajectory

nO : newObject

Output actions:
nT : newTrajectory

Internal actions:
i te : trajectoryExists

i tn : not trajectoryExists

i wb : withinBounds

i rp : reachablePoint

i up : not reachablePoint

i tg : trajectoryGeneration

i tm : trajectoryModification

i cn : computedNewTrajectory

i cm : computedModifiedTrajectory

i cd : collisionDetected

i nd : not collisionDetected

Finally, we let A stand for the set of actions defined above, and we let it
abbreviate the corresponding list of process gates. Under these premises, here
is a Basic LOTOS translation of the TrajectoryGen state diagram.

specification TrajGen[A]:noexit

behaviour Idle[A]

where

process Idle[A]:noexit

:=

nP ; Check[A] [] dP ; Check[A] [] nO ; CheckTraj[A]

endproc

process Check[A]:noexit

:=

i_wb ; TestObstacle[A] [] i_up ; Idle[A]

endproc

process CheckTraj[A]:noexit

:=

i_te ; Control[A] [] i_tn ; Idle[A]

endproc

process TestObstacle[A]:noexit

:=

G. Scollo, S. Zecchini / Electronic Notes in Theoretical Computer Science 111 (2005) 27–5244

i_rp ; WaitGetT[A] [] i_up ; Idle[A]

endproc

process WaitGetT[A]:noexit

:=

gT ; (i_tg ; CompNewT[A] [] i_tm ; CompModT[A])

endproc

process CompNewT[A]:noexit

:=

i_cn ; TrajReady[A]

endproc

process CompModT[A]:noexit

:=

i_cm ; TrajReady[A]

endproc

process TrajReady[A]:noexit

:=

nT ; Idle[A] [] nO ; Control[A]

endproc

process Control[A]:noexit

:=

i_cd ; Approach[A] [] i_nd ; nT ; Idle[A]

endproc

process Approach[A]:noexit

:=

nT ; Check[A]

endproc

endspec

As mentioned above, this translation is not exactly a direct translation of
the given state diagram because of a complaint by the Caesar compiler w.r.t.
the translation of the composite state Check, with its outgoing transitions,
using the Basic LOTOS disabling operator [>. It seems instructive, though,
to report such a translation as well, that goes as follows.

process Check[A]:noexit :=

(TestPosition[i_wb]

[> i_up ; Idle[A]

) >> i_rp ; WaitGetT[A]

endproc

process TestPosition[i_wb] : exit :=

i_wb ; TestObstacle

endproc

G. Scollo, S. Zecchini / Electronic Notes in Theoretical Computer Science 111 (2005) 27–52 45

process TestObstacle : exit :=

exit

endproc

Basically, the Caesar compiler complains because of the recursive occur-
rence of the Idle process in the left argument of the Basic LOTOS enabling
operator >>. This as well as other cases of recursion, even though well-guarded
ones, are forbidden by the so-called restriction rules, which admit regular be-
haviours only[9]. It is to be noted, however, that those rules provide one with
an only sufficient condition for regularity, that is termed static control prop-
erty in [9] as well as in the Cæsar manual[10]. This property is meant to
ensure that LOTOS specifications can be translated into finite state graphs.
Now, our translation goes in the opposite direction, and we actually have a
finite state graph to start with, yet we may expect that whenever some cycle
goes through a composite state, then one has got to unfold the corresponding
LOTOS enabling and disabling constructs, in order to recover that property.

4.2 A sample test purpose

The next step is a use-case driven synthesis of a test purpose, expressed in
Basic LOTOS. This derivation is not mechanical, in that process-algebraic
languages are not quite logical languages, but rather have a constructive
character, thus prove better suited to describe models rather than require-
ments. However, their use under appropriate specification styles, such as the
constraint-oriented style [28], enables one to get specifications which come
quite close to taking a logical flavour. While this is no general method for
test purpose selection (a luxury we can’t afford at the present stage of our
research), it does often work in practice, as we aim at demonstrating below.

We illustrate this aspect of our methodology by assuming a previous anal-
ysis of the functional requirements which apply to our architectural unit, that
splits them into separate, independent prescriptions. For example, the trajec-
tory generator should in all cases output trajectories which prevent collisions
with objects in the robot work environment; this may be split by case analysis,
and modelled in UML by distinct use cases, by considering: collisions with
still objects, or with moving objects; and, in either case, under the assumption
that no new object comes into play during the new trajectory computation,
or under the opposite assumption. Here we choose the first case under the
first assumption, that is, output of new trajectory free from collisions with
still objects, assuming that no new object is detected during the trajectory
computation. This enables us to formulate the test purpose in terms of action
traces, where the only relevant actions are: the newPoint input, the newTrajectory

G. Scollo, S. Zecchini / Electronic Notes in Theoretical Computer Science 111 (2005) 27–5246

output, and the internal actions reachablePoint and its opposite.

An informal statement of the selected test purpose exhibiting a kind of
logical flavour could be as follows: when Idle, the unit inputs a newPoint, then
it Checks whether this is a reachablePoint; if so, it outputs a newTrajectory, if not,
it goes back to Idle; the test is passed upon output of a newTrajectory.

The formulation of the subject test purpose in Basic LOTOS, however,
is also meant to be used for test case generation by the TGV tool. This
means that we must follow this tool’s conventions to mark final states of
testing traces as either accepting or refusing. In the TGV representation of
the IOLTS associated with the LOTOS TP specifications, the accepting states
(and respectively the refusing states) are characterized by cyclic transitions
with predefined label ACCEPT or accept (and respectively REFUSE or refuse).
The latter are implicitly determined by the tool itself, whereas the former
require explicitly specified accept action cycles. A slightly nasty problem in
this respect is that accept also is a LOTOS reserved keyword, used in the
value-passing forms of the enable operator, hence it cannot be made use of as
a gate name directly. We get around this problem by using a different gate
name, acc, and then replacing it with the accept label as required by TGV test
case generation afterwards.

Our test purpose formulation in Basic LOTOS thus looks like as follows.

specification TP [nP,i_rp,i_up,nT,acc] : noexit

behaviour Idle[nP,i_rp,i_up,nT,acc]

where

process Idle[nP,i_rp,i_up,nT,acc] : noexit :=

nP ; Check[nP,i_rp,i_up,nT,acc]

endproc

process Check[nP,i_rp,i_up,nT,acc] : noexit :=

i_rp ; nT ; Accepted[acc]

[]

i_up ; Idle[nP,i_rp,i_up,nT,acc]

endproc

process Accepted[acc] : noexit :=

acc ; Accepted[acc]

endproc

endspec

The corresponding IOLTS (see figure 5) is generated by the Caesar compiler
in Aldebaran format, that is one of the two formats required by TGV for test
case generation.

G. Scollo, S. Zecchini / Electronic Notes in Theoretical Computer Science 111 (2005) 27–52 47

4.3 The TGV test case

The last step aims at test case generation for the previously specified test
purpose. With TGV, we choose to explicitly specify the inputs to the specifi-
cation, the other actions being its outputs. This partitioning is to be defined
by regular expressions with the Unix regexp syntax, put in an ad-hoc .io file
as required by the TGV option -io. The content of this file (STG.io) is the
following:

input

[nNdD]P

[gG]T

[nN]O

We get a fairly interesting, yet economical test case from TGV by invoking
it with the following CADP command:

caesar.open TrajGen.lotos tgv -io STG.io -tpprior TP.aut

whereby we ask TGV to take the system specification TrajGen.lotos and the
system I/O description file STG.io to generate a test case for the test purpose
TP.aut (previously generated by the Caesar compiler from the test purpose
specification given in section 4.2). Note that system inputs are outputs by
the tester, and conversely. I/O labeling of transitions in the IOLTS of the
generated test case refers to the tester. We do not hide any internal actions,
although this would be well possible by the -hide option, consistently with
our view of the generated test case as an architectural model of a white-box
testing unit. Figure 6 displays the test case thus obtained.

The option -tpprior prescribes priority to actions of the test purpose in
generating the test case. Note that, without this option, priority is by default
assigned to specification actions; this would produce a substantially larger
test case, where also actions such as nO outputs by the tester would appear
in testing traces, against our intuition of the test purpose as being limited to
still objects under the assumption of no new object entering the scene during
new trajectory computation. Selection of test purpose priority seems to be a
necessary ingredient of the implementation of our testing methodology when
using TGV, and appears to be effective—judging from this example at least.

��������0
NP ����������1 I RP ��

I UP
��

��������2 NT ����������3 ACCEPT
��

Fig. 5. IOLTS derived from test purpose

G. Scollo, S. Zecchini / Electronic Notes in Theoretical Computer Science 111 (2005) 27–5248

��������8

��������7

NT ;INPUT (PASS)

��

��������5

I CN ;INPUT

���������� ��������6

I CM ;INPUT

�����������

��������4

I TG;INPUT

����������� I TM ;INPUT

����������

��������3

GT ;OUTPUT

��

��������2

I RP ;INPUT

��

I UP ;INPUT

��

��������1

I WB;INPUT

�����������������

I UP ;INPUT
		�����������������������0

NP ;OUTPUT

���������������

Fig. 6. The test case obtained

5 Conclusions

A combination of object-oriented architectural modeling with IOLTS seman-
tics has been explored in this paper, as a framework for a formal testing
methodology to assess testability of functional requirements, as well as to
generate architectural models of unit testers, at early design stages. The pro-
posed methodology has been tried in a non-trivial case study drawn from
design of a telerobotics software architecture, and an implementation of the
methodology using a well-established toolbox for IOLTS test case analysis and
generation has been successfully experimented.

A single experiment is no definite assessment, of course, yet no reason of
principle seems to hamper feasibility of further experiments, e.g. other tools
such as TorX [27] or Promela/SPIN [5] seem to deserve attention, perhaps to
overcome certain drawbacks which have surfaced in our first experiment.

Test selection and test case generation based on an orthogonal set of test
purposes is a promising device to master the complexity of large test suites.
However, it is apparent from the experiment presented in this work that the
formalization of test purposes, as well as their being linked to formally specified

G. Scollo, S. Zecchini / Electronic Notes in Theoretical Computer Science 111 (2005) 27–52 49

requirements, both are aspects of our methodology where further investigation
is much needed. This seems crucial not only to achieve coherent applicability
of the proposed methodology throughout the development process but also
to retain traceability of requirements into the test set, thereby mitigating the
risk of requirements change not being reflected in the corresponding tests.

Further directions of this research relate to: 1) extension of the methodol-
ogy to other architectural testing scopes, viz. integration and system testing,
involving other kinds of UML models, particularly those provided by concur-
rent state diagrams, interaction diagrams and activity diagrams; 2) investi-
gation of relationships with testing at more advanced development phases,
whereby models are built in a more prescriptive, possibly complete specifi-
cation perspective; 3) on the formal side of the previous research direction,
extension of the expressive means of testing models to cater for data, e.g.
in the form of parameter passing in I/O operations, evaluation in internal
actions, etc.

Acknowledgements

The authors wish to thank the anonymous referees, of this as well as of a
previous version of this paper, for their helpful suggestions to improve both
the clarity and the coverage of the presentation.

References

[1] Apfelbaum, L. and J. Doyle, Model based testing (1997), paper presented at the 10th
International Software Quality Week Conference.
URL http://www.model-based-testing.org/sqw97.pdf

[2] Bolognesi, T. and E. Brinksma, Introduction to the ISO Specification Language LOTOS,
Computer Networks and ISDN Systems 14 (1987), pp. 25–59.

[3] Booch, G., J. Rumbaugh and I. Jacobson, “Unified Modeling Language User Guide,” Addison-
Wesley, 1997.

[4] Dalal, S. R., A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C. Patton and
B. M. Horowitz, Model-Based Testing in Practice, in: Proceedings of the 1999 International
Conference on Software Engineering (ICSE’99), New York, 1999, pp. 285–295.

[5] de Vries, R. G. and J. Tretmans, On-the-fly conformance testing using SPIN, Software Tools
for Technology Transfer 2 (2000), pp. 382–393.

[6] El-Far, I. K. and J. A. Whitteker, Model-Based Software Testing, The Encyclopedia on Software
Engineering (edited by J.J. Marciniak), Wiley (2001).
URL http://testingresearch.com/Ibrahim/papers_html/encyclopedia.htm

[7] Fernandez, J.-C., C. Jard, T. Jeron and C. Viho, An experiment in automatic generation of test
suites for protocols with verification technology, Science of Computer Programming 29 (1997),
pp. 123–146.

G. Scollo, S. Zecchini / Electronic Notes in Theoretical Computer Science 111 (2005) 27–5250

http://www.model-based-testing.org/sqw97.pdf
http://testingresearch.com/Ibrahim/papers_html/encyclopedia.htm

[8] Fernandez, J.-C., C. Jard, T. Jeron and G. Viho, Using on-the-fly verification techniques for
the generation of test suites, in: Rajeev Alur and Thomas A. Henzinger, editors, Proceedings
of the Eighth International Conference on Computer Aided Verification CAV, Lecture Notes
in Computer Science 1102 (1996), pp. 348–359.

[9] Garavel, H., “Compilation et vérification de programmes LOTOS,” Thése de Doctorat,
Université Joseph Fourier, Grenoble, F, 1989.

[10] Garavel, H., “Cæsar Reference Manual,” Rapport SPECTRE, C18, Laboratoire de Génie
Informatique, I.M.A.G., Grenoble, F, 1990.

[11] Garavel, H., F. Lang and R. Mateescu, An overview of CADP 2001, Technical Report 0254,
INRIA, Institut National de Recherche en Informatique et en Automatique (2001).

[12] Hoare, C. A. R., “Communicating Sequential Processes,” International Series in Computer
Science, Prentice Hall, 1986.

[13] INRIA, CADP (Caesar/Aldebaran Development Package), A Software Engineering Toolbox
for Protocols and Distributed Systems.
URL http://www.inrialpes.fr/vasy/cadp.html

[14] ISO, “Information processing systems – Open Systems Interconnection – LOTOS – A formal
description technique based on the temporal ordering of observational behaviour,” International
Organisation for Standardisation, 1988.

[15] J. -C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu and M. Sighireanu, CADP:
a protocol validation and verification toolbox, in: Rajeev Alur and Thomas A. Henzinger,
editors, Proceedings of the Eighth International Conference on Computer Aided Verification
CAV, Lecture Notes in Computer Science 1102 (1996), pp. 437–440.

[16] Jeron, T. and P. Morel, Test Generation Derived from Model-Checking, in: Proceedings of the
11th International Computer Aided Verification Conference, 1999, pp. 108–121.

[17] Jeron, T., P. Morel and S. Simon, TGV online manual.
URL http://www.inrialpes.fr/vasy/cadp/man/tgv.html

[18] Kirkwood, C. and M. Thomas, Experiences with LOTOS: A Report on Two Case Studies, in:
Proceedings of WIFT ’95 (1995), pp. 159–172.

[19] Milner, R., “Communication and Concurrency,” International Series in Computer Science,
Prentice Hall, 1989.

[20] Object Management Group, UML, Unified Modeling Language.
URL http://www.omg.org/uml

[21] Richardson, D. J., J. A. Stafford and A. L. Wolf, A formal approach to architecture-based
software testing (1997).
URL http://www.cs.colorado.edu/serl/arch/wpaper.html

[22] Richardson, D. J. and A. L. Wolf, Software testing at the architectural level, in: Proceedings of
the Second International Software Architecture Workshop (ISAW-2) (1996), pp. 68–71.

[23] Sommerville, I., “Software Engineering, 7th Ed.” Addison-Wesley, 1999.

[24] Thomas, M., The Story of the Therac-25 in LOTOS, High Integrity Systems Journal 1 (1994),
pp. 3–17.

[25] Thomas, M. and B. Ormsby, On the Design of Side-Stick Controllers in Fly-By-Wire Aircraft,
ACM Applied Computing Review 2 (1994), pp. 15–20.

[26] Tretmans, J., Test Generation with Inputs, Outputs and Repetitive Quiescence, Software—
Concepts and Tools 17 (1996), pp. 103–120.

[27] Tretmans, J., Specification Based Testing with Formal Methods: From Theory via Tools to
Applications, in: A. Fantechi, editor, FORTE / PSTV 2000 Tutorial Notes, Pisa, Italy, 2000,
transparencies.

G. Scollo, S. Zecchini / Electronic Notes in Theoretical Computer Science 111 (2005) 27–52 51

http://www.inrialpes.fr/vasy/cadp.html
http://www.inrialpes.fr/vasy/cadp/man/tgv.html
http://www.omg.org/uml
http://www.cs.colorado.edu/serl/arch/wpaper.html

[28] Vissers, C. A., G. Scollo, M. van Sinderen and E. Brinksma, Specification styles in distributed
systems design and verification, Theoretical Computer Science 89 (1991), pp. 179–206.

[29] Zecchini, S., “Architettura software per un sistema di telerobotica,” Tesi di Laurea, Università
di Verona, 2003.

G. Scollo, S. Zecchini / Electronic Notes in Theoretical Computer Science 111 (2005) 27–5252

	Introduction
	Test methodology
	Architectural class diagrams
	Architectural state diagrams
	Semantics of architectural state diagrams
	Test methodology implementation
	State diagrams in Basic LOTOS
	Translation UML Basic LOTOS
	Test purposes
	Automatic test generation

	A robot teleoperation case study
	State diagram of TrajectoryGen

	Sample application of the test methodology
	State diagram translation in Basic LOTOS
	A sample test purpose
	The TGV test case

	Conclusions
	References

