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Abstract. In a multi-robot system, a number of autonomous robots
sense, communicate, and decide to move within a given domain to achieve
a common goal. To prove such a system satisfies certain properties, one
must either provide an analytical proof, or use an automated verification
method. To enable the second approach, we propose a method to auto-
matically generate a discrete state space of a given robot system. This
allows using existing model checking tools and algorithms. We construct
the state space of a number of robots, each arbitrarily moving along a
certain path within a bounded polygonal area. This state space is then
used to verify visibility properties (e.g., if the communication graph of
the robots is connected) by means of model-checking tools. Using our
method, there is no need to analytically prove that the properties are
preserved with every change in the motion strategy of the robots. We
have provided a theoretical upper bound on the complexity of the state
space, and also implemented a tool to automatically generate the state
space and verify some properties to demonstrate the applicability of our
method in various environments.

Keywords: Formal methods for robotics · Distributed robot systems ·
Verification

1 Introduction

Mobile robots are able to sense, communicate, and interact with the physical
world, and are able to collaboratively solve problems in a wide range of appli-
cations. In many applications within the general area of robot motion planning,
visibility problems play an important role.

There has been a close relationship between robot motion planning and com-
putational geometry in the applications where the robots are constrained to move
within a geometric domain. Traditionally, there has been a research area with
the goal of minimizing the number of (stationary) guards or surveillance cameras
to guard an area in the shape of a certain geometric domain like extensions of
art-gallery problems [21]. Moving to the area of mobile guards, Durocher et al.
[7] considered the sliding cameras problem in which the cameras travel back and
forth along an axis-aligned line segments inside an orthogonal polygon. In the
Minimum Sliding Cameras (MSC) problem, the objective is to guard the polygon



with the minimum number of sliding cameras. In MSC problem, it is assumed
that the polygon is covered by the cameras if the union of the visibility polygons
of the axis-aligned segments equals the polygon. One of the original works on the
subject of mobile guards is studied by Efrat et al. [8] considering the problem of
sweeping simple polygons with a chain of guards. They developed an algorithm
to compute the minimum number of guards needed to sweep a simple polygon.

Traditionally, the correctness of robot motion planning algorithms within
the context of computational geometry such as the ones mentioned above is
investigated by manual proofs. It may be hard for certain types of planning
algorithms to prove they correctly satisfy the problem’s constraints (such as
connectivity among the robots or covering of the whole area). On the other
hand, when it comes to practical applications of motion planning algorithms,
the designer may heuristically tune the algorithm’s parameters or even the whole
strategy in order to find the best solution that fits both the problem constraints
and practical restrictions. In these cases, manually proving the algorithm with
every change may be impractical.

An alternative and more reliable approach to examine the correctness of the
planning algorithms is formal verification, and more specifically, model-checking
[5] which has become more popular in recent years. Here, a mathematical model
of all possible behaviors of the system is constructed, often as a state transition
system, and is automatically verified against the desired correctness properties
over all possible paths. The properties are often expressed in temporal logic
formulas.

In a few existing works, model checking has been employed to verify motion
planning algorithms. In [10], the authors used a discrete representation of the
continuous space of the movement of a single robot, producing a finite state
transition system. Later, [9] extended the previous framework to multiple robots.
These frameworks generate a motion plan for the robot to meet some regions
of interest inside a polygon in order to satisfy a given Linear Temporal Logic
(LTL) [22] formula.

Another related area to which model-checking techniques have been applied
are robot swarms. In [18] a swarm of foraging robots is presented and in [17]
is analyzed using the probabilistic model-checker PRISM [15]. A hierarchical
framework for model-checking of planning and controlling robot swarms is sug-
gested in [16] to make some abstraction of the problem including the location
of the individual robots. Dixon et al. [6] used model-checking techniques to
check whether temporal properties are satisfied in order to analyze emergent
behaviors of robotic swarms. Moreover, [4] presented property-driven design, a
novel top-down design method for robot swarms based on prescriptive modeling
and model checking. In 2014, Guo and Dimarogonas [13] proposed a knowledge
transfer scheme for cooperative motion planning of multi-agent systems. They
assumed that the workspace is partially known by the agents where the agents
have independently-assigned local tasks, specified as LTL formulas.

More recently, Sheshkalani et al. [25] focused on the verification of certain
properties on a multi-robot system where each robot was programmed with an



arbitrary navigation algorithm. The robots were assumed to move along the
boundaries of a given polygon. They constructed a transition system on which
the visibility properties can be investigated.

We believe that the result presented in [25] is restrictive in the sense that
the robots are only allowed to move along the boundary of the environment.
On the other hand, allowing the robots to freely move inside the polygon causes
the state space to grow considerably. To remedy these problems, we define a
generalized version of the problem of [25] by assuming that each robot is able to
move freely along a simple path inside the environment. In addition to making
the problem much more general, we have improved the result of the mentioned
paper in terms of state space complexity.

As an application of the problem studied in this paper, the problem of guard-
ing a bounded environment with a number of sliding cameras can be viewed as
a special case of our problem. This way, our method is related to the previous
study of [7]. Note that the mentioned study address the combinatorial opti-
mization problem of minimizing the number of cameras. On the other hand, we
address the problem of verifying correctness of the motion strategies for the given
system. Another, more interesting, application of the problem is to consider the
connectivity preserving (global connectivity maintenance) of the communication
graph. Sabattini et al. [23] proposed a method to preserve the strong connec-
tivity by estimating the algebraic connectivity of the communication graph in
a decentralized manner. This way, our method can be used to guarantee the
correctness of the desired requirements related to the Connectivity property.

The inputs to our method are comprised of (1) the environment, in the
form of a simple polygon, (2) the algorithms controlling the motions of the
robots, (3) the paths on which the robots are allowed to move, along with their
initial positions, and (4) the requirement, expressed as a LTL formula. The
output of the method is a True/False answer to the desired requirement as
well as a transition system, labeled by two visibility-related atomic proposition:
Connectivity (the communication graph of the robots is connected) and Coverage
(the robots can collectively see the entire environment). The generated transition
system is used to model check the visibility properties expressed in temporal logic
formulas over the mentioned atomic propositions. The problem is defined more
elaborately in Sect. 2.

We define a notion of state for such a system to construct a transition system
on which the properties can be verified using the conventional model-checking
algorithms (Sect. 3). Our method is abstract from specific motion planning algo-
rithms in the sense that each robot may be programmed with a separate algo-
rithm which during execution may cause the robot to sense the surroundings
through various sensors or perform communications with other robots. In the
end, all the sensing, communication, and internal logic leads to (possibly sev-
eral) movement steps which is treated as actions by our method, causing tran-
sitions between states. Additionally, we provide a theoretical upper bound on
the complexity of the state space (Sect. 4). Finally, we have implemented a tool
to automatically generate the state space and verify the correctness of some



sample requirements using CADP [11] tool to demonstrate the applicability of
our method in various environments (Sect. 5).

2 Preliminaries and Problem Definition

The following definitions are borrowed from [12]. A simple polygon P is defined
as a closed region in the plane bounded by a finite set of line segments (called
edges of P ) such that there exists a path between any two points inside P which
intersects no edge of P . Each endpoint of an edge of P is called a vertex of P .
A vertex of P is called convex if the interior angle at the vertex formed by two
edges of that vertex is at most 180◦; otherwise it is called reflex.

Definition 1 (Visibility [12]). Two points p and q in P are said to be visible
if the line segment joining p and q contains no point on the exterior of P .
This means that the segment pq lies totally inside P . This definition allows the
segment pq to pass through a reflex vertex or graze along a polygonal edge. We
also say that p sees q if p and q are visible in P . It is obvious that if p sees q, q

also sees p.

For a simple polygon P , we use the notation Vp for the visibility polygon of a
point p ∈ P . Removing Vp from P may result in a number of disconnected regions
called invisible regions. Any invisible region has exactly one edge in common with
Vp, called a window of p, which is characterized by a reflex vertex of P visible
from p, like p′. The window is defined as the extension of the (directed) segment
pp′ from p′ to the boundary of P say p′′. We denote such a window which consists
of two endpoints p′ and p′′ by w(p, p′) (Fig. 1).
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Fig. 1. The shaded area indicates the visibility polygon of point a (Va). Point b is
invisible from a, and its containing invisible region is characterized by the reflex vertex
p10 which is separated from Va by segment p10x.



Consider a simple polygon P whose boundary is specified by the sequence of
n vertices <p1, p2, . . . , pn> including the set of reflex vertices Pref and convex
vertices Pconv , a set of robots R = {r1, r2, . . . , rk}, the corresponding navigation
algorithms Alg = {a1, a2, . . . , ak} (ai is the navigation algorithm of robot ri),
and the corresponding paths Paths = {path1, path2, . . . , pathk} inside P are
given with the following properties:

1. Robot ri can only move along its corresponding path pathi,
2. Each step in the movement of each robot is specified by two parameters:

direction (one of the two directions) and distance (a real positive number).

To discretize the state space of the system, we assume that the robots have
turn taking movements as described in [1,6]. It means that during the movement
of a robot, the position of other robots is fixed. Since our method is abstract
from specific motion planning algorithms (each algorithm in set Alg is seen as a
black-box) and the algorithms may be non-terminating (there might be no end
goal), there is no way to determine if the state space has been constructed com-
pletely (especially for the cases in which the robots have time-sensitive behavior,
e.g., take an action at a certain point in time). Hence, we take a time-bounded
approach to state-space generation, and let the modeler determine how long the
search for new states must take (using her knowledge of the navigation algo-
rithms). As can be seen from our experimental results stated in Sect. 5, the
growth rate of the number of generated states decreases significantly as time
goes by, because in our case study the robots have a specific common goal which
prevents the robots from making arbitrary actions.

The correctness properties may be built using temporal logics which are
formalisms to describe temporal properties of reactive systems [2]. Apart from
the logical operators, temporal logic formulas are constructed over a set of atomic
propositions which may be true or false in each state of the system. Since our goal
is to verify visibility properties, we need to define the two following properties:

Definition 2 (Connectivity). The set of robots are connected if the graph
induced by the visibility relation between pairs of robots is connected.

Definition 3 (Coverage). The robots cover P if the union of the visibility
polygons of all robots ( ∪

r∈R
Vr) covers the whole P .

Since we do not deal with the details of model-checking algorithms directly
in this paper, we refer the reader for a detailed description of temporal log-
ics to [2]. However, to bring an example, the LTL formula �((Connectivity ∧
¬Coverage) → ♦(Connectivity ∧Coverage)) describes the property that when-
ever (represented by �) the visibility graph of robots is connected but the envi-
ronment is not covered, eventually (represented by ♦) the system reaches a state
in which both Connectivity and Coverage properties are satisfied (robots will
eventually cover the environment by collaborating with each other).

We define a robot system RS as the tuple (P,R,Alg, Paths, init) in which P

indicates the environment of robots to navigate, R is the set of moving robots,



Alg is the set of navigation algorithms of robots, Paths is the position of paths
in which the corresponding robots can move along them, and init specifies the
initial position of robots over Paths. Our goal is to define the transition system
equivalent of RS, over which temporal logic formulas may be model-checked.

To simplify our presentation of the method, we assume that the paths used
throughout the examples in this paper are line segments.

3 Constructing the Discrete State Space

With the ultimate goal of verifying a temporal logic formula over a robot system
RS = (P,R,Alg, Paths, init), we must first construct the equivalent transition
system of RS. As mentioned before, the states are labeled with the atomic
propositions, hence, the transition system is called a Labeled Transition System
(LTS) [2].

We define the LTS of RS as the tuple (S,Act, →֒, s0, AP,L) where

– S is the set of states (defined below),
– Act = {←−−−moveri

,−−−→moveri
|1 ≤ i ≤ k} is the set of actions denoting the movement

of robot ri in its two possible directions,

– →֒⊆ S × Act × S is the transition relation, (we use the notation s
α
−֒→ s′

whenever (s, α, s′) ∈→֒),
– s0 ∈ S is the initial state (determined based on init),
– AP = {Connectivity ,Coverage} is the set of atomic propositions,
– L : S → 2AP is the labeling function.

3.1 System States

The satisfaction of AP depends on the distribution of robots’ position over
Paths. We model each state of the system based on the topology of the robots
and vertices of P . Additionally, we may need to store some extra information in
order to identify the next states.

Consider the union of all the windows of the robots W = {w(p, p′)|p ∈ R, p′ ∈
Pref , p

′ ∈ Vp}. The intersection of the line segments in W results in a subdivision
inside P which is denoted by SubP (Fig. 2).

Definition 4 (Dual graph). Let SubP be a subdivision of P . The dual graph of
SubP that is represented by DG(SubP ) is a graph which has a node corresponding
to each cell, and each pair of nodes are connected with an edge, if their related
cells have an edge in common [12].

Each node of DG(SubP ) is determined by the windows and the polygon
edges which define the boundary of the corresponding cell in SubP . In Fig. 2,
the corresponding node of cell ci in DG(SubP ) is associated with the set of edges
{w(d, p10), w(b, p4), (p9, p10)}. DG(SubP ) does not change unless some cells are
removed from or added to SubP . Therefore, we may use the dual graph of P to
represent SubP . Since the satisfaction of AP can be determined by considering



SubP , we can store DG(SubP ) as a part of each state. Suppose robot ri moves in
one of its two possible directions (actions ←−−−moveri

or −−−→moveri
). The corresponding

windows of ri (Wri
= {w(ri, p

′)|ri ∈ R, p′ ∈ Pref , p
′ ∈ Vri

}) may move radi-
ally around p′ during the movement of ri respectively. Line segments Wri

may
construct new cells or destruct existing cells of SubP during the movement. Con-
struction or destruction of cells may happen if and only if some line segments in
Wri

intersect some vertices of SubP . As mentioned before, we may need to store
some extra information to correctly determine the next states to be encountered
in the future as each robot moves. Let Seq←−−−moveri

indicates the sequence of inter-
section points of Wri

with vertices of SubP and the robots during the movement
of ri in ← direction (the same definition for Seq−−−→moveri

can hold as well - e.g.,

Seq−−−→moved
= <i3, p4, i7> in Fig. 2). Storing Seq←−−−moveri

and Seq−−−→moveri
in states

enables efficient computation of the successor states regarding the transition
types described in the next section.

We define a state of k robots inside the polygon P as:

1. DG(SubP ) along with the robots each cell of SubP contains,
2. Seq←−−−moveri

for all 1 ≤ i ≤ k,
3. Seq−−−→moveri

for all 1 ≤ i ≤ k.

By the definition of LTS, we assume each atomic proposition is either true
or false in a state. The following lemma states that moving of the robots does
not change the validity of the propositions Connectivity and Coverage, as long
as the state defined above remains the same.

Lemma 1. Each state s can be uniquely labeled with the atomic propositions
AP = {Connectivity ,Coverage}.

Proof. Assume that the labeling L(s) ∈ 2AP is satisfied by the current state s.
It is sufficient to prove that by moving the robots, L(s) is valid while s does not
change. We discuss the two atomic propositions separately.

Connectivity. Two robots ri and rj are connected, if one lies in the visible
area of the other (ri ∈ Vrj

). Since the boundaries of visible areas for each robot
are determined by its corresponding windows (Wrj

) which are stored as the
line segments in SubP , we can decide whether robot ri locates inside Vrj

, by
inspecting DG(SubP ). Assume that robots ri and rj are connected, and they
are located in cells ci and cj respectively (based on SubP ). If ri moves in order
to get disconnected, it must cross one of the line segments in Wrj

. In this case,
rj does not belong to cj anymore. So, the current state s changes based on the
definition of state.

Coverage. Polygon P is covered if and only if all the cells in SubP are covered
by the robots. Assume that there exists at least one cell say ci which is visible
from none of the k robots (Fig. 2). The polygon remains uncovered as long as ci

is not destructed. More precisely, the polygon may get covered if the uncovered
cells destructed. On the other side, assume that all the cells of SubP are covered
by the robots. In order to make P uncovered, it is needed a new cell which is not



visible from the robots to be constructed in SubP . Since any changes in validity
of Coverage needs to make SubP different from its previous structure, Coverage
is valid while s does not change. ⊓⊔

3.2 Transitions Events

A movement step of robot ri is specified by the pair moveri
= (dir, dist) where:

– dir ∈ {←,→} is the direction of the movement along pathi,
– dist indicates the length of the movement.

We define ←−−−moveri
as the tuple (←, δ), where δ is the smallest distance

robot ri can move in that direction along pathi which causes a change in
state. Also, we define −−−→moveri

for the other direction similarly. We illustrate
→֒ as the smallest relation containing the tuples (s, α, s′), where s, s′ ∈ S,
α ∈ ∪

1≤i≤k
{←−−−moveri

,−−−→moveri
}, and s′ is the state obtained from s by taking action

α. While ri is making its movement, a transition s
α
−֒→ s′ can occur in the fol-

lowing transition types:

(a) Some cells constructed or destructed in SubP which leads to changes in
DG(SubP ),

(b) A robot crosses a window, and moves into another cell of SubP ,
(c) If none of the two above types have occurred after the movement of the

robot, it must be checked whether the order of points in Seq←−−−moverj
or

Seq−−−→moverj
for some 1 ≤ j �= i ≤ k has changed. If that is the case, we

need to have a transition to s′ with the same DG(SubP ) as of s, but having
Seq←−−−moveri

and Seq−−−→moveri
updated for all 1 ≤ j �= i ≤ k.

As an example, consider Fig. 2 (both Connectivity and Coverage properties
are not satisfied). Assume that robot b moves to the right. First, it destructs
cells ci, cx and cy, and constructs two new cells cm and cn (transition type
(a)) before reaching w(d, p4) (Fig. 3). The Coverage property is satisfied in the
generated state. Second, it constructs three other new cells cj , ck and cl (Fig. 4).
The validity of the properties are preserved in the generated state. Finally, it
reaches w(d, p4), and makes robots b and d visible to each other (transition type
(b)) which satisfies the Connectivity property as well (Fig. 5).

We may use the plane sweep algorithm [24] in order to find out whenever ri

reaches an intersecting point in SubP for type (a). More precisely, radial sweep
algorithm [19] may be used to rotate w(ri, p

′) about p′ in order to discover the
intersection points of SubP . So, robot ri may move towards its two possible
directions (← or →) until it reaches the end of ci in order to compute Seq←−−−moveri

and Seq−−−→moveri
for type (c). Since AP may change only in transition types (a) or

(b) based on Lemma 1, the validity of AP remains the same in type (c). Assume
that robot ri moves from its current position posi to a new position pos′

i, and a
transition from s to s′ occurred, in such a way that type (c) happened. Since none
of the transition types (a) and (b) has happened, the dual graph of SubP and the
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Fig. 2. A subdivision which consists of
the intersection of line segments in W

inside P .
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Fig. 3. The subdivision changes after
moving b to the right before reaching
w(d, p4). The Covering property is sat-
isfied.
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Fig. 4. Construction of two new cells
ck and cl during the movement of b to
the right before reaching w(d, p4).

a

b

c

d

p1 p2

p3 p4

p5 p6

p7p8

p9p10

p11p12

ck

cl

cj

i1 i7

i2
i3

i4

i5

i6

i8

i9

Fig. 5. The Connectivity property is
satisfied. Transition type (c) happens
after taking the action of robot b.

cells which the robots belong to remain the same as in s. It means that Seq←−−−moverj

or Seq−−−→moverj
for some 1 ≤ j �= i ≤ k are changed during the movement of ri.

Precisely, the sequences in Seq←−−−moverl
or Seq−−−→moverl

for some 1 ≤ l ≤ k may change

during the movement of ri before reaching pos′
i, but the corresponding states

are not generated. Since AP may change only in transition types (a) or (b), the
states which are not generated during the movement have the same labels as in s.
In the previous example, the obtained dual graph when robots b and d get visible
to each other does not change while robot b reaches the right endpoint of the
corresponding path (Fig. 5). On the other hand, Seq−−−→movec

changes from <i1, p3>

to <i1, p3, i2> during the movement of b (after crossing w(d, p4)) till reaching
the right endpoint of its path which does not make any transitions of types (a) or
(b). After taking the action of robot b, a state is generated (transition type (c))
with the same DG(SubP ) but different Seq−−−→movec

. Preventing the construction



of type (c) transitions (during the movement) leads us to achieve a significant
reduction in the size of the state space.

4 Analysis

In Sect. 3, the method of constructing an LTS on a given robot system RS =
(P,R,Alg, Paths, init) is described. In this section, we prove that the definition
of the states and the transition events are consistent. Next, we discuss the state
space complexity of our method.

4.1 Proof of Correctness

The following lemma states that for each state, the set of next sates can be
uniquely determined independent of the exact position of the robots as long as
the current state does not change.

Lemma 2. Let A = (S,Act, →֒, s0, AP,L) be the LTS of robot system RS =
(P,R,Alg, Paths, init). For each state s ∈ S, the set of next sates can be uniquely
determined independent of the exact position of the robots as long as the config-
uration of the system is identical to state s.

Proof. The transition events may only occur in the three types as explained
in Sect. 3.2. Assume that robot ri wants to move, and the current state of the
system is s. The set of next states which belong to transition types (a) or (b)
can be uniquely determined:

1. Robot ri crosses one of the boundary line segments of its cell (type (b)):
since the boundary line segments of each cell are unique for each state, the
corresponding next states are unique respectively.

2. A window belonging to Wri
crosses an intersection point of SubP (type (a)):

the sequence of intersection points crossed by a window of Wri
may vary

while the corresponding SubP does not change. Since the sequence of inter-
section points (Seq←−−−moveri

or Seq−−−→moveri
) are stored as a part of state s, the

first intersection points of the two possible directions (← or →) are unique
respectively. It is important to note that the windows which are constructed
or destructed during the movement of the robot are taken into account in
order to compute Seq←−−−moveri

and Seq−−−→moveri
, as well.

As mentioned in Sect. 3.2, the next state (s′) which belongs to type (c) may be
constructed at the end of the movement of ri (none of the transition types (a)
or (b) has happened during the movement). It means that there may exist a
chain of intermediate states between s and s′, but only s′ is constructed. All of
the intermediate states may be reached if the distance parameter in moveri

=
(dir, dist) gets smaller. Since the proximity of all the windows to each other can
be determined by Seq←−−−moveri

and Seq−−−→moveri
for all 1 ≤ i ≤ k, the sequence of the

intermediate states from s to s′ are unique. Hence, the set of next states of s

can be uniquely determined as long as the configuration of the system is equal
to state s. ⊓⊔



4.2 Complexity

Lemma 3 states an upper bound on the maximum number of states for the robot
system RS. The upper bound obtained in the lemma is not tight. In other words,
the geometrical properties of the polygon, and therefore the resulting position
of windows highly affect the size of the state space.

Lemma 3. The maximum number of states in order to verify the given robot
system RS = (P,R,Alg, Paths, init) has the complexity of O(nk3

) in which n

and k denote the number of vertices of P and the number of robots.

Proof. Consider a simple polygon P with n vertices and k robots inside. In order
to compute the complexity of the state space, it is essential to obtain an upper
bound on the maximum number of different subdivisions (DG(SubP )) shown
as C(DG(SubP )) as well as the maximum number of different sequences of the
robots (Seq←−−−moveri

and Seq−−−→moveri
) shown as C(Seq). Consider the current state

si with the sequences Seq←−−−moveri
and Seq−−−→moveri

for 1 ≤ i ≤ k and DG(SubP ).

As stated in Sect. 3.2 about type (c) transitions, there may exist more than one
state with the same DG(SubP ) as in si, but with different sequences. So, each
DG(SubP ) may correspond to more than one group of sequences belonging to
the k robots (C(DG(SubP )) ≤ C(Seq)). This way, it suffices to enumerate the
number of different sequences for all the k robots as the parts of a state to obtain
the maximum number of different states.

Consider a line segment in SubP which corresponds to w(ri, p
′). Line segment

w(ri, p
′) may intersect some windows of the set Wrj

for some 1 ≤ j �= i ≤ k. In
the worst-case scenario, w(ri, p

′) may intersect some windows of all k−1 robots.
Since the polygon is simple (it has no hole inside), at most two windows of Wrj

may intersect w(ri, p
′) simultaneously [3]. Therefore, the window w(ri, p

′) may
intersect at most 2(k −1) ∈ O(k) other windows at the same time. Based on the
above discussion, the sequence say Seq←−−−moveri

may have at most O(k2) members
which specify that robot ri meets which intersection points of SubP during the
movement to the left. Since the number of reflex vertices |Pref | ∈ O(n), each
member of Seq←−−−moveri

may have O(k2n2) options. Additionally, as the sequence

has O(k2) members, we may have O((k2)!) permutations. Hence, there exist at

most O((k2)!(k2n2)k2

) different sequences for Seq←−−−moveri
.

Taking the sequences of all the k robots into account, we obtain complexity
O(((k2)!(k2n2)k2

)k) ∈ O(nk3

) as an upper bound on the maximum number of
different sequences (C(Seq)) which is an upper bound on the maximum number
of states as well (assuming k ≤ n). ⊓⊔

Lemma 3 proves that the complexity of the state space is polynomial in terms
of the complexity of the environment. Although the maximum number of states
grows exponentially as the number of robots increases, in many applications like
the one presented in Sect. 5, there may exist a global goal, so the robots avoid
making arbitrary actions. As a comparison with the previous work of [25], they

achieved the complexity of O(n2k

) which is much greater than the complexity
obtained by our method.



5 Experimental Results

We have used Computational Geometry Algorithms Library (CGAL) [14] to
implement the proposed method in C++. The program automatically constructs
the state space of the robot system RS = (P,R,Alg, Paths, init) during the
movement of the robots. Precisely, the states and the transitions are constructed
with respect to the decisions made by the robots during their movements (deter-
mined by the motion algorithms). The implementation is available online via
http://ramtung.ir/visification-1.0.zip which contains the source code as well as
a Debian-based package.

As a case study, we consider robot swarms algorithms in which the robots use
only local wireless connectivity information to achieve swarm aggregation. Partic-
ularly, we use the simplest Alpha algorithm which is examined using simulations
and real robot experiments in [6,20,26] as the navigation algorithms of the robots
in this experiment. It is assumed that the initial position of the robots are on the
middle of the corresponding paths. Our experimental environment is an Ubuntu
14.04 machine, Intel Pentium (AMD64) CPU 2.6 GHz with 4 GB RAM.
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Fig. 6. The polygons used for the experimental results.

Figure 7 shows the growth rate of the size of the state space against the con-
struction time for k = 3 (robots a, b and c) and k = 4 in different environments
shown in Fig. 6 respectively. We executed the state space generation algorithm
for 360 min (timeBound = 360). It shows that the number of investigated states
converge quickly for all the polygons except for (I) when k = 4.

We used CADP [11] model-checker to verify the requirements (e.g., expressed
in LTL formula) regarding the generated state space. Table 1 shows the results
of the verification process after 360 min of running the state space genera-
tion algorithm with respect to the mentioned LTL formulas. The first formula
�♦Connectivity is true, if the robots are infinitely often connected. The second
formula ♦(Connectivity ∧ Coverage) is true, if the system eventually reaches a
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Fig. 7. The number of discovered states for k = 3 (left) and k = 4 (right).

state in which the communication graph is connected and the environment is fully
covered by the robots which may be considered as a goal state. CADP evaluated
each formula in less than two seconds for the polygons which shows the applica-
bility of the proposed method. Since the robots are implementing the Alpha algo-
rithm (which focuses on maintaining the connectivity) with α = 1 (the decision
in which the robot continues the previous direction or make a 180◦ turn depends
on the value of α - number of visible robots), the robots in the polygons (III) and
(IV) in Fig. 6 cannot reach a state in which the environment is covered. More pre-
cisely, consider Polygon (IV) with k = 4. Assume that robots c and d are visible
to each other. Since robot c wants to keep the connection with d, it cannot cover
some portion of the environment. If we increase the value of α by one (α = 2), the
number of visible robots for c (which is one) falls below the threshold. This way,
based on the Alpha algorithm, robot c makes a 180◦ turn in order to avoid moving
out the swarm. So, it may lead to cover the uncovered area.

As a comparison with a previous work, Dixon et al. [6] implemented the
Alpha algorithm for three robots (k = 3) within grid sizes of 6×6 and 7×7, and

Table 1. The results of the verification of two LTL formulas.

LTL formula �♦Connectivity ♦(Connectivity ∧ Coverage)

Polygon (I) k = 3 True False

k = 4 True False

Polygon (II) k = 3 True True

k = 4 True True

Polygon (III) k = 3 False False

k = 4 False False

Polygon (IV) k = 3 False True

k = 4 False False



obtained 168 × 106 and 501 × 106 number of states respectively. Even though
they completely abstracted out the geometry of the environment, the number of
states achieved are considerably greater than the number of states computed by
our method which let the robots move continuously in a geometric domain.

6 Conclusion

We presented a method to construct a discrete state space for a multi-robot
system and then verify the correctness properties by means of model-checking
techniques. The notion of state has been defined in such a way that each state
can be uniquely labeled with the atomic propositions Connectivity and Coverage.
An important aspect of our method is that it treats the navigation algorithms
as black-boxes. Iteratively searching for new states, at each step, our algorithm
asks the black-box for its next action and creates the states caused by the action
based on a precise definition of transitions. Using our provided implementation,
the modeler can code the navigation algorithms and generate the state space. The
generated state space is used to verify temporal formulas constructed over the
mentioned propositions using CADP tool. An important benefit of this approach
is to eliminate the need for analytical proof of correctness upon changes to the
navigation algorithms.

From a geometric perspective, our method can be easily applied to more
complicated cases, e.g., when the robots can move along possibly non-simplified
paths (e.g., paths containing points in which a robot has more than two direc-
tions to choose). Furthermore, the geometric domain of simple polygons can be
extended to polygonal domains, i.e., simple polygons having a number of holes
inside. This makes our method applicable to more realistic situations.
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