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Abstract—The Application Layer Event (ALE) is an interface
of Electronic Product Code (EPC) network framework launched
by EPCglobal, through which clients may obtain filtered con-
solidated EPC. The ALE provides a poll mode for creating a
synchronous report. Under the EPC network framework the poll
mode has to maintain atomicity for event cycle from different
read cycles. It is a big challenge for decentralized EPC network
to long-term block channel for synchronous report. In this paper
we propose two approaches to address this challenge. The first
is to use a buffering storage to relax the ALE engine from the
bursting of EPCs cycles. After all read cycles belonging to the
same event cycle completed, the EPC engine sends an EPCreport
to its consumer in an asynchronous mode. The second strategy
is to apply multi-level granularity to divide a coarse event cycle
into fine-grained cycles. With this strategy, all sub-EPCreports
received by the consumers will be reorganized into a single
EPCreport. We propose two algorithms and tested them using a
simulation tool to show the performance efficiency.
Keywords: EPC Network, EPCreport, Atomicity.

I. INTRODUCTION

As a standards organization, EPCglobal published a frame-
work for developing applications of Electronic Product Code
(EPC) network in 2005 [9]. In order to leave flexibility to it
user, it only gives a series of interfaces for implementation.
The Application Layer Event (ALE) [8] is one of the interfaces
through which clients may obtain filtered consolidated EPC
data from a variety of Radio Frequency Identification (RFID)
readers. The objective of ALE is to reduce the volume of EPC
data that comes directly from RFID readers into applications.
According to [8], “the processing done at this layer typically
involves: (1) receiving EPCs from one or more RFID readers;
(2) accumulating data over intervals of time, filtering to
eliminate duplicate EPCs and EPCs that are not of interest, and
counting and grouping EPCs to reduce the volume of data; and
(3) reporting in various forms,” such as XML and database.
The ALE model is illustrated in Fig. 1.

In Fig. 1, there are three read cycles identified as
read cycle1,2,3. A read cycle is the smallest unit of
interaction with a reader. The result of a read cycle is a set of
EPCs. An event cycle is one or more read cycles, from one
or more readers that are to be treated as a unit from the client
perspective. Four different types of EPC events may appear
in an event cycle according to the EPCglobal standards:
TransctionEvent, QuantityEvent, ObjectEvent
and AggregationEvent. The TransactionEvent
represents an event in which one or more entities denoted by
EPCs become associated or disassociated with one or more
identified business transactions. There are only two event
cycles presented in Fig. 1. Finally, the ALE reports to its

EPC 1,2,3 EPC 1,2,4 EPC 3,5,6

read cycle1 read cycle2 read cycle3

Client event cycle1 Client event cycle2

Report1 Report2

Fig. 1: A model of ALE

client what kind of EPC data has been captured according to
the capture specification.

As a technique standard, EPCglobal provides an API to
facilitate development of ALE applications. For example,
poll(specName:string):ECReports is one of the
API methods that we shall discuss in this paper with an
implementation. The API specifies the atomicity property
constraint by a case study while leaving the flexibility of
implementation up to the developers.

An important issue the developer has to deal with is the
atomicity property of event cycle. That is, an event cycle is
treated as a single atomic unit and proper handling failure of a
read cycle (as part of an event cycle) is critical. Quite different
from transaction process in databases, if a read cycle failed the
EPC data will be lost according to EPCglobal standards. So
there is no way to undo a completed operation and reverting
the system back to its previous state.

To address this problem, a fault tolerant strategy is proposed
in this paper. We give a new architecture for ALE with
respect to fault tolerance and design several algorithms for
developing poll(specName:string):ECReports. We
also evaluate the performance of the proposed algorithms with
simulation examples.

II. ARCHITECTURE DESIGN OF ALE IMPLEMENTATION

In this section we use a series of charts to demonstrate
the design of a software component that implements ALE.
We focus on the atomicity maintenance during the EPC data
collection and filtering.
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A. Atomicity Maintenance by Redundancy

Fig. 2a shows a poll mode of on-demand synchronous
report from a standing request. An ALE consumer submits a
report definition as an XML document or some other type of
description. Once a request is triggered the ALE Engine will
immediately create a report for its consumer. Since a coarser
event cycle may be involved in the report definition, the ALE
consumer has to be blocked to wait for a response during the
duration of the event cycle.
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Fig. 2: Pool modes

Fig. 2b is a new mode for poll method. It includes some of
the same systematic components as in the synchronous poll
mode, and an additional Storage component that is used for
TransacitonEvent.

In this new method, all sets of EPCs that belong to one
TransactionEvent are stored in a database to save guard
the EPCreports from being lost. The ALE consumer’s request
for a single report has to wait until all the EPCs have
been accumulated. For this reason the new mode employs an
asynchronous way to serve the consumer.

We first give formal specifications of the poll mode. For
simplicity, LOTOS (Language of Temporal Ordering Specifi-
cation) [19] is used to describe the two types of poll mode:
asynchronous and asynchronous. We will then describe the
two algorithms that we developed for implementing the poll
methods based on the formal specifications.

The synchronous poll mode is given in Specification 1, and
asynchronous pool mode is described in Specification 2.

B. Atomicity Maintenance by Fine-grained Event Cycle

Fig. 3 is an improved model of ALE for atomicity main-
tenance. In this model we divide a coarser event cycle into
a set of fine-grained event cycles, each of which has its own
EPCreport using the original synchronous pool mode. Once

ALE’s consumer receives all EPCreports from fine-grained
event cycles that belong to same coarse event cycle as defined
in the Report Definition, it reorganizes them according to the
report definition. Similar to Fig. 2b, the ALE consumer should
add a storage component where the received EPCreports are
stored.

EPC 1,2,3 EPC 1,2,4 EPC 3,5,6

read cycle1 read cycle2 read cycle3

event cycle1 event cycle2 event cycle2

report1 report2 report3

report4 report5

Fig. 3: Architecture of ALE for fine-grained event

The LOTOS description is given in Specification 3, the
process Poll Sync 2.

III. ATOMICITY MAINTENANCE ALGORITHMS

In this section, we first give a formal description of
EPCreport for poll method output, and then use the description
in the poll algorithms. In the following, S = {s1, s2, . . . } is
a set of EPC codes.

Definition 1. A grouping operator is a function G that maps an
EPC code to a group code g, denoted S ↓ g = {s ∈ S |G(s) =
g}, the subset of EPCs s1, S2 · · · ∈ S that belong to group g.

For example, a grouping operator might map an EPC code
into a Global Trade Item Number (GTIN) group.

Definition 2. A filtering operator is a function F that filters a
set of EPC codes into a group code f , denoted S↓f = {s ∈
S |F (s) = f}, the subset of EPCs S1, S2 · · · ∈ S that belong
to group f .

For example, a filtering operator might filter EPC code
coming from read cycles based on transaction event definition,
i.e. for an event cycle definition.

Definition 3. A group membership report for one or more
specified grouping operators Gi, or Filter operators Fi which
may include, and possibly be limited to, the default group.
Denoted {(g,E(R)↓g |E(R)↓g 6= ∅)}, E is either Gi or Fi

operators.

Definition 4. A group cardinality report for one or more
specified grouping operators Gi, or Filter operators Fi which
may include, and possibly be limited to, the default group.
Denoted: {(g |E(R) ↓ g |) |E(R) ↓ g 6= ∅)}, E is either the
Gi or the Fi operator.
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Specification 1 Synchronous pool mode

specification Poll Sync [request, report, Channel1, Channel2, Channel3] : noexit
library

BOOLEAN, NATURAL
endlib

behaviour
ALE Consumer [request, report]

| [request, report] |
ALE Engine [request, report, Channel1, Channel2, Channel3]

| [Channel1, Channel2, Channel3] |
(

Reader1 [Channel1]
|||

Reader2 [Channel2]
|||

Reader3 [Channel3]
)

process ALE Engine [request, report, Channel1, Channel2, Channel3] : noexit :=
request ? read cycle1 : Nat ? read cycle2 : Nat ? read cycle3 : Nat;
(

([read cycle1 == 1] && [read cycle2 == 2] && [read cycle3 == 3]) → /* Case for EPCreport1.
Channel1 ? g : Nat; /* get EPCs from Channel
Channel2 ? h : Nat;
Channel3 ? j : Nat;
report !g !h !j; /* g.h.j represent EPCreports. Case for EPCreport2.

[]
([read cycle1 == 2] && [read cycle2 == 3] && [read cycle3 == 0]) →

Channel2 ? h : Nat;
Channel3 ? j : Nat;
report !h !j;

)

Specification 2 Asynchronous pool mode

specification Poll Async [request, report, Channel1, Channel2, Channel3] : noexit
. . . . . . The main structure is the same as Pool Sync.

process ALE Engine [request, report, Channel1, Channel2, Channel3] : noexit :=
request ? read cycle1 : Nat ? read cycle2 : Nat ? read cycle3 : Nat;

Client Event [request, report, Channel1, Channel2, Channel3]
/* Call sub process for completing Asynchronous poll mode.

. . . . . .
process Client Event [request, report, Channel1, Channel2, Channel3] : noexit :=

Channel1 ? read cycle1 : Nat;
( /* Once Channel1 is fulfilled it calls a sub process Client Event 1 to fulfill Channel2

[read cycle1 == 1] → Client Event 1 [request, report, Channel1, Channel2, Channel3]
[]

[read cycle1 == 0] → Client Event [request, report, Channel1, Channel2, Channel3]
)

process Client Event 1 [request, report, Channel1, Channel2, Channel3] : noexit :=
Channel2 ? read cycle2 : Nat;
( /* Once Channel2 is fulfilled it calls a sub process Client Event2 to fulfill Channel3

[read cycle2 == 1] → Client Event 2 [request, report, Channel1, Channel2, Channel3]
[]

[read cycle2 == 0] → Client Event 1 [request, report, Channel1, Channel2, Channel3]
)

process Client Event 2 [request, report, Channel1, Channel2, Channel3] : noexit :=
Channel2 ? read cycle2 : Nat;
(

[read cycle3 == 1] → report !1 !2 !3; /* 1.2.3 represent EPCreport respectively
[]

[read cycle3 == 0] → Client Event 2 [request, report, Channel1, Channel2, Channel3]
)
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Specification 3 Synchronous pool mode foe fine-grained event

specification Poll Sync2 [request, report, Channel1, Channel2, Channel3] : noexit
. . . . . . The main structure is the same as Pool Sync.

process ALE Engine [request, report, Channel1, Channel2, Channel3] : noexit :=
request ? read cycle1 : Nat ? read cycle2 : Nat ? read cycle3 : Nat;

Client Event [request, report, Channel1, Channel2, Channel3] /* Call sub process for completing Asynchronous poll mode.
process ALE Client [request, report, Channel1, Channel2, Channel3] : noexit :=

request ? read cycle1 : Nat ? read cycle2 : Nat ? read cycle3 : Nat;
(

([read cycle1 == 1] →
Channel1 ? g : Nat; /* get EPCs from Channel
report !g;

[]
([read cycle2 == 2] →

Channel2 ? h : Nat;
report !h;

[]
([read cycle3 == 3] →

Channel3 ? j : Nat;
report !j;

)

Algorithm 1: Asynchronous event cycle for poll mode
Input: The report definition and the EPCs from read

cycles
Output: ECPreport

1 foreach epc from readeri do
2 for k = 1, . . . , timeri do
3 Insert epc into EPCdatabase

[epc, read cyclei, even cyclei]
4 end
5 end
6 foreach recorder [epc, read cyclei, even cyclei] in

EPCdatabase do
7 foreach event cyclei do
8 read cycle ↓ event cyclei = {read cyclei in

read cycle |F (read cycle) = eventcyclei};
9 E(reporti) ↓ event cyclei; /* create a ALE report

10 send((event cyclei, E(reporti) ↓ event cyclei),
ALE consumer);

11 end
12 end

The time efficiency of Algorithm 1 is O(CT ) + O(HC)
where the C is number of readers, T is the duration of the
timer, and H is the maximum length of EPCdatabase.

An implementation of the fine-grained event cycle for pool
mode is given in two parts. The first part shown in Algorithms
2 is to send EPCs to the ALE consumer for each read cycle
under event cycle, and the second part given in Algorithm 3
is to receive the EPCs and reorganize them in the EPCreport.

The time efficiency of Algorithms 2 and 3 is O(CT ) +
O(CE) where the C is number of readers, T is the duration
of the timer, and E is number of event cycles.

Algorithm 2: Forward EPCs to ALE consumer
Input: EPCs from read cycles
Output: ECPdatabase

1 foreach epc from readeri do
2 for k = 1, . . . , timeri do
3 read cyclei ↓ event cyclei = {epc ∈

read cyclei |G(epc) = event cyclei;
4 E(reporti) ↓ event cyclei; /* create a ALE

report
5 send((event cyclei, E(reporti) ↓ event cyclei),

ALE consumer);
6 end
7 end

Algorithm 3: Reorganize EPCreports
Input: EPCreport definition and all the EPCreport’s
Output: ECPreport

1 receive((event cyclei, E(reporti) ↓
event cyclei), ALEengine);

2 foreach event cyclei defined by EPCreport definition do
3 j = get(event cyclei);
4 foreach EPCreporti do
5 EPCreporti ↓ event cyclej = {EPC ∈

EPCreporti |G(EPCreporti)event cyclei};
6 E(reportj) ↓ event cyclej); /* create ALE

report for each event cycle
7 end
8 end

IV. EXPERIMENTAL STUDY

In this section we introduce two experimental simulation
results, one for the synchronous mode and one for the
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asynchronous mode. We used LOTOS and its tool set CADP
[10] as the simulation tool. In order to evaluate our improved
asynchronous poll mode we also give an example where the
original synchronous poll mode generated a failed result. Our
experiments were done on a Core-2 E4700 CPU with Linux
OS and CADP simulation tool.

The state chart for the synchronous pool mode is given in
Fig. 4a. It shows that the request !1!2!3 goes through the states
0→ 2→ 6→ 13→ 20→ 24 and report !1!2!3 is received at
state 24. The asynchronous mode is shown in Fig. 4b.
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Fig. 4: State charts for synchronous and asynchronous poll
modes

The failed example for synchronous pool mode is shown in
Fig. 5a where the request does not generated a desired report.
Fig. 5b shows an asynchronous pool mode experiment where
the network successfully generated the requested report.

The experimental result of synchronous and asynchronous
poll mode is given in Table I.

In order to check the reliability of both poll modes, we use
the µ-calculus as the logic temporal language to describe the
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Fig. 5: State charts for failed and successful poll modes

TABLE I: Experimental result of each type of poll mode

pool mode
size of number of time

Arbitrage
state space state transitions (m)

Synchronous 25 34 42 true
Asynchronous 9 14 48 true
Failed of synch 10 12 36 false
Success of asynch 20 37 64 true

term for successful termination. The µ-calculus express for
successful term is this:

[true* . ’REQUEST !1 !2 !3’ . (not ’REPORT !1 !2 !3’)*]
< (not ’REPORT !1 !2 !3)* . ’REPORT !1 !2 !3’ > true

That means when the ALE consumer sends Request for
EPCreport then it can get replied EPCreport.
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V. RELATED WORK

One of the areas of the related work is database systems
where transactions require atomicity, consistency, isolation,
and durability (ACID). A centralized database management
system is often used as the data repository and an arbiter that
controls the execution of transactions. However, it is infeasible
to impose control over scheduling of transactions at different
reader over a network, and it is challenging to evaluate whether
distributed transactions are conflicting.

On conflict serializability, there has been a lot of work on
transaction models for mobile ad hoc networks [5], [12], [13],
[14], [18] that all assumed a centralized database and an arbiter
at the server, and try to address the consistency of hidden read-
only transactions initiated by mobile clients [6].

Another related work are transaction management models
in SOA [4]. Numerous advanced transaction models have
been proposed to address the problem of providing some
of the benefits of ACID transactions for long running and
loosely coupled systems [7], [11]. One of such models uses
a compensator to semantically undo completed operations. In
this model, the system is reverted to its previous stable state
when the application encounters a failure. This model has
been accepted in several of the standards proposed for service
oriented computing, such as BPEL4WS [1] and WSCI [2]. The
drawback of this model is that the application may not want
to revert to the original state in response to an exceptional
event; rather it may want to handle the problem and continue
making forward progress.

Recently service based transaction frameworks such as
WS [3], [17], BTP [15] and WS-CAF [16] have been pro-
posed to address the transactional problem in service ori-
ented distributed systems. WS-Coordination defines two types
of transaction protocols: WS-AtomicTransaction and WS-
BusinessActivity. A detailed descriptions of these protocols
can be found in [11]. BTP and WS-CAF also provide a set
of patterns and protocols, but do not deal directly with the
problem of consistency and isolation.

VI. CONCLUSION

With the rapidly development of EPC Network the user
have turned attention to the reliability and the performance of
application system. As a key component of EPC framework,
ALE plays an important role in reliability and performance in
EPC applied systems. In this paper we proposed two methods
for improving ALE’s reliability and performance. By adapting
original poll synchronous mode to the new asynchronous
mode, the reliability of ALE is enhanced; and by separating
fine-grained cycle from the coarse event cycle, EPC network
channel can be released to prevent traffic block. The simulation
results has shown the effectiveness of the proposed methods.

We are now developing a real EPC network applied system
for a retail enterprise. In fact, part of the experimental study
was from this real EPC system. We will continue to complete
the ALE implementation with the idea presented in this paper.
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