
1

Specification-based Testing of Concurrent Systems

Andreas Ulricha, Hartmut Königb

a Fakultät für Informatik, Otto-von-Guericke-Universität, PF 4120, 39016 Magdeburg,
Germany; E-mail: ulrich@cs.uni-magdeburg.de
b Fakultät für Informatik, BTU Cottbus, PF 101344, 03013 Cottbus, Germany; E-mail:
koenig@informatik.tu-cottbus.de

The paper addresses the problem of test suite derivation from a formal specification of a dis-
tributed concurrent software system by presenting a concurrency model, called behavior
machine, and its construction algorithm from a collection of labeled transition systems. It out-
lines how test derivation can be based on the new concurrency model to derive test suites that
still exhibit concurrency between test events. A toolset is presented to support the generation of
concurrent test suites from specifications given in the formal description technique LOTOS.
Finally, some comments on requirements for the design of a distributed test architecture are
given.

Keywords: Distributed concurrent software systems; conformance testing; test derivation;
labeled transition systems; Petri nets.

1 INTRODUCTION
Testing is an important phase in the development cycle of software. A challenging problem is
the derivation of test suites that are able to firmly detect faulty implementations of a system.
Driven by requirements in testing telecommunication systems, approaches were developed to
assist the automatic derivation of test suites [ADL+91] [Fer96]. These approaches are usually
based on a finite description of the behavior of the system, mostly the model of a finite state
machine, that is also exploited in the verification phase of the system. However, current test
derivation approaches only support the derivation of test suites for sequential systems. One rea-
son is that they are faced with computational problems due to state explosion if they resolve
specified concurrent behavior in an interleaving sequence of actions of a derived test suite. Fur-
thermore, its execution in a standard black-box test architecture might be not sufficient to
assess conformance of truly concurrent systems since the message exchange between compo-
nents of the concurrent system must be observed and controlled by a tester in addition in order
to avoid nondeterministic test runs.

This paper continues work on the use of partial orders for test suite derivation of concurrent
systems. It improves the previous work done in [UlCh95] and also other known work on this
subject, e.g. [LSK+93], [KCK+96], by providing a sound concurrency model that can be con-
structed automatically from a collection of communicating labeled transition systems (LTSs).
The new concurrency model, called behavior machine (BM), is an interleaved-free and finite
description of concurrent and recursive behavior. The construction algorithm works as follows.
First, the LTSs are mapped into a single Petri net representing the system. This Petri net is fur-
ther used to construct its unfolding, another Petri net with a simpler structure, using an algo-
rithm from [ERV96]. The behavior machine is then constructed from the finite prefix of a Petri
net unfolding. An early version of the construction algorithm is given in [Ulr97].

2

After the behavior machine is introduced as description model of concurrent behavior, the
test derivation approach is extended to support the new model. It is shown how an extension of
the transition tour can be derived using algorithms already known from sequential systems.
First results of the new testing approach that were obtained with a prototype implementation
supporting specifications in Full LOTOS are discussed.

The paper is organized as follows. Section 2 introduces the model assumptions on a concur-
rent system. Section 3 sets up the new concurrency model. Some Petri net notions are
explained in Section 4 that are needed for an easy understanding of the construction algorithm.
Section 5 presents the algorithm to compute a behavior machine. In Section 6, the behavior
machine serves as model for test derivation. An algorithm to derive a test suite from a behavior
machine is presented. Section 9 discloses first results of a prototype implementation using a
larger example of a concurrent system, different realizations of leader election algorithms from
[GaMo96], and finally, Section 8 explains concepts of the design of a distributed test architec-
ture.

2 A MODEL FOR DISTRIBUTED CONCURRENT SYSTEMS
We consider distributed concurrent software systems consisting of a collection of software
modules running on different host machines and connected through a computer network. Each
module is implemented as a sequential unit realizing a certain function of the system. Modules
communicate synchronously via interaction points. The synchronous communication pattern
fits the properties of programming languages for concurrent systems, e.g. Ada, and function
calls in high-level network programming, like remote procedure calls, which are used, for
instance, in the middleware platform CORBA.

Starting point of our investigations is a formal specification that defines the desired behavior
of the concurrent system. Sequential behavior of a module in a concurrent system is modelled
as a labeled transition system (LTS). The model of a LTS is an abstraction that focuses on
interactions of a module with other modules in the system and/or with its environment.

Definition (1): A labeled transition system (LTS) is defined by the quadruple (S, A, →, s0),
where S is a finite set of states; A is a finite set of actions (the alphabet); → ⊆ S × A × S is a tran-
sition relation; and s0 ∈ S is the initial state.

A concurrent system ℑ = M1 || M2 || … || Mn is composed from a fixed number of communicat-
ing LTSs Mi. A composite machine Cℑ of ℑ (also an LTS) is expressed by means of a composi-
tion operator || similar to that used in CSP. P || Q is the parallel composition of modules P and
Q with synchronization of the actions common to both of their alphabets and interleaving of
the others. The parallel composition P || Q of two LTSs P = (S1, A1, →1, s1) and Q = (S2, A2,
→2, s2) is defined as a composite LTS (S, A, →, s), where S ⊆ S1 × S2, A ⊆ A1 ∪ A2, s = (s1, s2),
and the transition relation → is given as follows: If P –a→1 P' then (P || Q) –a→ (P' || Q) if a
∉ A2. If Q –a→2 Q' then (P || Q) –a→ (P || Q') if a ∉ A1. If P –a→1 P' and Q –a→2 Q' then (P ||
Q) –a→ (P' || Q') if a ∈ A1 ∩ A2.

3 A CONCURRENCY MODEL
The representation of concurrent behavior in a composite machine is accomplished by a
tedious repetition of concurrent actions in order to construct all possible total orders. However,
concurrent actions are independent to a certain extent from their occurrence in a total order.
Instead of interpreting causality information in an interleaved-based model, we apply the
notion of a labeled partially ordered set and its extension to a partially ordered multiset, which
are interleaved-free representations of concurrent behavior [Pra86].

3

Definition (2): An lposet (labeled partially ordered set) is defined by the quadruple (E, A, ≤, l),
where E is a set of event names; A is a set of action names; ≤ is a partial order expressing the
causality information between events, i.e. e ≤ f if event e precedes event f in time; l: E → A is a
labeling function assigning action names to events. Each labeled event represents an occur-
rence of the action labelling it, with the same action possibly having multiple occurrences.

A pomset (partially ordered multiset) is an isomorphism class over event renaming of an
lposet, denoted [E, A, ≤, l]. A process describing the behavior of concurrent system ℑ is a set of
pomsets where each pomset describes a possible execution sequence of concurrent actions.
Since the behavior of a system is frequently infinite due to recursive parts in the system
description, the pomsets of a process are infinite, too. If branching occurs in a process, the set
of pomsets forms an infinite pomtree [PLL+91], where an arc in the pomtree is an lposet or a
concatenation of lposets, and a vertex is a branching point of the process (see Figure 3).

Since the construction of the composite machine from a set of communicating LTSs is not
feasible in many cases due to state explosion, it follows that we need a new model that com-
bines the advantages of both concepts: true concurrency between actions as preserved in an
lposet and finiteness of the description as preserved in a LTS. This model is a behavior
machine (BM), a similar model to the one introduced in [PLL+91]. However, the main advan-
tage of a behavior machine is that it can be constructed automatically, as it will be shown in the
paper.

Definition (3): The behavior machine of concurrent system ℑ is a quadruple BMℑ = (G, LPO,
T, g0) consisting of a finite set of global states G, where each element of G is an n-tuple of local
states of all LTSs of ℑ , i.e. G ⊆ S1 × … × Sn; a set of finite lposets LPO representing concur-
rency in ℑ ; a concurrent transition relation T ⊆ G × LPO × G that maps a start state to an end
state by performing the actions of the corresponding lposet; and an initial global state g0 = (s1,
…, sn) ∈ G.

A global state of behavior machine BMℑ , excluding its initial state, expresses always a branch-
ing point or a recurrence point within concurrent system ℑ . A branching point is a global state
where further behavior of the system branches off. A recurrence point is a global state where
the behavior of the system repeatedly continues. An lposet in BMℑ is constructed in such a way
that it connects always two global states of BMℑ by a concurrent transition. A pomtree can be
obtained from BMℑ if its concurrent transitions are unrolled. In this case, branching points in
the behavior machine correspond to branching points in the pomtree, whereas recurrence
points are skipped. Thus, unrolling of a behavior machine is similar to the construction of a
spanning tree from a directed graph.

Let t1 an t2 be two concurrent transitions of BMℑ with t1 = (g1, lpo1, g2) and t2 = (g2, lpo2,
g3). The operation t1 ⊕ t2 expresses concatenation of the two concurrent transitions. Concate-
nation is carried out in the way that each local state of the end state g2 in t1 is connected with
the same local state of the start state g2 in t2. That means, the lposets lpo1 and lpo2 are merged
according to the causal dependencies between their events.

Consider the simple system ℑ = A || B whose LTSs are given in Figure 1. Under the assump-
tion that actions a and c in each LTS synchronize, removal of parallel operator || by applying
interleaved-based semantics rules yields the composite machine Cℑ . Figure 2 shows the behav-
ior machine of system ℑ . It contains three global states {S0, S1, S2} and four concurrent transi-
tions {t1–t4} and describes the same behavior of system ℑ as given in Figure 1. Each
concurrent transition is described by an lposet that exhibits concurrency among actions (see
transition t4). If the behavior machine is unrolled, the pomtree of Figure 3 is obtained. The pro-
cess of unrolling exhibits the full degree of concurrency between events. For instance, if transi-
tions t2 and t4 are concatenated, we realize that event b is concurrent to event e.

4

Although the behavior machine in Figure 2 is not the smallest representation of concurrent
behavior caused by its construction algorithm discussed below, it is still a very compact repre-
sentation of concurrent behavior. In this specific example, action a is redundantly represented
within the concurrent transitions t1 and t4 what can be avoided in the minimal description. Fur-
thermore, a behavior machine is able to distinguish concurrency from branching. This knowl-
edge is lost in the composite machine Cℑ .

4 PETRI NET CONCEPTS
The construction algorithm of a behavior machine is based on a Petri net description of the
concurrent system. In [McM95] and [ERV96], a verification approach was described that is
based on the technique of net unfolding, a partial order semantics of Petri nets. The unfolding
of a Petri net is another (usually infinite) net with a simpler structure. The proposed algorithms
in both papers aim at constructing the initial part of the net unfolding that contains all reach-
able states of the original net, called the finite complete prefix.

A net is a triple (S, T, F), where S is the set of places, T is the set of transitions, S ∩ T = ∅ , F
⊆ (S × T) ∪ (T × S) is the flow relation, If M: S → N is a marking of a net (N denotes the set of

FIGURE 1. LTSs A and B, and the composite machine Cℑ of system ℑ = A || B.

0

1

2

a

b

d

0

1

a e

01 11 21

00 10 20

ae e e
b

b

d

d

A B

Cℑ

c

c

c

FIGURE 2. The behavior machine BMℑ of system ℑ .

S0

S1

S2

t1

t2
t3t4

where S0=(A0, B0), S1=(A1, B1), S2=(A2, B1)
are global states, and the concurrent transitions are

A0
B0

A1
B1

A2
B1

A1
B1

A1
B1

A1
B1

A2
B1

A2
B1

a

b

c

d

e
a

t1:

t2:

t3:

t4:

FIGURE 3. A pomtree of system ℑ = A || B.

a
b

d
e

a b

c
b

d
e

a b

c
b

d
e

a b

c
b …

…

…

…

5

non negative integers), the 4-tuple N = (S, T, F, M) is called a Petri net [Rei91]. The unfolding
of a Petri net is a (unmarked) net (B, E, F), where B is the set of conditions, E is the set of
events, with the properties: (1) it is an acyclic graph, (2) if two events (transitions) e1, e2 ∈ E of
the unfolding are in conflict, meaning that they are enabled from the same condition (place),
then there exist two paths leading to e1 and e2 that start at the same condition and immediately
branch off from another, (3) the nodes in the unfolding have a finite number of predecessors,
and (4) no event is in self-conflict.

Figure 4 depicts the Petri net description of system ℑ and the initial part of its unfolding. Note
that the unfolding is not finite. For instance, if event E4 is performed, the unfolding continues
by substituting place B10 with B3 and B11 with B4, respectively. This applies similarly to
event E6. Events E4 and E6 are also in conflict. The branching point where the paths leading
to the events branch off from another is the marking {A1, B1}, represented by the place set
{B5, B4}.

A local configuration [e] of event e in the unfolding describes a possible partially ordered
run of the system which executes event e as its last event. It is a set of events satisfying the fol-
lowing two conditions: (1) if any event is in the local configuration, then so are all of its prede-
cessors, and (2) a local configuration is conflict-free. The local configuration captures the
precedence relation between events. Any total order on these events that is consistent with the
partial order is an allowed totally ordered run of the system. Throughout the paper, we use the
notions local configuration and configuration interchangeable.

To compute the finite complete prefix of a Petri net, it is necessary to define a break-off con-
dition to stop the construction of the unfolding. This is done by introducing cut-off events. An
event e is a cut-off event if the local configuration [e] belonging to event e reaches a marking
Mark([e]) in the unfolding that was reached before by a smaller local configuration of a differ-
ent event.

Consider the unfolding in Figure 4b. The configuration of event E6 is the set of events [E6]
= {E1, E2, E3, E5, E6}. The reachable marking of this configuration is Mark([E6]) = {A1,
B1}. This marking was reached before, however, by configuration [E1] = {E1}. We say, event
E6 corresponds to event E1. Since the configuration of E1 has fewer elements than the config-
uration of E6, it follows that E6 is a cut-off event. The second cut-off event is E4.

a

e

b

d

c

A0 B0

A1

B1

A2

a
A0 B0

A1
B1

b

c

e

B0A2

d

A0 a

A1 B1

A1 B1

a)
b)

FIGURE 4. The marked Petri net of system ℑ = A || B (a) and its unfolding (b).

B1 B2

E1
B3 B4

E2
E3

B5

E4

B6

E5

E6

B7B10
B11

B8 B9

6

Proposition (1): Given the unfolding of a 1-save Petri net as it is obtained if the net is con-
structed from a set of communicating LTSs describing a concurrent system. Any deadlock-free
system is completely represented by the finite set of tuples of cut-off and corresponding events
{(,), (,), …, (,)}, where the two configurations of
events in a tuple reach the same marking, Mark([]) = Mark([]).

The proposition requires cut-off events for each execution branch in the net unfolding. Their
existence was proven in [ERV96]. A deadlocking system, however, reaches a final marking
that does not relate to a cut-off event. The construction algorithm of a behavior machine is cur-
rently restricted to concurrent systems without deadlocks. This is, however, not a restriction for
the purpose of test derivation since we usually require that the specification of a system had
been verified to be deadlock-free before it is implemented and finally tested.

5 CONSTRUCTION ALGORITHM OF A BEHAVIOR MACHINE
The first step in constructing a behavior machine from a set of communicating LTS is a trans-
formation of the LTSs into a global Petri net. After the transformation, the unfolding algorithm
is applied to unfold the Petri net and to construct the set of pairs of cut-off and corresponding
events. Finally, the behavior machine is constructed from the unfolding.

Constructing a Petri net from a set of communicating LTSs is simple. The following algo-
rithm is applied: first, each single LTS is transformed into a Petri net; then, all Petri nets are
merged according to the synchronization constraints in order to obtain a global Petri net. If the
same action name labels several transitions in several LTSs, then a net transition for each
allowed way of synchronization has to be constructed in the global Petri net. The transforma-
tion was already presented in [GaSi90] and is used in the Cæsar/Aldebaran toolset that sup-
ports verification of specifications given in the formal description language LOTOS.

Figure 4a shows the Petri net constructed from the two LTSs in Figure 1. The next step is
the construction of the finite complete prefix. This is done by applying the algorithm presented
in [ERV96]. Figure 4b depicts the prefix of the example system. The last step, the construction
of the behavior machine, is described below.

We assume that the finite complete prefix of a Petri net unfolding, including the set of cut-
off and corresponding events, is given. The local configuration of an event describes an execu-
tion path through the behavior machine from the initial state to this particular event. The mark-
ing reached by the configuration of an event defines a global state in the behavior of a
concurrent system. The reachable marking of a configuration can be identified with places in
the unfolding that are reached if all events in the configuration are executed.

When the behavior machine is constructed, it is not necessary to compute all reachable
markings in the unfolding. Instead, only those reachable markings have to be known that are
recurrence or branching points. Cut-off events and events corresponding to them define recur-
rence points of the behavior machine. Yet, branching points have to be computed.

To identify the branching points, we do the following considerations. Given the finite com-
plete prefix of an unfolding, each local configuration of a cut-off event or a corresponding
event starts in the initial state of the system, i.e. the initial marking, and ends in a marking
reached by the configurations of those events. Since the finite complete prefix covers all reach-
able states of the system, branching points exist only somewhere inside the configurations of
cut-off and corresponding events. If we analyze any two configurations [e1] and [e2] with e1 ≠
e2 from the same unfolding, we realize that the configurations start with a same subset of
events and branch off from another after a certain event ebranch occurred in both configurations.
Now, a branching point can be defined exactly by the reachable marking of the configuration
formed by this event ebranch assuming that ebranch ∈ [ei]; and [ebranch] is the maximal configu-
ration that holds the condition [ebranch] ⊆ [ei], with i = {1, 2}.

ecutoff1
ecorresp1

ecutoff2
ecorresp2

ecutoffn
ecorrespn

ecutoffi
ecorrespi

7

This observation leads to the construction algorithm of a behavior machine. It takes as input
the set of cut-off events and corresponding events that are contained in the finite complete pre-
fix of an unfolding. The idea of this algorithm is to construct the configurations of the given
cut-off and corresponding events first. Then, the events in the configurations are analyzed in
order to identify the branching points.

1 • let E be the set of cut-off events and corresponding events in a finite complete prefix;
2 • let E initially be the set of configurations from all events in E, i.e. E = {[e1], [e2], …};
3 forall configurations [e] ∈ E do
4 forall events d ∈ [e] with d ≠ e do
5 if (([d] ∉ E) AND (successors(d) are branching places)) then
6 • mark d as branching event;
7 E = E ∪ {[d]};
8 end
9 end
10 end
11 forall configurations [e] ∈ E do
12 forall configurations [d] ∈ E do
13 if ((|[e]| < |[d]|) AND ([e] ⊆ [d])) then
14 • mark [e] if it is a maximal configuration contained in [d];
15 end
16 end
17 forall configurations [e] ∈ E do
18 if ((e is a branching event) AND

([e] is marked as a maximal configuration less than twice)) then
19 E = E \ {[e]};
20 end
21 return E;

ALGORITHM 1. Generation of configurations represented in the behavior machine.

As discussed above, a branching point is defined by the reachable marking of a configuration
of maximum size contained within two or more other configurations. To identify these points,
we analyze the successor places of an event e. If at least one of the successor places has more
than one successor event, the reachable marking of the configuration [e] might be a branching
point in the behavior machine. Since this result is obtained from a local analysis of a single
event rather than from an analysis of the global system, not all events found refer really to a
branching point. Algorithm (1) takes into account this aspect and returns only those events and
their configurations that will be finally considered in the construction of a behavior machine.

The initial set of configurations E is obtained from the configurations of cut-off and corre-
sponding events contained in the prefix of the unfolding (line 2 in Algorithm (1)). In the next
step, further configurations of events are added to E if these events possess successor places
that cause local branching (lines 3–10). The third step (lines 11–16) determines whether a con-
figuration is contained in another one and marks the maximal configuration that fulfills this
property. The final step (lines 17–20) deletes configurations of events added to E before if they
are not marked as maximal configurations or if they are marked only once in another configu-
ration. That means, configurations that do not determine a branch in the behavior are omitted in
the construction of the behavior machine.

Algorithm (1) returns the set of configurations E relevant in the construction of the behavior
machine, i.e., the configurations have the property that they reach the marking of a recurrence

8

point or a branching point. In Algorithm (2), this knowledge is used to construct the global
states and the concurrent transitions of the behavior machine of a concurrent system.

In line 4 of Algorithm (2), the reachable marking is computed. Note that the reachable
markings are the same for the configuration of a cut-off event and the configuration of its cor-
responding event, thus the second computation is redundant. A concurrent transition in a
behavior machine is computed in line 10. It is simply the set difference of configuration [d] and
the maximal configuration [e] contained in [d]. This computation is correct since the configura-
tion [e] is a subset of [d], and all events in [e] occur in the behavior machine in one or more
other concurrent transitions. The behavior machine is now nearly complete. The missing initial
global state of the behavior machine is computed from the reachable marking of the empty
configuration, i.e., it is the initial marking in the Petri net.

1 • let E be the set of local configurations;
2 global_states = ∅ ;
3 forall configurations [d] ∈ E do
4 • compute the reachable marking reachable_marks of [d];
5 global_states = global_states ∪ {reachable_marks};
6 end
7 conc_trans = ∅ ;
8 forall configurations [d] ∈ E do
9 • let [e] be the maximal configuration of [d];
10 conc_trans = conc_trans ∪ {[d] \ [e]};
11 end
12 return global_states, conc_trans;

ALGORITHM 2. Construction of global states and concurrent transitions in a BM.

The construction of a behavior machine is based on cut-off events and corresponding events in
the finite complete prefix and the configurations belonging to them. If we assume that the
events and conditions of the prefix are stored in doubly linked lists, local configurations and
reachable markings can be computed in linear time. Thus, the highest complexity of the con-
struction algorithm is contained in Algorithm (1), lines 11–16. The complexity of these few
lines is bound on O(n2 · (logk n)2), where n is the number of places in the prefix of the unfold-
ing, and k is the largest number of successor places of any transition. All other parts of the con-
struction algorithm are less complex.

To demonstrate the feasibility of the construction algorithm, we compute the behavior
machines for a variable number of processes of the Dining Philosophers example. The results
are given in Table (1). Note that this classic example contains a deadlock state whose configu-
ration leading to this state is not represented in the behavior machine due to Proposition (1).
However, all other behavior parts are truly represented. The second column of the table shows
the number of reachable states computed in a traditional reachability analysis. This number of
states grows clearly exponentially with the number of philosophers. The size of the unfolding
is given in the third column. The following two columns reveal the numbers of concurrent tran-
sitions and global states of the constructed behavior machines. We realize that the number of
global states increases slightly worse than quadratic. Even though the computation time
increases fast and seems to be a function of n5.5, where n is the number of philosophers, the
time is still reasonable small. This is also particularly true for the memory space used. The
computation time of the finite complete prefix that is used as input for our construction algo-
rithm was always less or around few seconds.

9

6 TEST GENERATION BASED ON BEHAVIOR MACHINES
The behavior machine is an appropriate model for test suite derivation. A test suite has to fulfill
certain properties to be useful in software testing. Especially, it must distinguish faulty imple-
mentations from correct ones according to a chosen conformance relation. A conformance
relation commonly used in testing is the trace equivalence between LTSs modelling the speci-
fication and the implementation. We extend trace equivalence over LTSs to an equivalence over
behavior machines. First, equivalence of lposets is defined as follows borrowing ideas from
[Bri88].

Definition (4): Lposet lpo1 = (E1, A1, ≤1, l1) reduces lposet lpo2 = (E2, A2, ≤2, l2), denoted lpo1
∼ lpo2, iff A1 ⊆ A2, and for all e, f ∈ E1, if e ≤1 f then there exist r, s ∈ E2 such that r ≤2 s, and
l2(r) = l1(e), l2(s) = l1(f). Two lposets are equivalent, lpo1 ≈ lpo2, iff lpo1 ∼ lpo2 and lpo2 ∼ lpo1.

We define further a sequence seq of lposets as a concatenation of a matching sequence of
lposets according to the ⊕ operator (see Section 3): seq = lpo1 ⊕ lpo2 ⊕ lpo3 ⊕ …. Thus, a
sequence of lposets describes a pomset, i.e. an execution branch of the concurrent system as
depicted in its pomtree. Two sequences seq1 and seq2 equal, seq1 = seq2, if their lposets are
equivalent.

Definition (5): Given two concurrent systems ℑ and ℜ and their behavior machines BMℑ and
BMℜ , respectively. Let Seq(BM) refer to the set of sequences of lposets of which behavior
machine BM is able to perform. ℑ and ℜ are equivalent, ℑ ≈ c ℜ , iff Seq(BMℑ) = Seq(BMℜ).

A test suite consisting of a finite set of finite test cases is sound w.r.t. a fault model if any con-
forming implementation passes the test suite. A test suite is complete w.r.t. a fault model if any
non-conforming implementation from the implementation domain fails the test suite [PYB96].
A possible implementation domain is the set of implementations with acceptance faults, i.e.,
those implementations may not accept all actions by corresponding transitions as required in
the specification, they reduce the specification [Lan90].

Acceptance faults can be detected by a transition cover through the concurrent system. A
transition cover is usually defined over an LTS as a set of traces covering all transitions in the
LTS. We extend now the notion of a transition tour [ADL+91] over a behavior machine as the
least sequence of lposets covering all lposets. Such a sequence of lposets can be seen as a
“transition cover” through a behavior machine. The extended notion is called concurrent tran-
sition tour (CTT) [UlCh95].

#
philo.s

reachable
states

conditions
in prefix

global
states

 # concurrent
transitions

mem. usage
(kByte)

computation
time (sec)

5 392 135 16 35 36 0.11

7 4,247 273 36 77 61 0.73

9 46,763 459 64 135 98 2.96

11 510,116 693 100 209 151 9.12

13 5,564,522 975 144 299 222 22.76

15 — 1305 196 405 314 48.83

TABLE 1. Results of the Dining Philosophers example, computed on a SPARC Station 5.

10

Definition (6): (CTT) A concurrent transition tour through a behavior machine BMℑ of a con-
current system ℑ is the least pomset CTT = [ECTT, ACTT, ≤, l] such that all actions of ℑ are cov-
ered in the pomset, i.e. if a ∈ A1 ∪ A2 ∪ … ∪ An, then a ∈ ACTT, and ECTT is minimal.

Derivation of a CTT from a behavior machine is straightforward. Since the description of con-
current behavior is reduced to a finite directed graph, simple graph algorithms can be applied.
To construct a CTT, an algorithm that solves the Chinese postman problem is appropriate
[ADL+91]. First, all strongly-connected components of maximum size contained in a behavior
machine are computed. After that, a CTT is derived for each strongly-connected component.
This approach assures full coverage of all transitions in the behavior machine. The complete
algorithm is given in Algorithm (3). Note however that the size of CTTs computed in this algo-
rithm might not be minimal if we assume, for example, a behavior machine consisting of two
components where the second component is reachable through the first one. Further optimiza-
tion strategies might become applicable in this case.

1 Find all strongly-connected subgraphs of maximum size , …, in behavior
machine BMℑ .

2 For each find the shortest path pi from the initial state of bm to .
3 For each find the Chinese postman tour pti.
4 A CTT of a subgraph of bm is found by concatenation of pi and pti: CTTi = pi ⊕ pti.
5 The test suite is the set of all CTTs found: TS = {CTT1, …, CTTn}.

ALGORITHM 3. Test suite derivation.

Consider the behavior machine BMℑ of the system ℑ = A || B in Figure 2. It contains one
strongly-connected component consisting of the states S1 and S2. The initial path to reach this
component is given by concurrent transition t1. The Chinese postman tour through the compo-
nent is the sequence of concurrent transitions t2 ⊕ t3 ⊕ t2 ⊕ t4. The final test suite of system ℑ
contains only a single CTT and is given in Figure 5 as a time-event sequence diagram where
the gray-shaped arrows denote synchronization constraints between the modules A and B. This
test suite describes the shortest path through the concurrent system fulfilling the requirements
of a CTT.

7 AN EXAMPLE SYSTEM
We discuss our test derivation approach for concurrent systems with a larger example taken
from [GaMo96]. It describes different LOTOS specifications of distributed leader election
algorithms for unidirectional ring networks. These algorithms address the problem that n sta-
tions need to share a common resource. Each station si is given a unique address Ai. Two
actions, “OPEN !Ai” and “CLOSE !Ai”, are used when si starts and stops to access the
resource. A token is exchanged between the stations to control the access. A distributed leader
election algorithm has to grant access to the resource for all stations fulfilling at least the two
properties that (1) access is mutually exclusive and (2) each station has equal opportunities to
access the resource. The simplest version of an algorithm assuming three stations is given in

bms
1 bms

n

bms
i bms

i

bms
i

FIGURE 5. A concurrent transition tour for concurrent system ℑ = A || B.

a

a

b c

c

b d

e

a

a

A

B

11

the Annex. Its LOTOS specification consists of three stations connected via three reliable links.
Other, more elaborated approaches that even work in the case of unreliable links, are discussed
in [GaMo96].

In order to operate with Full LOTOS applications, we use the Cæsar / Aldebaran verification
toolset [GaSi90]. Cæsar produces a global Petri net of the specification as it is a required input
for the construction of a behavior machine. The produced Petri net has also the advantage that
values of variables are still represented symbolically. The Petri net of the specification serves
then as input for the construction of the complete finite prefix of the net using the PEP tool
[GrBe96]. Finally, the behavior machine is constructed from the prefix as outlined in Section 5.
The corresponding tool searches for pairs of cut-off and corresponding events in the prefix,
constructs the local configurations of the events and finally the behavior machine. Eventually,
test suites according to the acceptance fault model are generated from each behavior machine.
Table 2 depicts the results of the computations for different specifications from [GaMo96].
Results for the specification given in the Annex are contained in the first row (reference no. 1).
The last two columns show the number of test cases, i.e. the number of different CTTs to cover
the behavior machine, and the overall size of a test suite derived from the behavior machine.
As a comparison the sizes of the interleaved-based composite machines are also given. These
results were obtained from the Aldebaran tool.

The results in the table disclose that the advantage in a smaller size of a behavior machine
over the composite machine depends on the considered specification. If the degree of concur-
rency is low, as it is indeed the case for specifications 1 and 2, the behavior machine reaches
the size of the composite machine or is even larger if recursion points cannot be detected effi-
ciently. However for the other concurrent systems, the computed behavior machines are much
smaller than their interleaved-based models. In case of specification 11, the composite machine
could not be computed at all due to memory shortage (results are from a SPARC 20 with 64
MB memory).

At this place it should be noted that the construction of a behavior machine from the prefix
of a Petri net unfolding using the verification tool PEP does not always give satisfying results
since PEP stops to unfold an execution branch of the Petri net if it has covered all reachable
states (a sufficient condition in verification) instead of continuing unfolding till a cut-off event
is reached. This results in behavior machines containing cycles that are not yet completed and

Ref Composite machine Behavior machine Concurrent test suite

states # transitions # states # transitions # test cases # test events

1 42 52 38 61 27 182

2 50 72 66 125 66 575

3 126,577 319,010 1159 2506 1354 11,329

4 43,296 115,108 1040 2269 962 9344

5 16,985 42,423 1432 2971 1378 13,355

6 6572 14,516 1303 2703 1044 11,671

7 30,085 77,680 2178 5134 1265 22,221

8 9,308 21,078 2049 4930 807 19,884

9 255,292 657,751 2871 7505 1352 30,876

10 31,914 74,202 2686 6993 920 26,338

11 — — 2048 5428 1257 22,892

12 689,515 2,960,587 1808 4807 859 17,694

TABLE 2. Results of the computation of test suites for different leading election algorithms.

12

explains the sometimes very high number of CTTs (test cases) required to obtain full coverage
in a test suite. A new implementation of the testing approach should eliminate the disadvantage
by including the unfolding algorithm and BM construction algorithm into a single tool.

Finally, Figure 6 gives an impression of the initial part of a concurrent transition tour as it was
automatically generated using the tools introduced above. The CTT was obtained from the
specification 1 described in the Annex. The representation of a CTT as time-event sequence
diagram exhibits the possibility to express true concurrency, although the degree of concur-
rency is quite low in this example. In fact, since there is only one token in that specific example
that is passed from one station to the next, the whole system behaves nearly sequential.

8 DISTRIBUTED TESTER DESIGN
Although the derivation of tests from concurrent systems appears to be manageable now by the
approach presented before, there is still the problem to apply such a concurrent transition tour
in a real test environment. Here we are faced with some unpleasant properties of concurrent
systems, namely with the unpredictable progress of the independent modules, which the con-
current system contains of, when executing a test run and with hidden communication between
modules that remain unobserved by the tester. Both issues result in nondeterministic behavior
of the implementation under test (IUT). Whereas the second issue can be solved by applying a
gray-box testing approach, the first one requires special means to ensure a deterministic test
run, e.g. the instant replay technique presented in [TCO91].

Link3 Link2 Link1 Station3 Station2 Station1

1

2

21

3

19

21

3

1212

1313

11 11

1616

19

21

21

15 15

1313

18 18

8

7

1717

1: init := true

2: when init = true

21: SUCC1 !TOKEN

12: PRED2 !TOKEN

13: SUCC2 !TOKEN

11: PRED3 !TOKEN
3: init := false

16: SUCC3 !TOKEN

19: when init = false

21: SUCC1 !TOKEN

15: PRED2 !TOKEN

13: SUCC2 !TOKEN

18: PRED3 !TOKEN

8: OPEN !A3
3: init := false

7: CLOSE !A3

17: SUCC3 !TOKEN

FIGURE 6. The initial part of a test case derived from specification #1.

13

Different test architectures can be designed to test a concurrent system. In the simplest case,
the tester is represented as a single module that implements a CTT of a given test suite. Since a
tester module can exhibit only sequential behavior, the concurrent behavior of a CTT must be
linearized in such a way that the causal relationships between events remain unchanged. For
example, if the CTT in Figure 5 shall be implemented, the sequence of events “a.b.c.b.d.e.a”
fulfills the requirements. If the IUT is correctly implemented according to the chosen fault
model, then it must be able to accept any sequence of the CTT and the selection of the actual
sequence used in testing is arbitrary.

In case that the tester consists itself of distributed concurrent tester parts, further efforts are
required to obtain reliable test results after a test run. Here, each tester part observes a sub-set
of events from the IUT. The partial behavior containing those events visible to a tester part can
be obtained from a projection from the complete CTT to a partial CTT containing only the vis-
ible events. Each tester part will then execute the behavior of the projected CTT. Yet, means
are required to obtain a globally ordered test run of the IUT from the observed partial behavior.
The paper [UlCh95] suggests the use of logical clocks in this case. Although logical clocks are
the most elegant solution for this issue, their application requires changes in the IUT in order to
provide the exchange of logical clock values between modules of the IUT and between IUT
and tester. Another solution to obtain a globally ordered test run is the inclusion of synchroni-
zation messages between tester parts: a tester part synchronizes with other tester parts after an
interaction with the IUT. A starting point for further research in the area of distributed test
architecture design can be the paper [ChVD90] that introduces the ferry-clip approach, a dis-
tributed test architecture to support multi-party testing.

9 CONCLUSIONS
The model of a behavior machine is used to support test derivation for concurrent systems. The
model has its merits as a finite description of concurrent systems that still exhibits true concur-
rency among actions. Furthermore, a behavior machine distinguishes concurrency from execu-
tion branching. Vertices in the behavior machine refer usually to a small subset of the set of
reachable global states in the system. The main contributions in the paper are the presentation
of an algorithm that constructs a behavior machine from a Petri net unfolding as well as the
application of the behavior machine to the realm of test derivation. For the purpose of test der-
ivation, the notion of trace equivalence was extended to cope with concurrent behavior. Using
the equivalence over behavior machines as conformance relation, a test derivation algorithm
based was introduced that generates test suites according to the acceptance fault model.

The presented approach to construct a behavior machine can be improved. Especially, the
Petri net unfolding algorithm and the construction algorithm of the behavior machine should
be combined into a single tool. Furthermore, the construction algorithm of a BM should sup-
port any kind of concurrent systems, not just deadlock-free ones, to be applicable in general.
Other extensions of a behavior machine may include the support of inputs and outputs and the
supply of operations over behavior machines, e.g. the composition of two behavior machines,
projections of behavior machines to submachines and other operations.

Test derivation from behavior machines produces currently test suites based on an extension
of the traditional transition tour through an LTS according to acceptance faults. Further, more
expanded fault models should be investigated and optimized test derivation algorithms should
be elaborated for them. There is also a more vigorous attempt needed to prove that the use of a
behavior machine of a concurrent system instead of its composite machine in test derivation
results in test suites of a comparable fault coverage. Last but not least, the employment of test
suites in a distributed test architecture is another big research area where a lot of work still
needs to be done.

14

ACKNOWLEDGMENT
The authors wish to thank Alex Petrenko for a very fruitful discussion and for his hints that
helped to improve the quality of the paper.

10 REFERENCES
[ADL+91] A. V. Aho, A. T. Dahbura, D. Lee, M. Ü. Uyar: An optimization technique for

protocol conformance test generation based on UIO sequences and rural Chi-
nese postman tours; IEEE Transactions on Communications, vol. 39, no. 11
(Nov. 1991); pp. 1604–1615.

[Bri88] Ed Brinksma: A theory for the derivation of tests; 8th International Symposium
on Protocol Specification, Testing and Verification (PSTV’88), Atlantic City,
USA; 1988.

[ChVD90] S. T. Chanson, S. T. Vuong, H. Dany: The ferry clip approach to multi-party
testing; 3rd International Workshop on Protocol Test Systems (IWPTS’90);
McLean, USA; 1990; pp. 335–353.

[ERV96] J. Esparza, S. Römer, W. Vogler: An improvement of McMillan’s unfolding
algorithm; 2nd International Workshop on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’96); Passau, Germany; 1996.

[Fer96] J.-C. Fernandez, C. Jard, Th. Jéron, César Viho: Using on-the-fly verification
techniques for the generation of test suites; 8th International Conference on
Computer Aided Verification (CAV’96); New Brunswick, New Jersy, USA;
1996.

[GaSi90] H. Garavel, J. Sifakis: Compilation and verification of Lotos specifications; 10th
International Symposium on Protocol Specification, Testing and Verification
(PSTV’90); Ottawa, Canada; 1990; pp. 379–394.

[GaMo96] H. Garavel, L. Mounier: Specification and verification of various distributed
leader election algorithms for unidirectional ring networks; Technical Report
No. 2986, Unité de recherche INRIA Rhône-Alpes; Sep. 1996.

[GrBe96] B. Grahlmann, E. Best: PEP – More than a Petri net tool; 2nd International
Workshop on Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS’96); Passau, Germany; 1996.

[KCK+96] M. C. Kim, S. T. Chanson, S. W. Kang, J. W. Shin: An approach for testing
asynchronous communicating systems; 9th International Workshop on Testing
of Communicating Systems (IWTCS’96); Darmstadt, Germany; Sep. 1996.

[Lan90] R. Langerak: A testing theory for LOTOS using deadlock detection; 9th Interna-
tional Symposium on Protocol Specification, Testing and Verification
(PSTV’90); Enschede, The Netherlands; 1990.

[LSK+93] D. Lee, K. K. Sabnani, D. M. Kristol, S. Paul: Conformance testing of protocols
specified as communicating FSMs; IEEE INFOCOM’93; San Fransisco, CA,
USA; 1993.

[McM95] K. L. McMillan: A technique of state space search based on unfolding; Formal
Methods in System Design, vol. 6, no. 1 (Jan. 1995); pp. 45–65.

[Pra86] V. Pratt: Modelling Concurrency with partial orders; International Journal of
Parallel Programming, vol. 15, no. 1 (Feb. 1986); pp. 33–71.

[PLL+91] D. K. Probst, H. F. Li, K. G. Larsen, A. Skou: Partial-order model checking: a
guide for the perplexed; 3nd International Conference on Computer-aided Veri-
fication (CAV’91); Aalborg, Denmark; 1991.

[PBY96] A. Petrenko, G. v. Bochmann, M. Yao: On fault coverage of tests for finite state
specifications; Special Issue on Protocol Testing, Computer Networks and

15

ISDN Systems, vol. 29, 1996; pp. 81–106.
[Rei91] W. Reisig: Petri nets; Springer Verlag, 1991.
[TCO91] K. C. Tai, R. H. Carver, E. E. Obaid: Debugging concurrent Ada programs by

deterministic execution; IEEE Transactions on Software Engineering, vol. 17,
no. 1 (Jan. 1991); pp. 45–63.

[UlCh95] A. Ulrich, S. T. Chanson: An approach to testing distributed software systems;
15th International Symposium on Protocol Specification, Testing and Verifica-
tion (PSTV’95); Warsaw, Poland; pp. 107–122; 1995.

[Ulr97] A. Ulrich: A description model to support test suite derivation for concurrent
systems; in M. Zitterbart (ed.): Kommunikation in Verteilten Systemen, GI/ITG-
Fachtagung (KiVS’97); Braunschweig, Germany; Springer Verlag, Reihe Infor-
matik aktuell, 1997; pp. 151-166.

ANNEX
The simplest version of the distributed leader election algorithm from [GaMo96] assuming
three stations connected via reliable unidirectional links.

specification EXPERIMENT_01 [OPEN, CLOSE] : noexit
library BOOLEAN endlib
type FRAME is
 sorts FRM
 opns TOKEN (*! constructor *) : -> FRM
endtype
type ADDRESS is
 sorts ADDR
 opns A1 (*! constructor *) : -> ADDR
 A2 (*! constructor *) : -> ADDR
 A3 (*! constructor *) : -> ADDR
endtype
behaviour
 hide PRED1, SUCC1, PRED2, SUCC2, PRED3, SUCC3 in
 ((
 STATION [OPEN, CLOSE, PRED1, SUCC1] (A1, true)
 |||
 STATION [OPEN, CLOSE, PRED2, SUCC2] (A2, false)
 |||
 STATION [OPEN, CLOSE, PRED3, SUCC3] (A3, false)
)
 |[PRED1, SUCC1, PRED2, SUCC2, PRED3, SUCC3]|
 (
 LINK [SUCC1, PRED2]
 |||
 LINK [SUCC2, PRED3]
 |||
 LINK [SUCC3, PRED1]
))
where
process LINK [INPUT, OUTPUT] : noexit :=
 INPUT !TOKEN;
 OUTPUT !TOKEN;
 LINK [INPUT, OUTPUT]
endproc
process STATION [OPEN, CLOSE, PRED, SUCC] (Ai:ADDR, INIT:BOOL) : noexit :=
 [INIT = true] ->

16

 PRIVILEGE [OPEN, CLOSE, PRED, SUCC] (Ai)
 []
 [INIT= false] ->
 PRED !TOKEN;
 PRIVILEGE [OPEN, CLOSE, PRED, SUCC] (Ai)
endproc
process PRIVILEGE [OPEN, CLOSE, PRED, SUCC] (Ai:ADDR) : noexit :=
 SUCC !TOKEN;
 STATION [OPEN, CLOSE, PRED, SUCC] (Ai, false)
 []
 OPEN !Ai;
 CLOSE !Ai;
 SUCC !TOKEN;
 STATION [OPEN, CLOSE, PRED, SUCC] (Ai, false)
endproc
endspec

