
EINDHOVEN UNIVERSITY OF TECHNOLOGY
Department of Mathematics and Computing Science

MASTER�S THESIS

The Speci�cation and Validation of the
OM�RR�Protocol

by

T�A�C� Willemse

Supervisor � Prof�dr� J�C�M� Baeten
Advisors � Ir� A� Klomp and Dr�ir J�Tretmans

June ���	



Abstract

Formal Methods o
er the means for validating and verifying com�
plex systems� Furthermore� concise and unambiguous speci�ca�
tions can be written using Formal Description Techniques�
This thesis deals with the formal speci�cation of a data commu�
nications protocol� This protocol is to be used in a system called
the Operator Support System �OSS
� The speci�cations and the
models for these speci�cation are described in this thesis� Several
unclarities and omissions were found in the documents describing
this protocol� Furthermore� subsequent validation and analysis of
these speci�cations and models� using two toolboxes� viz� Lite

and Eucalyptus is discussed�



Acknowledgements

I would like to thank everybody at CMG for supporting me during my traineeship� especially
everybody at the SIG�MCS�FM group for sharing their knowledge and experiences with me�
Furthermore� I would like to thank all my friends and relatives for their support during
the easier and more di�cult periods of my traineeship� I especially appreciate the interest
Laurens put into my work and the e
ort he made in reading and commenting on several
parts of this thesis�
Special thanks go to Jan Tretmans from the University of Twente and Arjen Klomp from
CMG� who both assisted me and had to put up with the huge amount of paperwork I pro�
duced during this traineeship� They both had a major in�uence on this thesis by providing
me with guidelines and numerous suggestions for improvement of my work�
Finally� I would like to thank Jos Baeten of the Eindhoven University of Technology for
assisting me during this traineeship and without whom this traineeship would never have
been possible�

The Hague� June ���	
Tim Willemse

i



Contents

� Introduction �
��� The Operator Support System � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Protocols and Services � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Formal Description Techniques � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Speci�cation Styles � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Analysis and Validation of the OM�RR�protocol � � � � � � � � � � � � � � � � � � � �
��� Thesis Outline � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� The OM�service Model �
��� The OM�service Provider and the OM�service Users � � � � � � � � � � � � � � � � � �
��� Determining the Service Elements and Service Primitives for the OM�service � � � 	

����� The MOS � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	
����� The MNS � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� The Dynamic Speci�cation of the OM�service Model � � � � � � � � � � � � � � � � � ��
����� The Abstract Data Types used in the OM�service Model � � � � � � � � � � � ��
����� The Dynamic Behaviour of the OM�service Model � � � � � � � � � � � � � � ��

��� Summary � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	

� The RR�service Model ��
��� Determining the Service Elements and Service Primitives for the RR�service � � � � ��
��� The Dynamic Speci�cation of the RR�service Model � � � � � � � � � � � � � � � � � ��

����� The Abstract Data Types used in the RR�service Model � � � � � � � � � � � ��
����� The Dynamic Behaviour of the RR�service Model � � � � � � � � � � � � � � � ��

��� Summary � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� The OM�protocol Entity Model ��
��� The OM�protocol Entity Model Environment � � � � � � � � � � � � � � � � � � � � � ��
��� Decomposition Techniques � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� The Speci�cation of the OM�protocol Entity Model � � � � � � � � � � � � � � � � � � �	

����� The Abstract Data Types used in the OM�protocol Entity Model � � � � � � ��
����� The Dynamic Behaviour of the OM�protocol Entity Model � � � � � � � � � ��

��� Summary � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

	 Tools and Validation 	�
��� Toolboxes � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Using Lite � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Di
erent Classes of Test Cases � � � � � � � � � � � � � � � � � � � � � � � � � ��
����� Validating Speci�cations using Lite � � � � � � � � � � � � � � � � � � � � � � ��

��� Using Eucalyptus � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
����� Some Notes on the Simpli�cations � � � � � � � � � � � � � � � � � � � � � � � ��
����� Validating Speci�cations using Eucalyptus � � � � � � � � � � � � � � � � � ��
����� Validation of the OM�service model � � � � � � � � � � � � � � � � � � � � � � ��

ii



����� Validation of the OM�protocol model � � � � � � � � � � � � � � � � � � � � � � ��
����� The OM�service Model versus the OM�protocol Model � � � � � � � � � � � � ��

��� Summary � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Concluding Remarks �

��� Formalizing Informal Documents � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	
��� Relation with Respect to AVV � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� The Use of the FDT Lotos � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Tool assistence � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Notes on the Tools � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
����� Results Found by the Tools � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Further Research Topics � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
����� Changes to the OM�RR�protocol � � � � � � � � � � � � � � � � � � � � � � � � ��
����� Research on the Tools � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Recommendations for Similar Excercises � � � � � � � � � � � � � � � � � � � � � � � � ��

A The OM�Service Speci�cation ��

B The OM�protocol Speci�cation 
�

C The Testcases ���
C���� Testcase No� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
C���� Testcase No� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
C���� Testcase No� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
C���� Testcase No� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
C���� Testcase No� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
C���� Testcase No� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

Bibliography ���

iii



List of Tables

��� The service elements and service primitives of the MOS � � � � � � � � � � � � � � � ��
��� The MOS in the OM�service model � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� The service elements and service primitives of the MNS � � � � � � � � � � � � � � � ��
��� The MNS in the OM�service model � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� The service elements and service primitives of the RR�service � � � � � � � � � � � � ��
��� The service elements and service primitives of the RR�service model � � � � � � � � ��

��� Statistics for the OM�service model non�compositional approach � � � � � � � � � � � ��
��� Statistics for the OM�service model� compositional approach � � � � � � � � � � � � � ��
��� Statistics for the RR�service model� compositional approach � � � � � � � � � � � � � ��
��� Statistics for the Manager OM�protocol entity model� compositional approach � � � ��
��� Statistics for the Agent OM�protocol entity model� compositional approach � � � � � ��
��� Statistics for the OM�protocol model� compositional approach � � � � � � � � � � � � ��

iv



List of Figures

��� The service model used in this report � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� A snapshot of three sessions� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� The OM�service regarded as a black box� � � � � � � � � � � � � � � � � � � � � � � � � �
��� The protocol stack used in this report � � � � � � � � � � � � � � � � � � � � � � � � � � 	
��� The protocol stack according to AVV � � � � � � � � � � � � � � � � � � � � � � � � � � 	
��� The use of the non�addressed report service � � � � � � � � � � � � � � � � � � � � � � ��
��� The Managed Object�s view of an Association � � � � � � � � � � � � � � � � � � � � � ��

��� The OM�protocol entity and its borders � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� The decomposition of the protocol entity into the UPF and LPF � � � � � � � � � � � �	

��� The elevator dilemma� an example � � � � � � � � � � � � � � � � � � � � � � � � � � � �	
��� A may test case � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	
��� A must test case � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	

v



Chapter �

Introduction

This thesis is the result of a nine months traineeship at CMG Advanced Technology Government
in The Hague� It deals with the speci�cation and validation of a data communications protocol�
used in the Operator Support System �OSS
� a system described by the Adviesdienst voor Verkeer
en Vervoer �AVV
� This Chapter is divided into several Sections� Section ��� discusses the system
OSS� Section ��� discusses issues related to protocols such as the concept of service for a protocol�
Section ��� highlights several aspects concerning the choice for a suitable Formal Description Tech�
nique �FDT
� Section ��� addresses di
erent styles for writing formal speci�cations and Section
��� �nally� discusses the objective for the formal speci�cation� Reading directions for the rest of
this thesis can be found in Section ����

��� The Operator Support System

The Operator Support System �OSS
 is a distributed system to support tra�c operators and
tra�c managers at operating centres� In the past years� various Motorway Management Systems
�MMSs
 have been developed� such as fog detection� congestion detection� video systems for ob�
servation and variable message signs for controlling tra�c� For historical reasons� every MMS had
its own unique speci�cation and implementation� thus gradually leading to distributed systems�
each with their own interfaces and functionalities�

The actual controlling of these systems takes place at an Operating Centre �OC
� There are several
OCs throughout the country� and every OC has a clear� own domain which it controls� Nowadays�
however� more and more cooperation is demanded between these OCs� and the strict division in
domains is limiting this cooperation�

In recent years this awareness has grown� and this led to the description of a system called OSS�
This system is supposed to be used in the near future to integrate the independent OCs and
thereby to increase the power of the system regarded as a whole� The idea is� to enable one OC
to take over duties from another OC� or to perform certain tasks that at some point exceeds the
OC�s own domain� One can think of� for instance� an operator from centre A reporting a tra�c
jam� and in order to �nd out how many kilometres this congestion is� he needs information only
centre B can register� It would be useful to by�pass centre B� and access the information directly�
Another aspect that will be possible� is to have one centre completely being taken over by another
centre� for example at nights� or when there are very few controlling tasks to perform�

Although all this may sound fairly simple� reality learns that when a complex distributed system�
such as the OSS� is implemented� many problems arise from the sheer fact that even to those who
devised the system not every problem is foreseen�
In such cases� it helps to apply some strict design principles� such as orthogonality and separation

�



of concerns� that help divide the problem into managable pieces� Two important parts of the OSS
were determined to be�

� the data communications protocols�

� the authorization protocol�

Authorization protocol� Basically the authorization protocol was devised to determine when
data communications between di
erent objects could take place� and as such can be regarded as
a protocol utilizing the service of the data communications protocol�

Data communications protocol� The second� and perhaps even more important protocol� is
the data communications protocol� since this has to function as the backbone of the OSS� not only
does every OC have to communicate with its MMSs� but the communications between two OCs
has to be captured as well using the same data communications protocol� This data communica�
tions protocol was christened the OM�RR protocol�

The OM�RR�protocol is� according to �AVV���� a two layered data communications protocol�
loosely modelled after the OSI�s CMIS �ISO��b�� CMIP �ISO��a� and some parts of System Man�
agement �ISO��d� for the OM�layer� and OSI Remote Operation �ISO��c� for the RR�layer�
A problem that was encountered� reading the documents concerning the OSS project� was the
brief documentation of the OM�RR�protocol� Especially the lack of speci�cations describing the
dynamic behaviour of the OM�RR�protocol� such as a service speci�cation� would make it hard
to get a clear picture of the reliability and functionality of the OSS as a whole�

In essence data communications protocols are very hard to specify unambiguously using natural
language� However� they do lend themselves excellently for a formal description using a Formal
Description Technique� and as such� this thesis set out to do so�

��� Protocols and Services

Although not always acknowledged� the service concept is one of the major issues when specifying
a �communication
 protocol� Not only is it of concern to the service users� it also is necessary to
build correctness proofs and discussing the correctness of the system�s design�

In order to discuss the implications and the advantages of the service concept� it �rst has to be
de�ned� However� no formal model of the concept of service shall be given� since this is beyond
the scope of this thesis�

The model used in this thesis for protocol speci�cation relies on two classes of protocol entities�
the service users and the service provider� The communication between protocol entities follows
strict rules� commonly refered to as the protocol� Figure ��� depicts the relation between these
classes�

If two protocol entities are to communicate via an underlying service provider� a protocol entity
utilizes service primitives� A service primitive can be considered as an elementary interaction
between a service user and the service provider during which certain values for the various param�
eters of the primitive are established to which both user and provider can refer� Note that the
execution of a service primitive does not imply passing of information in only one direction� but
allows for a much richer variety of parameter value establishment than value passing alone� e�g�
value checking and value negotiation are possibilities as well� The Service Access Point �SAP
 is
the common boundary of a service user and the service provider and is where the interactions of
service primitives are executed�

�



Figure ���� The service model used in this report

One can regard the service provider as an abstract machine� accessible from a number of SAPs�
The execution of a service primitive at one SAP usually invokes the execution of another service
primitive at �another
 SAP whose parameter values may depend on the parameter values of the
invoking primitive� Furthermore� the service provider is capable of spontaneous internal actions�
leading to the execution of one or more service primitives at SAPs� Thus one way of specifying a
service is expressed in terms of the possible orderings of service primitives observed at the SAPs
and their parameter value dependencies� This kind of speci�cation is often refered to as an ob�
servational� or extensional speci�cation� as it does not re�ect the internal structure of the service
provider� yet only de�nes the behaviour of the provider as it can be observed by the users�

Another approach to de�ning the service is the generative� or intensional approach� in which the
internal structure of the service provider is revealed� Instead of regarding the service provider as a
black box� the service provider is decomposed one layer into �N
�protocol entities� which commu�
nicate using another lower�layer �N��
�service provider� This approach is most often encountered
in multi�layered protocol architectures� In this report� this decomposition is refered to as the
�N
�protocol speci�cation� Henceforth� when discussing the �N
�service� the extensional approach
is meant� whereas when discussing the �N
�protocol� the intensional approach is meant�

As is to be expected� the intensional approach is often much more elaborate than the extensional
approach�
Much of the information presented in this Section is taken from �VL	���

��� Formal Description Techniques

When describing a protocol formally� the �rst question is which formalism is to be used� The
answer to this question depends mainly on what the goals are for the formal description� and the
nature of the protocol�
The criteria of the FDT that shall be used for the formal description of the OM�RR�protocol are
as follows�

�� The FDT must allow for a concise and unambiguous speci�cation of both the OM�service
and the OM�protocol �i�e� it must be able to model dynamic behaviour
�

�� The FDT must be supported by tools that simulate and test and if possible� proof properties
of both the OM�service and the OM�protocol�

�



The number of FDTs that adhere to these criteria is limited� not every FDT is able to express
the dynamic behaviour �e�g� Z
� or has an unambiguous �accepted
 semantics associated to it
�e�g� SDL
� Furthermore� not every FDT is supported by tools �e�g� ACP
� The FDT promela is
mainly used for modelling instead of specifying� has no �accepted
 semantics associated to it and
as such was regarded unsuitable�
Another restriction that played a part in the choice for a suitable FDT� was the availability of
supporting tools at CMG� combined with the knowledge of how to deal with these tools and the
FDT� This narrowed the number of suitable FDTs down to only one� the FDT Lotos �BB		�
ISO		��

��� Speci�cation Styles

There exist several styles for writing formal speci�cations for systems� Each style has its own
advantages and disadvantages� and as such� it is vital to choose the right style or combination
of styles at the right time� The four major speci�cation styles are monolythical� state�oriented�
constraint�oriented and resource�oriented� A brief characterization is given below�

Monolythical style� The monolythical style can be characterized as a style in which only
observable interactions are presented and ordered as a collection of alternative sequences of inter�
actions in branching time� This style� however� is only suitable up to a limited complexity of the
system� and is therefore mostly used for very simple systems�

Constraint�oriented style� In the constraint�oriented style only observable interactions are
presented� Their temporal ordering is de�ned by a conjunction of di
erent constraints� This style
is very suitable for extensional descriptions�

State�oriented style� In this style� the system that is to be described� is regarded as a single
resource whose internal state space is explicitly de�ned� This style clearly shows the amount of
state information to be maintained by a resource and the complexity of the manipulation of this
information�

Resource�oriented style� In the resource�oriented style both the observable and the internal
interactions are presented� The behaviour in terms of the observable interactions is de�ned by a
composition of separate resources in which the internal interactions are hidden� These resources
may again be speci�ed using any style�

For a more extensive discussion on the di
erences and the situations when to use which style� the
reader is refered to �VSvSB���� The styles mainly used in the Lotos�speci�cations� discussed in
this thesis are the resource�oriented style and the constraint�oriented style�

��� Analysis and Validation of the OM�RR	protocol

Once a formal speci�cation of the OM�service and the OM�protocol �i�e� The OM�protocol entities
and the RR�service
 is present� several aspects have to be analysed� the major issues are whether
both speci�cations are free of deadlock and livelock� and whether there exists an equivalence or
a preorder relation between the observable behaviour of the OM�protocol on the one hand� and
the OM�service on the other hand� Since the speci�cations are too large to prove equivalent�
or analyse by hand� two toolboxes have been used� viz� Lite and Eucalyptus �Gar���� This�
however� means that several simpli�cations with respect to the formal speci�cations will have to
be introduced� The OM�service speci�cation and the OM�protocol� found in Appendices A and B�
are modelled to accomodate for the restrictions the toolboxes pose on Lotos�descriptions� These
models are described in detail in Chapters �� � and �� and are subject of analysis and validation�

�



��
 Thesis Outline

This thesis is divided into six Chapters and three Appendices� The OM�service model is described
in Chapter �� which discusses the service elements used in the service and contains the dynamic
aspects of the OM�service described in Lotos� Chapter � in turn discusses the service elements
used in the lower layer service � the RR�service layer � and contains the dynamic aspects of
the RR�service described in Lotos� The OM�protocol entity model is presented in Chapter ��
The use of tools and validation aspects are discussed in Chapter � Finally� Chapter � discusses
several suggestive remarks and impressions gained in the traineeship� Appendix A contains the
OM�service speci�cation and Appendix B contains the OM�protocol speci�cation�

�



Chapter �

The OM�service Model

In this chapter� the OM�service model is presented� First� the environment in which the OM�
service is to function is discussed in Section ���� then the service elements and service primitives
are determined in Section ���� Finally� in Section ���� the dynamic behaviour of the OM�service
model will be described using Lotos�

��� The OM	service Provider and the OM	service Users

The service users for the OM�RR�service are� according to �AVV���� Managed Objects� The
de�nition for a Managed Object is�

De�nition ��� 
Managed Object� A Managed Object is the management view of a resource�

This de�nition� however� will not have any impact on the work presented here� as it is too obscure
and in essence can mean anything�

In essence� the OM�RR�protocol is a two�layered communication protocol� Since the OM�protocol
entity is designed to utilize the service o
ered by the RR�service layer� hereafter the service the
OM�RR�protocol o
ers is termed the OM�service� The OM�service includes the RR�service and
basically enables two di
erent Managed Objects� i�e� two service users� to communicate with one�
another when they have established an association� using the OM�service�

Usually� a distinction can be made between binary and multiple associations� This distinction will
have its impact in the dynamic speci�cation of the OM�service� As was understood within CMG�
and was hinted at in �AVV���� an association involved only two Managed Objects� and as such
associations are hereafter considered binary� The de�nition for an association� used in this report
is as follows�

De�nition ��� 
Association� A relation between two di�erent Managed Objects and the OM�
service provider� This relation can be enabled �established	 for the use of communication and
disabled �relinquished	�
Each association is uniquely identi
able by its two Managed Objects�

The term session is used to denote the period between the successfully establishing and the
subsequent relinquishing of an association� Figure ��� shows the relation between the terms
enabled� disabled and session for an association against a time�axis�
When two Managed Objects start communicating� there is always one Managed Object that ini�
tiated the establishing of the association both use� Often� this initiative plays a role during the
lifetime of the association� and as such� it is easy to make a distinction between the Managed Ob�
ject initiating the association and the Managed Object responding to the initiation� In �AVV����

�



Figure ���� A snapshot of three sessions�

both the terms Invoker and Performer� and Initiator and Responder are coined� yet the relation
between them is unclear� Because of this uncertainty� it has been decided to use neither terms�
but introduce new terms that will be de�ned uniquely� In accordance to �Kap���� henceforth the
term Manager is used for the Managed Object initiating the association and the term Agent is
used for the Managed Object responding to the initiation�

The environment of the OM�service is depicted in �gure ����

Figure ���� The OM�service regarded as a black box�
Both Manager and Agent are OM�service users�

The protocol stack used in this thesis �see �gure ���
 di
ers from the one given in �AVV��� �see
�gure ���
� At least three reasons exist for this di
erence�

� No clear relationship was de�ned between the following three protocol entities� the OM�
protocol entity� the RR�protocol entity and the AM�protocol entity �the protocol entity used
to establish and relinquish associations
�

� It was unclear how the AM protocol entity itself was layered�

� The service the AM�protocol entity has to o
er was not clearly speci�ed�

�



The di
erence between the old stack and the new stack is evident� the AM�protocol entity is
erased and its services �as far as they could be identi�ed
 are taken over by the OM�protocol en�
tity� This layering di
erent from the original stack is justi�ed by the fact that binary associations
are considered at the OM�service level� these associations are regarded as an integral part of the
OM�service� Furthermore� the protocol stack as depicted in �gure ���� is how the original protocol
stack was interpreted within CMG�

Figure ���� The protocol stack used in
this report

Figure ���� The protocol stack according
to AVV

The service which the �fth and sixth layer of the OSI�model � the session and the presentation
layer � are supposed to o
er is only informally described in a few sentences in �AVV���� The
presentation layer is described as being able to code and decode PDUs and the session layer
is described to use �sockets�� No speci�cation of these layers could be found� and this is thus
considered to be an omission of the OM�RR�protocol speci�cations�

��� Determining the Service Elements and Service Primi	
tives for the OM	service

This Section deals with the service elements described in �AVV���� In �Kap���� as well as in
�AVV��� a distinction is made between two types of service the OM�service o
ers to its users�

� a Management Operation Service �MOS
�

� the Management Noti�cation Service �MNS
�

This distinction was introduced because the service elements belonging to them were considered to
be orthogonal from the point of view of management� the MOS described operations� e�g� actions
that have to be performed� and the MNS merely describes reports and noti�cations on these
reports� Besides this di
erence in the optic of management� there is a di
erence in the initiation
of the MOS and the MNS� The Manager is allowed to initiate both MOS and MNS� whereas the
Agent is only allowed to initiate the MNS� This is not explicitly stated in �AVV���� but has been
assumed� as this was the case in �Kap����
The following Sections will discuss the MOS and the MNS in greater detail�

����� The MOS

The service provided by the MOS is used to manage and control objects� The service elements
that can be distinguished� according to �AVV��� are the following�

	



get� set� action� create� delete�

Furthermore� according to �AVV���� the following distinction can be made�

� The get� set� action� create and delete service elements are all user con�rmed service elements�

� The set service element can also be an uncon�rmed service element�

These service elements can be parameterized with speci�c operations� both Manager and Agent
have agreed upon� In this thesis� the MOS shall be extended with two more service elements�
the enable and the disable service elements� which� according to �AVV��� are parameters for the
action service elements� A time�sequence diagram in �AVV��� �pages �����
� however� describes a
provider con�rmed service for these speci�c parameters� instead of a user con�rmed service� Since
this clearly is di
erent with respect to the observable behaviour� and shall have its impact on
the service speci�cation� the enable and disable parameters have been introduced as new service
elements� These service elements are provider con�rmed� and this is done in accordance with
�Kap����
In order to be able to distinguish between the two set service elements� the user con�rmed set
service element is hereafter refered to as the cset service element� whereas the uncon�rmed set
service element is henceforth refered to as the uset service element�
The set of service elements providing the MOS now is the following�

get� cset� uset� action� create� delete� enable� disable�

These service elements have di
erent meanings as to what purpose they are used for� These
purposes are described in �AVV��� as follows�

� A Manager issues a get in order to obtain the attributes of the Agent�

� A Manager uses a cset� to set the attributes of the Agent and information concerning the
operation is returned to the Manager�

� A Manager uses a uset� to set the attributes of the Agent� No information is returned to the
Manager�

� A Manager issues an action to have the Agent perform this action and return the results
hereof�

� A Manager uses the create service element to have the Agent create yet another �non�
existing
 Managed Object and return the results of the operation�

� A Manager uses the delete service element to have the Agent delete another �existing

Managed Object and return the results of the operation�

� AManaged Object uses the enable to establish an association with a remote Managed Object
and return the results of the operation�

� A Managed Object uses the disable to relinquish an association with a remote Managed
Object and return the results of the operation�

The set of service elements can be described using atomic service primitives� In this thesis� the
following convention is used� the service element�s name is extended with

� a req for the request of a service element by the initiator of this same service element�

� an ind for the indication of a service element�

� a res for the response to a previously communicated indication�

�



Service Element Service Primitive type of service
enable enable�req provider con�rmed

enable�ind
enable�conf

disable disable�req provider con�rmed
disable�ind
disable�conf

get get�req user con�rmed
get�ind
get�res
get�conf

set cset�req user con�rmed
cset�ind
cset�res
cset�conf

create create�req user con�rmed
create�ind
create�res
create�conf

delete delete�req user con�rmed
delete�ind
delete�res
delete�conf

action action�req user con�rmed
action�ind
action�res
action�conf

set uset�req uncon�rmed
uset�ind

Table ���� The service elements and service primitives of the MOS

� a conf for the con�rmation of a previously communicated request of a service element�

Table ��� shows the relationship between the service primitives and the corresponding service el�
ement� and the kind of service that is o
ered� Note that this table does not specify any dynamic
behaviour�

The �AVV��� document is very vague about the e
ects of the service elements on the behaviour
of the OM�RR�protocol itself� Apart from the general lack of a dynamic service speci�cation �e�g�
relations between a get�req and a get�ind
� the following information concerning the create and
delete service elements could not be found�

� The implications of these operations are not speci�ed� It is for instance unclear how the
operation a
ects the Manager and Agent that perform the operation� or how it a
ects the
Managed Objects that have an association with the Managed Object that is to be deleted�

� The mechanism the Agent must use to create or delete a Managed Object is not speci�ed�
and as such� its e
ects are unclear�

� The circumstances under which these service elements can be used are not described�

In a conversation with AVV� it was found out that the action� create� delete and the user con�rmed
set service elements have the same implications on the OM�service as the get service element� It
was therefore decided that these additional service elements are not included in the OM�service

��



Service Element Service Primitive type of service
enable enable�req provider con�rmed

enable�ind
enable�conf

disable disable�req provider con�rmed
disable�ind
disable�conf

get get�req user con�rmed
get�ind
get�res
get�conf

set uset�req uncon�rmed
uset�ind

Table ���� The MOS in the OM�service model

model described in this thesis� as no extra conclusions can be drawn from the inclusion of these
service elements� The total number of MOS service elements� and as a consequence� the number of
service primitives belonging to the MOS is reduced� This reduction is necessary to create LTSs as
small as possible� in order to perform subsequent validation on these models using Eucalyptus
�see Chapter �
�
Table ��� shows the relation between the service elements and the service primitives that are of�
fered in the resulting OM�service model�

����� The MNS

The MNS is a service that is provided in order to enable a Managed Object �in a role of an Agent

to send reports to its peer �i�e� a Manager
 about its own status� using a previously established
association�

The �AVV��� document describes four kinds of report service elements� The impact these reports
have on the service provider is not clear� Therefore� for the time being� it is assumed there is no
impact� As a result� these four di
erent report service elements are mapped onto a generic report
service element� that represents all four kinds of report service elements� Furthermore the �AVV���
document states that these reports can either be classi�ed as addressed or non�addressed� Finally�
a noti
cation service element is introduced� This noti�cation is used by Managers to notify other
Managed Objects in the role of Managers� that a report received earlier has been read� This
noti�cation service element is non�addressed�
The total set of service elements then is the following set�

addressed report� non addressed report� non addressed noti�cation�

Figure ��� shows the results of the sending of a non�addressed report by a Managed Object in a
role of an Agent to Managed Objects in the role of Managers� Note that some form of broadcast
is suggested�

In �AVV��� the term subscription is coined� This term is used to distinguish between Managers
which are capable of receiving non�addressed reports from their Agent� and Managers which are
capable of receiving addressed reports only� Furthermore� noti�cations are sent by one Manager
to all other Managers� subscribed to this Agent �note that one Managed Object can be Agent in
more than one association� only then the Managers are di
erent Managed Objects�
�
An addressed report is sent by a Managed Object �in the role of an Agent
 to exactly one peer�

��



Figure ���� The use of the non�addressed report service

whilst the non�addressed reports are sent to its subscribers� In order to enable the subscribers to
inform the other subscribed Managed Objects� a non�addressed noti�cation is used�

Here a problem emerges� the term subscription is not de�ned in �AVV��� �nor in any other
document
� Due to this gap no proper relationship between the users of the non�addressed report
and noti�cation service can be described� At CMG it was believed� the subscriptions could be
characterized as follows�

De�nition ��� 
Subscription� A Managed Object in the role of a Manager has a subscription
to a Managed Object in the role of an Agent if the following two conditions are both met�

�� An association is established between the Manager and the Agent�

�� The association that exists between the Manager and the Agent permits non�addressed re�
ports and noti
cations concerning these reports� to be sent to the Manager� Moreover� this

permit�� is assumed to be something that can be veri
ed�

This de�nition however� is too vague to be used in a model� For instance� the permission mecha�
nism should be de�ned�

Furthermore� the dynamic behaviour of the non�addressed report service is not described in
�AVV���� It is unclear whether it acts either as the �addressed� report service �in this case the
Agent is responsible for distributing the non�addressed reports to the Managers
� or as a �broad�
cast� report service �in this case the OM�service is responsible for distributing the non�addressed
reports to the subscribed Managers
�
The former can be su�ciently described by the �normal� report service element� while the latter
poses some problems� which shall be explained below�

In order to support the non�addressed report service �in the latter case
� at least a multiple as�
sociation is needed �actually a one�to�many association
� the OM�service must allow a Managed
Object �sender
 to distribute one report to a set of Managed Objects �receivers
� Furthermore� the
sender is not interested in who the receivers are� since no addresses are used� It follows that the
OM�service must somehow be able to access the information concerning these receivers in order
to deliver the report to them�

The use of multiple associations� however� is not in line with both �AVV��� and �Kap���� since in
both documents a binary association is suggested�

As a consequence� the non�addressed �report and �noti�cation service� under the assumption that
they cannot be described by the addressed services� cannot be supported� This can be mended by

��



Service Element Service Primitive type of service
report report�req uncon�rmed

report�ind
noti�cation noti�cation�req uncon�rmed

noti�cation�ind

Table ���� The service elements and service primitives of the MNS

allowing a layer on top of the OM�layer �i�e� the service user
 to take over this service� which would
result in a selective broadcast over the set of associations� Another solution could be to describe
multiple associations instead of the binary association� but this would no longer be in accordance
with �AVV���� In this document� the �rst solution shall be adopted� since no guidelines can be
found in �AVV��� concerning this matter�
Two consequences follow from adopting this solution�

� The non�addressed noti�cation service element is replaced with an addressed noti�cation
service element that uses only one association�

� The OM�service must allow for both the Manager and the Agent to initiate the noti�cation
service�

This latter consequence is the result of the fact that the Agent is the only Managed Object that
has knowledge about all its subscribers� and can therefore be the only Managed Object� that can
pass on noti�cations� sent by one Manager� to the other subscribers�

Another issue is� that� strange as it may seem� no causality between reports and noti�cations is
described in �AVV���� thus allowing for the following �anomaly��

Suppose Agent A has two subscribers� Managers B and C� Now a non�addressed report is sent
�either by the responsibility of the OM�service or the Agent
� which arrives at C much later than
at B� In this case� B could already have sent a noti�cation to A� which A will pass on to C� and
can therefore arive before the corresponding report at C �i�e� C receives a noti�cation on a report
not �yet
 received
�

This anomaly is due to the fact that a message reordering system is considered �see page ��
�

In light of the problems mentioned above� the MNS that is o
ered has slightly been changed� The
non�addressed service elements cannot be o
ered� and as such� the complete set of service elements
belonging to the MNS is the following�

report� noti�cation

Clearly� both MNS service elements are uncon�rmed service elements� as described in �AVV����
Table ��� lists the service elements and the corresponding service primitives o
ered in the MNS
as it will be modelled�

In the model under consideration in this report� the MNS is further restricted to only one service
element� the report service element� This is done for reasons of conciseness� The noti�cation
service element� when initiated by a Manager� performs the same as the uncon�rmed MOS uset
service element� a noti�cation service element� initiated by an Agent� acts the same as the report
service element�

Table ��� shows the service element and the service primitives for the MNS under consideration
in the model described in this thesis�

��



Service Element Service Primitive type of service
report report�req uncon�rmed

report�ind

Table ���� The MNS in the OM�service model

��� The Dynamic Speci�cation of the OM	service Model

In this Section� the dynamic behaviour of the OM�service model shall be described� using the FDT
Lotos� The speci�cation shall include the full Abstract Data Types� Furthermore� a constraint�
oriented approach is used to formulate the requirements on the OM�service�
The complete service boundary is represented by the single gate OSAP �short for OM Service Access
Point
� Due to a problem with C�sar�adt �discussed in Section ������ page ��
� the polymorphic
gate features �i�e� the possibility of having more than one distinct event structure at a gate
 of
Lotos shall be used� There are two distinct event structures at gate OSAP described as follows�

OSAP �var� AI� �var� OSP� �var� AId�

OSAP �var� AI� �var� OSP� �var� AId� �var� BOOL�

The sort AI �short for Address Identi
er
 is used to identify the Managed Object that is addressed
in a communication over gate OSAP� the sort OSP �short for OM Service Primitive
 is used to
identify the service primitive that is communicated over gate OSAP and the sort AId �short for
Association Identi
er
 is used to distinguish between possible di
erent associations� Finally� the
sort BOOL� which de�nes the booleans� is used in cases where the service primitive communicated
requires a boolean�
The speci�cation of the OM�service model is that of a never terminating one� written as follows�

SPECIFICATION OM�Service�OSAP� � NOEXIT

This speci�cation uses the standard libraries boolean� specifying the sort bool and the most fre�
quently used functions� and naturalnumber� specifying the sort nat and the most frequent used
functions�

LIBRARY

boolean�

naturalnumber

ENDLIB

The Abstract Data Types� used in the descriptions in Section ������ are speci�ed in Section ������

����� The Abstract Data Types used in the OM�service Model

The datatypes and functions used in the OM�service model are written using the static part
of Lotos� the Abstract Data Types �ADTs
� These ADTs are speci�ed in the language act�
one� Several adaptations have been made to allow the toolbox Eucalyptus� especially the
tool C�sar�adt� to deal with the ADTs� such as the addition of special comments like ���

constructor �� and ��� implementedby ��� constructor ��� These constructions are nec�
essary for C�sar�adt to recognise which elements are sort constructors and which are not� The
��� implementedby ��� �� construction tells C�sar�adt which C name should be used in
the translation from act�one to C� and is not mandatory� In order to generate a Labeled Tran�
sition System for a Lotos�speci�cation� only enumerable sorts can be used �i�e� a sort for which
a mapping to a subset of the natural numbers exists
� Note that the language used to specify the
ADTs� act�one� is not case�sensitive�

��



The �rst ADT that is introduced is the type Address Identifier� specifying the sort AI� This
sort is used to denote the address of a SAP and can be used to identify the Managed Object
that is connected to that SAP� In this model� the sort AI consists only of two elements� because
only two Managed Objects are considered �see also the restrictions discussed in Section ����� and
Appendix A
�

TYPE Address�Identifier

IS Boolean

SORTS AI

OPNS offset �	
 constructor 	� � �� AI

neighbour �	
 constructor 	� � �� AI

�eq� � AI� AI �� Bool

EQNS

OFSORT Bool

offset eq offset 
 true�

offset eq neighbour 
 false�

neighbour eq offset 
 false�

neighbour eq neighbour 
 true�

ENDTYPE �	 Address�Identifier 	�

Apart from the above speci�ed type� the type Association Identifier is speci�ed� describing
the sort AId� the elements of which uniquely identify each possible association� This is done by
associating the addresses of the Manager and the Agent to the association identi�er� since this
combination is unique in every association� The type AId is speci�ed below�

TYPE Association�Identifier

IS Address�Identifier� Boolean

SORTS AId

OPNS

AId �	
 constructor 	� � AI� AI �� AId

Initiator � AId �� AI

Responder � AId �� AI

�eq� �	
 implementedby eq�aid 	� � AId� AId �� Bool

�ne� �	
 implementedby ne�aid 	� � AId� AId �� Bool

EQNS

FORALL a��a� � AI� as��as� � AId

OFSORT AI

Initiator�AId�a��a��� 
 a��

Responder�AId�a��a��� 
 a��

OFSORT Bool

as� eq as� 
 �Initiator�as�� eq Initiator�as��� and

�Responder�as�� eq Responder�as����

as� ne as� 
 not�as� eq as���

ENDTYPE �	 Association�Identifier 	�

Finally� the ADT OM Service Primitives is introduced to distinguish between the di
erent ser�
vice primitives� This type was adapted to the needs of C�sar�adt� and thus was signi�cantly
simpli�ed �see also Appendix A for the original type speci�cation
�

TYPE OM�Service�Primitives

IS

SORTS OSP

OPNS usetreq �	
 constructor 	� � �� OSP

��



enablereq �	
 constructor 	� � �� OSP

disablereq �	
 constructor 	� � �� OSP

reportreq �	
 constructor 	� � �� OSP

getreq �	
 constructor 	� � �� OSP

usetind �	
 constructor 	� � �� OSP

enableind �	
 constructor 	� � �� OSP

disableind �	
 constructor 	� � �� OSP

reportind �	
 constructor 	� � �� OSP

getind �	
 constructor 	� � �� OSP

getres �	
 constructor 	� � �� OSP

enableconf �	
 constructor 	� � �� OSP

disableconf �	
 constructor 	� � �� OSP

getconf �	
 constructor 	� � �� OSP

ENDTYPE�	 OM�Service�Primitives	�

This type simply de�nes another enumerated type� The sort OSP� de�ned in the Appendix A� was
de�ned in an ADT with the following signature�

���

SORTS OSP�

OPNS enablereq �	
 constructor 	� � AID� ID �� OSP�

enableind �	
 constructor 	� � AID� ID �� OSP�

enableconf �	
 constructor 	� � AID� ID� Bool �� OSP�

���

When trying to translate an ADT with the above sketched signature� C�sar reports warnings
about the theoretical limitation stating that no enumeration of this type de�nition could be made�
even when the sorts AID� ID and Bool are �nite� Since an enumeration does exist for this ADT
�the number of elements of the sort OSP� is clearly �nite
� this is considered an omission of C�sar�
as the construction sketched above is useful at times�

In order to have an easy distinction between two service primitives� equality is necessary� One
way to achieve this is by enumerating this sort by de�ning a mapping onto a subset of natural
numbers� For the sake of readability� an auxiliary ADT de�ning a sort that contains sixteen
elements representing the �rst sixteen positive natural numbers is introduced� This ADT is the
type SixteenTuplet�

TYPE SixteenTuplet

IS Boolean� NaturalNumber

SORTS Tuplet

OPNS One �	
 implementedby one constructor 	� � �� tuplet

Two �	
 implementedby two constructor 	� � �� tuplet

Three �	
 implementedby three constructor 	� � �� tuplet

Four �	
 implementedby four constructor 	� � �� tuplet

Five �	
 implementedby five constructor 	� � �� tuplet

Six �	
 implementedby six constructor 	� � �� tuplet

Seven �	
 implementedby seven constructor 	� � �� tuplet

Eight �	
 implementedby eight constructor 	� � �� tuplet

Nine �	
 implementedby nine constructor 	� � �� tuplet

Ten �	
 implementedby ten constructor 	� � �� tuplet

Eleven �	
 implementedby eleven constructor 	� � �� tuplet

Twelve �	
 implementedby twelve constructor 	� � �� tuplet

Thirteen �	
 implementedby thirteen constructor 	�� �� tuplet

Fourteen �	
 implementedby fourteen constructor 	�� �� tuplet

Fifteen �	
 implementedby fifteen constructor 	� � �� tuplet

Sixteen �	
 implementedby sixteen constructor 	� � �� tuplet

��



�eq� �	
 implementedby eq�tuplet 	� � tuplet� tuplet �� Bool

�ne� �	
 implementedby ne�tuplet 	� � tuplet� tuplet �� Bool

h �	
 implementedby h�tuplet 	� � tuplet �� Nat

EQNS

FORALL x�y � Tuplet

OFSORT Bool

x eq y 
 h�x� eq h�y��

x ne y 
 h�x� ne h�y��

OFSORT Nat

h�One� 
 ��

h�Two� 
 succ�h�One���

h�Three� 
 succ�h�Two���

h�Four� 
 succ�h�Three���

h�Five� 
 succ�h�Four���

h�Six� 
 succ�h�Five���

h�Seven� 
 succ�h�Six���

h�Eight� 
 succ�h�Seven���

h�Nine� 
 succ�h�Eight���

h�Ten� 
 succ�h�Nine���

h�Eleven� 
 succ�h�Ten���

h�Twelve� 
 succ�h�Eleven���

h�Thirteen� 
 succ�h�Twelve���

h�Fourteen� 
 succ�h�Thirteen���

h�Fifteen� 
 succ�h�Fourteen���

h�Sixteen� 
 succ�h�Fifteen���

ENDTYPE �	 SixteenTuplet 	�

The abovede�ned set is now used to map the Service Primitives onto the natural numbers and
functions are introduced that de�ne the identi�cation of a service primitive as follows� Note that
the enumeration that function Map de�nes could have been speci�ed without the help of the ADT
SixteenTuplet�

TYPE OSP�Classifier

IS SixteenTuplet� OM�Service�Primitives

OPNS Map � OSP �� Tuplet

IsUsetReq � OSP �� Bool

IsEnableReq � OSP �� Bool

IsDisableReq � OSP �� Bool

IsReportReq � OSP �� Bool

IsGetReq � OSP �� Bool

IsUsetInd � OSP �� Bool

IsEnableInd � OSP �� Bool

IsDisableInd � OSP �� Bool

IsReportInd � OSP �� Bool

IsGetInd � OSP �� Bool

IsGetRes � OSP �� Bool

IsEnableConf � OSP �� Bool

IsDisableConf � OSP �� Bool

IsGetConf � OSP �� Bool

EQNS

FORALL prim � OSP

OFSORT Tuplet

Map�USetReq� 
 One�

Map�EnableReq� 
 Two�

Map�DisableReq� 
 Three�

Map�ReportReq� 
 Four�

Map�GetReq� 
 Five�

��



Map�USetInd� 
 Six�

Map�EnableInd� 
 Seven�

Map�DisableInd� 
 Eight�

Map�ReportInd� 
 Nine�

Map�GetInd� 
 Ten�

Map�GetRes� 
 Eleven�

Map�EnableConf� 
 Twelve�

Map�DisableConf� 
 Thirteen�

Map�GetConf� 
 Fourteen�

OFSORT Bool

IsUsetReq�prim� 
 map�prim� eq One�

IsEnableReq�prim� 
 map�prim� eq Two�

IsDisableReq�prim� 
 map�prim� eq Three�

IsReportReq�prim� 
 map�prim� eq Four�

IsGetReq�prim� 
 map�prim� eq Five�

IsUsetInd�prim� 
 map�prim� eq Six�

IsEnableInd�prim� 
 map�prim� eq Seven�

IsDisableInd�prim� 
 map�prim� eq Eight�

IsReportInd�prim� 
 map�prim� eq Nine�

IsGetInd�prim� 
 map�prim� eq Ten�

IsGetRes�prim� 
 map�prim� eq Eleven�

IsEnableConf�prim� 
 map�prim� eq Twelve�

IsDisableConf�prim� 
 map�prim� eq Thirteen�

IsGetConf�prim� 
 map�prim� eq Fourteen�

ENDTYPE �	 OSP�Classifier 	�

A distinction towards di�erent classes of OSP

Having de�ned the set of OM service primitives� the foundation is there to introduce some user�
friendly ADTs that shall be used in the process descriptions given in subsequent Sections and
Chapters� Several classes of OSPs can be distinguished� each characterized by some common
property� The most intuitive distinction that can be made is the one classifying each service
primitive in either the class of requests� indications� responses or con
rmations� To this end� the
following ADT is introduced�

TYPE OSP�Servicetype

IS OSP�Classifier

OPNS IsReq � OSP �� Bool

IsInd � OSP �� Bool

IsRes � OSP �� Bool

IsConf � OSP �� Bool

EQNS

FORALL prim � OSP

OFSORT Bool

IsReq�prim� 
 IsUSetReq�prim� or IsEnableReq�prim� or

IsDisableReq�prim� or IsGetReq�prim� or

IsReportReq�prim��

IsInd�prim� 
 IsUSetInd�prim� or IsEnableInd�prim� or

IsDisableInd�prim� or IsGetInd�prim� or

IsReportInd�prim��

IsRes�prim� 
 IsGetRes�prim��

IsConf�prim� 
 IsEnableConf�prim� or IsDisableConf�prim� or

IsGetConf�prim��

ENDTYPE�	OSP�ServiceType	�

Besides the abovede�ned classi�cation� another classi�cation is evident� namely the one that clas�
si�es the Service Primitives as Service Elements �

�	



TYPE OSP�Elements is OSP�Classifier� Boolean

OPNS IsUSet � OSP �� Bool

IsEnable � OSP �� Bool

IsDisable � OSP �� Bool

IsReport � OSP �� Bool

IsGet � OSP �� Bool

EQNS

FORALL prim � OSP

OFSORT bool

IsUSet�prim� 
 IsUSetReq�prim� or IsUSetInd�prim��

IsEnable�prim� 
 IsEnableReq�prim� or IsEnableInd�prim� or

IsEnableConf�prim��

IsDisable�prim� 
 IsDisableReq�prim� or IsDisableInd�prim� or

IsDisableConf�prim��

IsReport�prim� 
 IsReportReq�prim� or IsReportInd�prim��

IsGet�prim� 
 IsGetReq�prim� or IsGetInd�prim� or

IsGetRes�prim� or IsGetConf�prim��

ENDTYPE �	 OSP�Elements 	�

The third class that can be distinguished is the class that describes whether a Service Primitive
is an uncon
rmed� usercon
rmed or a providercon
rmed service� The following ADT de�nes this
class�

TYPE OSP�Type

IS Boolean� OSP�Elements

OPNS IsUnConf � OSP �� Bool

IsUserConf � OSP �� Bool

IsProviderConf � OSP �� Bool

EQNS

FORALL prim � OSP

OFSORT Bool

IsUnConf�prim� 
 IsUSet�prim� or IsReport�prim��

IsUserConf�prim� 
 IsGet�prim��

IsProviderConf�prim� 
 IsEnable�prim� or IsDisable�prim��

ENDTYPE �	 OSP�Type 	�

This concludes the ADT speci�cations for the OM�service model�

����� The Dynamic Behaviour of the OM�service Model

The behaviour of the OM�service model is based on several requirements� Some of these require�
ments have been assumed� others can be found �implicitly or explicitly
 in �AVV���� The list
below describes these requirements�

�� An Association can be identi�ed by its Manager and its Agent �thus the tuple �Man�
ager�Agent
 uniquely identi�es the association
 � This has been assumed�

�� Once an association is established� it can only be relinquished by a disable request� This
disable request can be issued both by the Manager and by the Agent and always succeeds
� �AVV����

�� A service provider initiated termination is allowed � assumed�

�� Associations can only be set up between existing� di
erent Managed Objects � assumed�

��



�� Both the disable indication and the disable con�rmation denote the de�nite end of the
corresponding association� � �AVV���

�� Message reordering is allowed� � �AVV���

These requirements are stated in the following top level process�

BEHAVIOUR

association�OSAP� �AID�offset�neighbour��

WHERE

One of the requirements omitted in this OM�service model is the possibility of having a number
of concurrent associations� The OM�service model describes only one association between two
di
erent OM�protocol entities� Modelling a �possibly in�nite
 number of associations can easily
be described by the following process�

PROCESS associations�OSAP� �A � Set�Of�AId� � NOEXIT �


CHOICE aa � AId �� �aa isin A� ��

�association�OSAP� ��� i� associations �OSAP� �remove �aa� A� � �

ENDPROC �	 associations 	�

where the set A contains the set of all possible associations� However� restrictions imposed by
C�sar do not allow for such �possibly unbounded
 recursive process instantiation� and as such
process associations cannot be used� In the OM�service model no concurrent associations are
considered to overcome this problem� This is justi�ed by the fact that the associations are con�
sidered to be binary and hence are believed not to interfere with each�other� Another reason for
considering only one association at a time is the purpose of the speci�cation� using C�sar� a
Labeled Transition System �LTS
 is to be built �see Chapter �
� which easily can reach several
millions of states and transitions if for example concurrent associations are modelled�

The decomposition of one association

One association is composed of a Lotos�process representing the local constraints for the Manager
side of the association �analogously called process manager
 and a Lotos�process representing the
local constraints for the Agent side of the association �analogously called process agent
� These
processes are completely independent of each other� and can therefore be modelled using the
Lotos interleaving ����
 operator� The end�to�end constraints are speci�ed in process sync�
This process is used to relate the events in process manager to events in process agent using
the Lotos parallel ���
 operator� Another simpli�cation that is made is the omission of several
dataparameters in the communication of service primitives� Data� not having any impact on the
OM�service is omitted for conciseness� sake� Time is one such parameter�

PROCESS association �OSAP� �aa � aid� � NOEXIT �


�agent �OSAP� �aa� ��� manager �OSAP� �aa� � �� sync �OSAP� �aa�

ENDPROC �	 association 	�

Subsequently� processes agent� manager and sync shall be described� First the local end con�
straints shall be speci�ed� The end�to�end constraints descriptions can be found on page �� and
onward�

��



The Local End Constraints

The processes manager and agent specify four stages which re�ect the view their real�life coun�
terpart Managed Objects have on the state of the association under consideration�

�� The association is in its setup�time� The enable service element is used in this state to
establish the association� This means that no Managed Object can use the association to
send data� but that the association is still �under construction�� This state is marked as the
Initial state�

�� Should the setup of the association be successful� the next phase is the data transfer phase� In
this phase� both the Manager and the Agent can send and receive data using this association�
Message reordering is allowed in this state� This state is marked as the Communication state�

�� The association is released� In this case� the end of the communication is marked by a disable
request by one of the Managed Objects� After this request is issued� only con�rmations on
previously emitted requests can be received� This state is marked as the Release state�

�� The association is aborting� This means that an external event� initiated by the peer Man�
aged Object or by the Service Provider� has forced the association to terminate� Commu�
nication is immediately blocked� and the association is no longer operable� This state is
marked as the Aborting state�

The abovementioned states are� together with the transitions� depicted in �gure ���� As stated
before� these states re�ect the views the Manager and Agent have on the association� but it is
not the state of the association itself� since timing di
erences can complicate combining the states
observed by the Manager and the Agent into one state for the association as a whole� Besides�
this is one of the fundamental problems in distributed systems�

Figure ���� The Managed Object�s view of an Association

��



This statediagram allows easy translation into a constraint oriented description for the processes
manager and agent as follows�

PROCESS manager�OSAP��aa � aid� � NOEXIT �


minitiate �OSAP� �aa�

��

���mcommunicate �OSAP� �aa� �� initiaterelease �OSAP� �initiator�aa�� �

��

forcerelease �OSAP� �initiator�aa�� �

��

syncdisable �OSAP� �initiator�aa�� �

��

manager �OSAP� �aa�

ENDPROC �	manager	�

Some remarks are in order� process minitiate speci�es the initial state for the manager� process
mcommunicate speci�es the communicating state� and the synchronizing operator ���
 is used
to restrict communication when a user initiated disable occurs �i�e� when a transition to the
releasing state occurs
� Process forcerelease is used to shift to the aborting state� and process
syncdisable speci�es the local ordering on the disable service primitives� Analogously� process
agent is speci�ed below�

PROCESS agent�OSAP��aa � aid� � NOEXIT �


ainitiate �OSAP� �aa�

��

���acommunicate �OSAP� �aa� �� initiaterelease �OSAP� �responder�aa�� �

��

forcerelease �OSAP� �responder�aa�� �

��

syncdisable �OSAP� �responder�aa�� �

��

agent �OSAP� �aa�

ENDPROC �	agent	�

The Initial State

The processes minitiate and ainitiate handle the di
erent aspects of initializing an association�
They specify which service primitives can �locally
 occur in which order� If and only if setting up
the association succeeds� the communication of data can start� Since the enable service�element
is a provider con�rmed service�element� the Agent is o
ered an association with a Manager� and
has no means of disallowing this association to be set up� The OM�service provider� however� may
or may not decide to establish the association� In the case that the service provider disallows the
establishment of the association� the Agent is not o
ered an enable indication� whereas when the
service provider does allow the association to be established� the Agent is o
ered the indication�
However� this is speci�ed in the end�to�end constraints�
The processes are speci�ed as follows �

PROCESS minitiate �OSAP� �aa � aid� � EXIT�


OSAP 
initiator�aa� 
enablereq 
aa�

OSAP 
initiator�aa� 
enableconf 
aa �b � bool�

��not�b�� �� minitiate �OSAP� �aa�

��

�b� �� EXIT �

��



ENDPROC �	minitiate	�

PROCESS ainitiate �OSAP� �aa � aid� � EXIT �


OSAP 
responder�aa� 
enableind 
aa�

EXIT

ENDPROC �	ainitiate	�

The Communicating State

The state that can be reached from the initial state� is the communicating state� In this state� all
data transfer is done� Corresponding to the service description� a distinction is made between the
MOS and the MNS� and this re�ects in the process descriptions� The assumption is made� that
in this phase� the Service Provider may reorder the messages� Actually in this state� an in�nite
number of communications can occur� but this is modelled using just one user con�rmed get
service element� one uncon�rmed set service element and an uncon�rmed report service element�
The same reasons as before in process associations apply for these simpli�cations �i�e� the
recursive process instantiation
� Furthermore� the reordering of an in�nite number of messages in
this state is not considered to cause more problems than the reordering of three messages� The
processes acommunicate and mcommunicate are both speci�ed below �

PROCESS mcommunicate�OSAP��aa � aid� � NOEXIT �


mnsm�Osap��initiator�aa�� ��� mosm�Osap��initiator�aa��

ENDPROC �	 mcommunicate 	�

PROCESS acommunicate�Osap��aa � aid� � NOEXIT �


mnsa�Osap��responder�aa�� ��� mosa�Osap��responder�aa��

ENDPROC �	 acommunicate 	�

The processes mosm and mosa make a distinction with respect to the classes of service�types �i�e�
user con�rmed� provider con�rmed and uncon�rmed
� Since pure interleaving is used� message
reordering among these service�types is still possible�
The processes are then straightforward� and introduced without further explanation �

PROCESS mosm�OSAP��x � ai� � NOEXIT �


OSAP 
x 
disablereq �aa � AID �

STOP

���

OSAP 
x 
usetreq �aa �AID �

STOP

���

OSAP 
x 
getreq �aa � AID �

OSAP 
x 
getconf �aa � AID �

STOP

ENDPROC �	 mosm 	�

PROCESS mosa�OSAP��x � ai� � NOEXIT �


��



OSAP 
x 
disablereq �aa � AID �

STOP

���

OSAP 
x 
usetind �aa � AID �

STOP

���

OSAP 
x 
getind �aa � AID �

OSAP 
x 
getres �aa � AID �

STOP

ENDPROC �	 mosa 	�

The processes describing the MNS for both the Manager and the Agent are described below�
Here� also the restriction is that only one message is considered� being the report service element�

PROCESS mnsm�OSAP��x � ai� � NOEXIT �


OSAP 
x 
reportind �aa � AID �

STOP

ENDPROC �	 mnsm 	�

PROCESS mnsa�OSAP��x � ai� � NOEXIT �


OSAP 
x 
reportreq �aa � AID �

STOP

ENDPROC �	 mnsa 	�

The Releasing State

The assumption is made� that� whenever a disable request is issued� no longer other requests can be
issued �including other disable requests
� However� it must still be possible to receive con�rmations
of previously sent requests since they denote the completion of a service�element� The reception
of indications however� shall not be allowed anymore� since they require to be dealt with by the
Managed Object� The reception of either a disable con�rmation or a disable indication� denotes
the permanent end of the association in question� and is dealt with in the aborting state�
Process initiaterelease monitors the communication of a disable request� and if one occurs�
communication is further restricted by process releasing�

PROCESS initiaterelease �OSAP� �x � AI� � NOEXIT �


OSAP 
x �p � OSP �aa � AID �

��not�IsDisableReq�p��� �� initiaterelease�OSAP��x�

��

�IsDisableReq�p�� �� releasing�OSAP��x�

�

WHERE

PROCESS releasing �Osap� �y � AI� � NOEXIT �


OSAP 
y �p � OSP �aa � AID �IsConf�p� and not�IsDisable�p����

releasing �Osap� �y�

ENDPROC �	 releasing 	�

ENDPROC �	 initiaterelease 	�

��



The Aborting State

Termination of an association can be initiated both by the Manager and by the Agent� In this
phase� the Managed Object has received either a disable indication or a disable con�rmation� and
is therefore aborting the association� This is modelled in the processes manager and agent� using
the disable operator 	
� The process that deals with the abortion is the process forcerelease�
which is de�ned as follows �

PROCESS forcerelease�OSAP��x � AI� � EXIT �


OSAP 
x 
disableconf �aa � AID �

EXIT

��

OSAP 
x 
disableind �aa � AID �

EXIT

ENDPROC �	 forcerelease 	�

The possibility that both Manager and Agent or Service Provider terminate the association at the
same time� is still covered by allowing only a disable indication to denote the end of the associ�
ation� The corresponding con�rmation will� in that case either be of importance for the Service
Provider� or will never arive� Note that the abortion always succeeds�

The �nal local constraint is expressed by process syncdisable� This process monitors the occu�
rance of a disable request and sees to it that the possible orderings between the disable service
primitives is warranted� This means that it takes care that no disable con�rmation occurs without
having issued a disable request prior�

PROCESS syncdisable �OSAP� �x � AI� � EXIT �


OSAP 
x �p � OSP �aa � AID �not�Isdisable�p� or Isenable�p����

syncdisable �OSAP� �x�

��

OSAP 
x 
disableind �aa � AID�

EXIT

��

OSAP 
x 
disablereq �aa � AID�

syncreleasing �OSAP� �x�

WHERE

PROCESS syncreleasing �OSAP� �x � AI� � EXIT �


OSAP 
x 
disableind �aa � AID�

EXIT

��

OSAP 
x 
disableconf �aa � AID�

EXIT

��

OSAP 
x �p � OSP �aa � AID �not�Isdisable�p� or Isenable�p����

syncreleasing �OSAP� �x�

ENDPROC �	 syncreleasing 	�

ENDPROC �	 syncdisable 	�

This concludes the local constraints for the OM�service model� Note that several simpli�cations
have been applied to accomodate for the restrictions the toolboxEucalyptus poses on the Lotos�

��



language� Both the number of messages in the communicating state and the number of concurrent
associations have been severely limited�

The End�To�End Constraints

As mentioned before� the above processes specify the local ends of an association �one for the
Agent and the other for the Manager
� The actual synchronisation �end�to�end speci�cation
 is
expressed by the following process�

PROCESS sync�OSAP��aa � aid� � NOEXIT �


pcsync�OSAP��aa�

���

ucsync�OSAP��aa�

���

unsync�OSAP��aa�

���

mnssync�OSAP��aa�

WHERE

Again� this process is divided into several independent processes� each representing the end�to�end
constraints on di
erent sets of service�elements� The distinction that is made� is done according
to whether a service�element is user con�rmed� provider con�rmed� or uncon�rmed� The process
pcsync synchronizes the establishing and relinquishing of an association�

Synchronisation of User Con�rmed Service Primitives

The process describing the synchronisation between the user con�rmed service primitives is the
process ucsync� Only one user con�rmed service element is considered� the get service element�
as can clearly be observed in the process description�

PROCESS ucsync �OSAP� �aa � aid� � EXIT �


�

OSAP 
initiator�aa� 
getreq 
aa �

OSAP 
responder�aa� 
getind 
aa �

STOP

���

OSAP 
responder�aa� 
getres 
aa �

OSAP 
initiator�aa� 
getconf 
aa �

STOP

�

��

ucsync �OSAP� �aa�

ENDPROC �	 ucsync 	�

Synchronisation of Uncon�rmed Service Primitives

The end�to�end constraints on the order of the uncon�rmed service primitives is equaly straight�
forward as the end�to�end constraints for the user con�rmed service primitives� and is described
by the following process�

PROCESS mnssync �OSAP� �aa � aid� � NOEXIT �


�OSAP 
responder�aa� 
reportreq 
aa �

OSAP 
initiator�aa� 
reportind 
aa �

��



STOP�

��

mnssync �OSAP� �aa�

ENDPROC �	 mnssync 	�

PROCESS ucsync �OSAP� �aa � aid� � NOEXIT �


�OSAP 
initiator�aa� 
usetreq 
aa �

OSAP 
responder�aa� 
usetind 
aa �

STOP�

��

ucsync �OSAP� �aa�

ENDPROC �	 ucsync 	�

Synchronisation of Provider Con�rmed Service Primitives

The process pcsync describes both the initiation of an association� and� the relinquishing of the
association� which always succeeds� This abortion of the association has to take into account that
there is the possibility that the service provider initiates a disable� Since only one disable indica�
tion to a Managed Object is allowed� the process that describes the possible ways to terminate an
association is quite complicated�

PROCESS pcsync �OSAP� �aa � aid� � NOEXIT �


sinitiate�OSAP��aa�initiator�aa�� responder�aa��

���

srelease �OSAP� �aa�

WHERE

For simplicity�s sake� process pcsync is divided into several subprocesses� taking care of only parts
of the total functionality the process pcsync o
ers� The initialization is described in process
sinitiate� This process is described below�

PROCESS sinitiate�OSAP��a � aid� x�y � AI� � EXIT �


OSAP 
x 
enablereq 
a �

� OSAP 
x 
enableconf 
a 
false�

sinitiate �OSAP� �a�x�y�

��

OSAP 
y 
enableind 
a �

OSAP 
x 
enableconf 
a 
true�

sinitiate �OSAP� �a�x�y�

�

ENDPROC �	 sinitiate 	�

The process dealing with the relinquishing of the association� i�e� process srelease� is described
below� This process describes the disabling of both the Manager and the Agent� Since the abor�
tion is symmetrical� this can be written using the interleaving operator ��� and a process taking
care of the abortion of only one component�

��



PROCESS srelease �OSAP� �a � aid� � NOEXIT �


release �OSAP� �a� initiator�a�� responder�a� �

���

release �OSAP� �a� responder�a�� initiator�a� �

WHERE

PROCESS release �OSAP� �a � aid� x�y � AI� � NOEXIT �


��OSAP 
x 
disablereq 
a�

OSAP 
y 
disableind 
a�

�i�EXIT �� OSAP 
x 
disableconf 
a� EXIT�

�

�� OSAP 
x 
disableind 
a� EXIT �

��

release �OSAP� �a� x � y�

ENDPROC �	 release 	�

ENDPROC �	 srelease 	�

ENDPROC �	 pcsync 	�

ENDPROC �	 sync 	�

ENDSPEC

Process release is very complicated because of the provider initiated disable that is allowed�
This interferes with the disable indication that is the result of a previously communicated disable
request�

��� Summary

In this Chapter the OM�service model was presented� The information found in Sections ���
and ��� was mainly based on �AVV���� and �Kap���� Section ��� was based on an OM�service
speci�cation in Lotos� made �rst� which can be found in Appendix A� This speci�cation was
based on requirements found in �AVV���� knowledge within CMG and some assumptions based
on common sense� Several simpli�cations were made with respect to this speci�cation� notably
concerning�

� The number of concurrent associations� which reduced to one single association�

� The number of messages in the communicating state that can be in transit is vastly reduced�

� The number of service primitives is reduced�

One reason for this is the reduction of the state space which is thus created� Another reason for
these simpli�cations is the limitations of the toolbox Eucalyptus� which does not support the
full Lotos constructs� The language accepted by the tool C�sar is only a subset of full Lotos�
no process recursion is allowed on the left and right hand part of the parallel�operator �	������
nor on the left hand part of the enable�operator 

 and the disable�operator 	
�

The distinction between the two types of service� the MOS and the MNS� is felt to be somewhat
arti�cial� the impact both MOS and MNS have on the OM�service provider is the same� so to the
OM�service provider treats service elements from the MOS and the MNS the same�

�	



Chapter �

The RR�service Model

This Chapter will discuss the RR�service model� In Section ��� the service elements will be
determined and Section ��� will describe the dynamic behaviour of the RR�service model using
Lotos�

��� Determining the Service Elements and Service Primi	
tives for the RR	service

The RR�service is used by an OM�protocol entity to send and receive OM Protocol Data Units
�PDUs
 to another OM�protocol entity� Figure ��� on page 	 clearly shows how the RR�protocol
entity is situated with respect to the OM�protocol entity and the presentation layer� The RR�
service enables the service user �i�e� an OM�protocol entity
 to issue a request for an invocation
of a prede�ned operation by a peer service user� and receive the response of that operation� Fur�
thermore� the RR protocol layer supports the exchange of event reports and noti�cation reports�
To this purpose� six service elements are de�ned in �AVV���� being the following �

invoke� result� error� reject� addressed eventreport� non�addressed eventreport� noti�cation�

Again� in �AVV��� a distinction is made between� in this case� addressed eventreports and non�
addressed eventreports� The noti�cation service element again is only non�addressed� Subscrip�
tions are used to determine which protocol entities are to receive these non�addressed eventreports
and noti�cations� Although now described at a lower level� these service elements still cause the
same problems as before in chapter �� Due to the underspeci�cation in �AVV���� in this thesis the
non�addressed eventreport service element shall be omitted and the noti�cation service element is
considered to be addressed only�

In �AVV���� again no distinction is made between the notion of service�elements and service�
primitives� and the kind of service that is provided is not mentioned� It is assumed that an
uncon�rmed service is used� Since the RR�service is situated on top of a TCP�IP network� it is
assumed� the RR�service o
ers reliable data transmission� According to �AVV���� a connectionless
service is o
ered�

The terminology used in �AVV��� is as follows� an invoker is a protocol entity that initiated an
invoke request carrying a speci�c operation and a performer is the protocol entity that is to per�
form an operation carried by an invoke service element�

The meaning associated to the service elements is� according to �AVV��� as follows�

� The invoke service element is used by the invoker to send an invoke request to a speci�c

��



Service Element Service Primitive type of service
invoke invoke�req uncon�rmed

invoke�ind
result result�req uncon�rmed

result�ind
error error�req uncon�rmed

error�ind
reject reject�req uncon�rmed

reject�ind
eventreport eventreport�req uncon�rmed

eventreport�ind
noti�cation noti�cation�req uncon�rmed

noti�cation�ind

Table ���� The service elements and service primitives of the RR�service

performer�

� The result service element is used by a performer to send the results of a previously requested
and successfully performed operation to the invoker�

� The error service element is used by the performer to send the results of a previously re�
quested and unsuccessfully performed operation to the invoker�

� The reject service element is used by the performer to notify the invoker that the previously
requested operation could not be performed�

� The eventreport service element enables a service user to send event reports to a speci�ed
destination�

� The noti�cation service element enables a service user to notify the reception of an event
report

A subtle distinction between the error service element and the reject service element exists� the
error service element is only used when a performer tries to perform an operation� but does not
succeed in performing this operation successfully� The reject service element is used when a per�
former does not even begin performing an operation�

Table ��� shows the relationship between the service primitives and the corresponding service el�
ement� and the kind of service that is o
ered� Again� note that this table does not specify �or
imply
 any dynamic behaviour�

In the RR�service model� not every service element described in table ��� is modelled� This is
done in order to obtain a model that is as compact as possible� thereby easing the validation and
veri�cation that is to be performed on the model� The noti�cation service element is omitted in
the RR�service model because the �OM
 noti�cation service element was already omitted in the
OM�service model� and as such� no need for the �RR
 noti�cation service element exists� A second
alteration that is made is the omission of the error service element� This is done because it is felt
that the distinction between the result service element and the error service element� as speci�ed
in �AVV���� is made at a level too low� the OM�protocol entities are not performing operations�
instead the OM�service users are performing operations� Thus� to the OM�protocol entities� it
is of no importance whether the results of an operation are communicated utilizing error service
elements or result service elements�
The resulting service elements that are considered in the RR�service model thus are the following�

��



Service Element Service Primitive type of service
invoke invoke�req uncon�rmed

invoke�ind
result result�req uncon�rmed

result�ind
reject reject�req uncon�rmed

reject�ind
eventreport eventreport�req uncon�rmed

eventreport�ind

Table ���� The service elements and service primitives of the RR�service model

invoke� result� reject� eventreport�

As a consequence� the number of service primitives is reduced as well� The relation between the
service primitives and the corresponding service element� is depicted in table ����

��� The Dynamic Speci�cation of the RR	service Model

This Section shall describe the dynamic behaviour of the RR�service model� and shall include the
Abstract Data Types� The speci�cation is written using the constraint oriented style�

Again� a single gate� RSAP �short for RR Service Access Point
 is used to represent the complete
RR�service boundary� The event structure at gate RSAP can be described as follows�

RSAP �var� AI� �var� RSP� �var� AI� �var� AI� �var� OMPDU� �var� AId� �var� Nat�

The �rst parameter is used to identify the address of a service user� the second parameter is used
to identify the service primitive that is communicated over gate RSAP� The third and fourth pa�
rameters are used to respectively identify the addresses of the invoker and the performer� whereas
the �fth parameter is used to identify the OM Protocol Data Unit that is to be transported from
the invoker to the performer or vice versa� The sixth parameter identi�es the association this
OM PDU uses� and the last parameter is used by the OM�protocol entity to make a distinction
between di
erent sessions�

The reason the event structure for gate RSAP is this big and unstructured� is due to the problems
encountered with C�sar� mentioned in Chapter � on page ���

The speci�cation of the RR�service model is that of a never terminating one� written as follows�

SPECIFICATION RR�Service�RSAP� � NOEXIT

This speci�cation uses the standard libraries boolean and naturalnumber�

LIBRARY

boolean�

naturalnumber

ENDLIB

The Abstract Data Types� used in the descriptions in Section ������ will be speci�ed in the subse�
quent Section�

��



����� The Abstract Data Types used in the RR�service Model

The RR�service model requires the speci�cation of several ADTs� However� some of these ADTs
are already speci�ed in Section ������ and for this reason� have been omitted in this Section�
The ADTs that are omitted are the type Address Identifier� specifying the sort AI� the type
Association Identifier and the type SixteenTuplet�
The �rst ADT that is introduced in this Section� is the ADT RR Service Primitives� specifying
the sort RSP� This sort represents the RR�service model service primitives determined in Section
���� Like sort OSP� de�ned in Section ������ this sort was signi�cantly simpli�ed according to the
needs of C�sar�adt�

TYPE RR�Service�Primitives

IS

SORTS RSP

OPNS invokereq �	
 constructor 	� � �� RSP

invokeind �	
 constructor 	� � �� RSP

resultreq �	
 constructor 	� � �� RSP

resultind �	
 constructor 	� � �� RSP

rejectreq �	
 constructor 	� � �� RSP

rejectind �	
 constructor 	� � �� RSP

eventreportreq �	
 constructor 	� � �� RSP

eventreportind �	
 constructor 	� � �� RSP

ENDTYPE �	 RR�Service�Primitives 	�

Again� the ADT SixteenTuplet is used to enumerate the abovede�ned sort� Furthermore� some
functions are introduced to identify service primitives as follows�

TYPE RSP�Classifier

IS SixteenTuplet� RR�Service�Primitives

OPNS Map � RSP �� Tuplet

IsInvokeReq � RSP �� Bool

IsInvokeInd � RSP �� Bool

IsResultReq � RSP �� Bool

IsResultInd � RSP �� Bool

IsRejectReq � RSP �� Bool

IsRejectInd � RSP �� Bool

IsEventreportreq � RSP �� Bool

IsEventreportind � RSP �� Bool

EQNS

FORALL prim � RSP

OFSORT Tuplet

Map�InvokeReq� 
 One�

Map�InvokeInd� 
 Two�

Map�ResultReq� 
 Three�

Map�ResultInd� 
 Four�

Map�RejectReq� 
 Five�

Map�RejectInd� 
 Six�

Map�EventreportReq� 
 Seven�

Map�EventreportInd� 
 Eight�

OFSORT Bool

IsInvokeReq�prim� 
 Map�prim� eq One�

IsInvokeInd�prim� 
 Map�prim� eq Two�

IsResultReq�prim� 
 Map�prim� eq Three�

IsResultInd�prim� 
 Map�prim� eq Four�

IsRejectReq�prim� 
 Map�prim� eq Five�

IsRejectInd�prim� 
 Map�prim� eq Six�

��



IsEventreportReq�prim� 
 Map�prim� eq Seven�

IsEventreportInd�prim� 
 Map�prim� eq Eight�

ENDTYPE �	 RSP�Classifier 	�

A distinction towards di�erent classes of RSP

Again� a classi�cation can be made in the sort RSP� The �rst classi�cation is the distinction
between requests and indications� The ADT� speci�ed below introduces two functions that make
this distinction�

TYPE RSP�Servicetype

IS RSP�Classifier

OPNS IsReq � RSP �� Bool

IsInd � RSP �� Bool

EQNS

FORALL prim � RSP

OFSORT Bool

IsReq�prim� 
 IsInvokeReq�prim� or IsResultReq�prim� or

IsRejectReq�prim� or IsEventReportReq�prim��

IsInd�prim� 
 IsInvokeInd�prim� or IsResultInd�prim� or

IsRejectInd�prim� or IsEventReportInd�prim��

ENDTYPE �	 RSP�ServiceType 	�

The other classi�cation that can be made is a classi�cation towards the service elements� The
ADT RSP Elements is used to express this classi�cation�

TYPE RSP�Elements

IS RSP�Classifier

OPNS IsInvoke � RSP �� Bool

IsResult � RSP �� Bool

IsReject � RSP �� Bool

IsEventreport � RSP �� Bool

EQNS

FORALL prim � RSP

OFSORT Bool

IsInvoke�prim� 
 IsInvokeReq�prim� or IsInvokeInd�prim��

IsResult�prim� 
 IsResultReq�prim� or IsResultInd�prim��

IsReject�prim� 
 IsRejectReq�prim� or IsRejectInd�prim��

IsEventreport�prim� 
 IsEventreportReq�prim� or IsEventreportInd�prim��

ENDTYPE �	 RSP�Elements 	�

Pairing of service primitives

The subsequent ADT shall be used in the dynamic descriptions in Section ����� to match two
service primitives� The ADT RSP Match de�nes relations between certain service primitive requests
and service primitive indications as follows�

TYPE RSP�Match

IS RSP�Classifier

OPNS �IndForReq� � RSP� RSP �� Bool

EQNS

FORALL p�q � RSP

OFSORT Bool

��



q IndForReq p 
 �IsInvokeReq�p� and IsInvokeInd�q�� or

�IsResultReq�p� and IsResultInd�q�� or

�IsRejectReq�p� and IsRejectInd�q�� or

�IsEventreportReq�p� and IsEventReportInd�q���

ENDTYPE �	 RSP�Match 	�

The abovede�ned types deal with the representation� identi�cation and classi�cation of RR service
primitives�
Next� the OM PDUs need to be described� To this end� the ADT Dataunits is speci�ed� This
type introduces a sort OMPDU which represents a set of OM Protocol Data Units �see Chapter �
�

TYPE Dataunits

IS

SORTS OMPDU

OPNS Uset �	
 constructor 	� � �� OMPDU

Enable �	
 constructor 	� � �� OMPDU

Disable �	
 constructor 	� � �� OMPDU

Report �	
 constructor 	� � �� OMPDU

Get �	
 constructor 	� � �� OMPDU

ENDTYPE �	 Dataunits 	�

The ADT SixteenTuplet is again used to enumerate the abovede�ned sort�

TYPE OMPDU�Classification

IS Dataunits� SixteenTuplet

OPNS Map � OMPDU �� Tuplet

EQNS

OFSORT Tuplet

Map�Uset� 
 One�

Map�Enable� 
 Two�

Map�Disable� 
 Three�

Map�Report� 
 Four�

Map�Get� 
 Five�

ENDTYPE �	 OMPDU�Classification 	�

This concludes the Abstract Data Types de�nitions for the RR�service model speci�cation�

����� The Dynamic Behaviour of the RR�service Model

The RR�service� as described in �AVV���� is a connectionless service which o
ers reliable data
communications to take place� and it depends on the underlying layers to do so� A connection�
less service dictates that two subsequent messages sent from A to B can involvemessage reordering�

Thus the requirements the RR�service model is based upon are the following�

�� A reliable service is o
ered�

�� At most four messages can be in transit at any point in time�

As mentioned in Section ���� a distinction is made between invokers and performers� Severe sim�
pli�cations were made� instead of o
ering a possibly unbounded number of concurrent requests for
invokes� responses� rejects and eventreports� the number of messages in transit is severely reduced�
This is due to the limitations of C�sar� However� with respect to reality� this can be commented

��



on by pointing out that up till now� no medium has been created that can process an in�nite
number of messages concurrently�

These requirements are expressed by the following top level process�

BEHAVIOUR

communications �RSAP�

WHERE

This top level process� process communications� speci�es exactly four communications� which is
expressed as follows�

PROCESS communications �RSAP� � NOEXIT �


communication �RSAP� ��� communication �RSAP� ���

communication �RSAP� ��� communication �RSAP�

WHERE

The decomposition of one communication

The process communication describes the local end requirements and the end�to�end constraints
of one communication� The local end constraints �which are very elementary
 are expressed by the
processes invoker and performer� while the end�to�end constraints are expressed by the process
syncip� The process communication is described as follows�

PROCESS communication �RSAP� � NOEXIT �


�invoker �RSAP� ��� performer �RSAP��

��

syncip �RSAP�

WHERE

The Local End Constraints

As mentioned before� the local end constraints for a communication are very elementary� as the
following speci�cation clearly shows�

PROCESS invoker �RSAP� � NOEXIT �


RSAP �n � AI �s � RSP �k � AI �l � AI �p � OMPDU �a � AId �j � nat

��IsResultInd�s� or IsRejectInd�s�� and �n eq l���

invoker �RSAP�

��

RSAP �n � AI �s � RSP �k � AI �l � AI �p � OMPDU �a � AId �j � nat

��IsEventreportReq�s� or IsInvokeReq�s�� and �n eq k���

invoker �RSAP�

ENDPROC �	 invoker 	�

The process invoker speci�es the communication of either a result indication or a reject indication�
or the communicationof either an eventreport request or an invoke request� The process performer
speci�es the counterpart requests and indications and is equally elementary�

��



PROCESS performer �RSAP� � NOEXIT �


RSAP �n � AI �s � RSP �k � AI �l � AI �p � OMPDU �a � AId �j � nat

��IsResultReq�s� or IsRejectReq�s�� and �n eq l���

performer �RSAP�

��

RSAP �n � AI �s � RSP �k � AI �l � AI �p � OMPDU �a � AId �j � nat

��IsEventreportInd�s� or IsInvokeInd�s�� and �n eq k���

performer �RSAP�

ENDPROC �	 performer 	�

The End�To�End Constraint

Sometimes the end�to�end constraints can be hard to specify� However� with a service this ele�
mentary� no di�culties shall be encountered� The process syncip requires no explanation and is
given as is�

PROCESS syncip �RSAP� � NOEXIT �


RSAP �n � AI �s � RSP �k � AI �l � AI �p � OMPDU �a � AId �j � nat

�IsReq�s� and not �k eq l���

RSAP 
l �t � RSP 
k 
l 
p 
a 
j

�t IndForReq s��

syncip �RSAP�

ENDPROC �	 syncip 	�

ENDPROC �	 communication 	�

ENDPROC �	 communications 	�

ENDSPEC

��� Summary

In the previous Sections� the RR�service model is presented� Note that a constraint oriented spec�
i�cation is given in Section ����� but the RR�service model could equally well have been described
using the monolythic speci�cation style�

Section ��� is mainly based on �AVV���� Some adaptions were made in the service speci�cation
�e�g� the non�addressed service elements were omitted
� since �AVV��� was too obscure concerning
the speci�cation of these service elements� The RR�service model is a further adaption to the
service speci�cation� found in Appendix B� on the following points�

� The error and noti�cation service elements have been omitted�

� The number of messages in transit is reduced to four�

The latter item is again due to C�sar� Note that it is easy to extend the RR�service model� such
that it describes more than four �or less than four
 communications by removing or adding an
extra instance of process communication interleaved with the other communication processes�

��



Chapter �

The OM�protocol Entity Model

This Chapter describes the OM�protocol entity model� The �rst Section� Section ��� describes
the environment of the OM�protocol entity model� Section ��� describes the decomposition tech�
niques used to describe the OM�protocol entity model� and Section ��� then describes the dynamic
behaviour of the OM�protocol entity model�

��� The OM	protocol Entity Model Environment

The OM�protocol entity is a protocol entity whose main purpose is to receive service primitives
from the service user� and translate them into service primitives the RR service layer can handle�
Thus it �lls in the gap between the OM�service and the RR�service� and is used to add functionality
to the RR�service and mask unwanted properties of the RR�service� The main task of the OM�
protocol entity is to make sure no unexpected behaviour is o
ered at both service boundaries�
The OM�protocol entity is bordered on two sides� as depicted in �gure ���� One of the borders
is the service user border� represented by the gate OSAP� and the other is the underlying service
provider border� represented by the gate RSAP�

Figure ���� The OM�protocol entity and its borders

��� Decomposition Techniques

Writing a speci�cation for a protocol entity without using some form of decomposition technique
almost always proofs to be too great a challenge� Several techniques exist to deal with writing

��



such extensive speci�cations� The decomposition technique used in this Chapter is discussed in
this Section� The Abstract Data Types used in the descriptions for the dynamic behaviour of
the OM�protocol entity model are described in Section ����� and the dynamic behaviour of the
OM�protocol entity model is described in Section ������

The service user can communicate with the OM�protocol entity by means of service primitives�
These service primitives have to be translated into service primitives the RR�layer can use� The
protocol entity shall be speci�ed using the techniques described in �SPKV���� which prescribes
a step�by�step design� The �rst step in this technique� is to distinguish two separate functional
units� which� by separation of concerns can be su�ciently modelled in a constraint oriented way�
The protocol entity is therefore split into two functional units� one for communication with the
service user� and one for the communication with the service provider� The �rst one contains the
so�called Upper Protocol Functions and is therefore named the UPF and the second functional unit
contains the Lower Protocol Functions� and is appropriately called the LPF� This decomposition
is depicted in �gure ����

Figure ���� The decomposition of the protocol entity into the UPF and LPF

The UPF and the LPF interact on a shared gate� namely PDU� This gate serves as a gateway
between the RR and the OM service boundaries� and synchronisation of the two layers occurs
here� The main functionality of the UPF is enforcing sequences of service primitives on the service
users� whereas the LPF describes the functionalities the protocol entity must provide� such as
defragmentation� multiplexing� and error�free transmission using lower layers functionality� but
also the handling of provider initiated termination�

The UPF and the LPF are decomposed again in two separate processes� one for the internal
interaction on the PDU gate� and one for the synchronisation with respectively the service user
and the service provider� Note that the introduced gate PDU serves as a global gate in this case�
but could very well be split into several independent gates� all ful�lling the role of the PDU gate�
These independent gates can be used to make a clear distinction between di
erent events and
communications�
More information concerning the techniques sketched in this Section can be found in �SPKV����

��� The Speci�cation of the OM	protocol Entity Model

The OM�protocol entity model is described using a mixture of a constraint oriented and resource
oriented speci�cation style� The service boundaries for the OM�protocol entity model are repre�
sented by gates OSAP and RSAP� The event structures are described as follows�

OSAP �var� AI� �var� OSP� �var� AId�

OSAP �var� AI� �var� OSP� �var� AId� �var� BOOL�

�	



RSAP �var� AI� �var� RSP� �var� AI� �var� AI� �var� OMPDU� �var� AId� �var� Nat�

The gates are parameterized as described in Sections ��� and ���� The speci�cation of the OM�
protocol entity model is that of a never terminating one� written as follows�

SPECIFICATION OM�Protocol�Entity �OSAP� RSAP� � NOEXIT

This speci�cation again uses the standard libraries boolean and naturalnumber�

LIBRARY

boolean�

naturalnumber

ENDLIB

The subsequent Section will specify the Abstract Data Types� used in the descriptions in Section
������

����� The Abstract Data Types used in the OM�protocol Entity Model

This Section consists of the ADTs that are needed in the Lotos descriptions in Section ������
However� most ADTs have already been speci�ed in Sections ����� and ������ and hence shall be
omitted in this Section� The only additional ADTs that are needed are the ADT PDU Kind and
PDU Identifier� The ADT PDU Kind de�nes a sort with four elements� These elements are used
in the OM�protocol entity model to identify the �direction of travel� of an OM PDU �e�g� from
the OSAP boundary to the RSAP boundary and vice versa
�

TYPE PDU�Kind

IS

SORTS Kind

OPNS req �	
 constructor 	� � �� Kind

ind �	
 constructor 	� � �� Kind

res �	
 constructor 	� � �� Kind

conf �	
 constructor 	� � �� Kind

ENDTYPE �	 PDU�Kind 	�

No equivalence is speci�ed on the elements of this sort� because the elements of this sort are only
used for value passing over gates� For this� Lotos uses ADT equivalence�

The ADT PDU Identifier is used to identify the PDUs� being an enable� disable� etc�

TYPE PDU�Identifier

IS OMPDU�Classification

OPNS IsEnable � OMPDU �� Bool

IsDisable � OMPDU �� Bool

IsGet � OMPDU �� Bool

IsUset � OMPDU �� Bool

IsReport � OMPDU �� Bool

EQNS

FORALL pdu � OMPDU

OFSORT Bool

IsUset�pdu� 
 Map�pdu� eq One�

IsEnable�pdu� 
 Map�pdu� eq Two�

IsDisable�pdu� 
 Map�pdu� eq Three�

IsReport�pdu� 
 Map�pdu� eq Four�

IsGet�pdu� 
 Map�pdu� eq Five�

ENDTYPE �	 PDU�Identifier 	�

This concludes the ADTs used in the OM�protocol entity Lotos�description�

��



����� The Dynamic Behaviour of the OM�protocol Entity Model

The OM�protocol entity is based on a few requirements� None of these requirements have been
found in �AVV���� since no requirements for the OM�protocol entity were stated in �AVV����
Therefore� all requirements have been assumed� yet these assumptions are based on one or more
arguments� The following list states the requirements� and the arguments for assuming this is
required�

�� It is assumed the OM�protocol entity accesses the RR�service using only one Service Access
Point� Since the RR�service o
ers only a mere datagram service� it is expected the RR�service
will not delay progress of the OM�protocol entities�

�� The addressing mechanism for the OM�protocol entity and the RR�service is unclear� It is
assumed the OM�protocol entity address at the gate OSAP is identical to the address at the
gate RSAP� The reason for this assumption is simplicity� A more elaborate mapping than the
identical mapping can be introduced at the cost of readability�

�� The OM�protocol entity does not fragment and defragment messages received from the ser�
vice users and the service provider� This functionality is not felt to be part of the functionality
the application layer in the OSI�model is supposed to o
er�

�� The OM�protocol entity does not provide a retransmission mechanism� No need for this
mechanism is needed� since this is already taken care of in the TCP�IP layer� Furthermore�
the RR�service o
ered assumes reliable communications�

The OM�protocol entity is modelled after the simpli�cations applied to the OM�service� This
means that one OM�protocol entity maintains only one association� This� together with the
abovementioned requirements are expressed in the following top�level process�

BEHAVIOUR

association �OSAP� RSAP� �a�n�

WHERE

Note that the variables a and n have to be instantiated in this model with values of type AId and
AI� The �rst variable �variable a
 represents the association and the second variable �variable n

represents the �unique
 address of the protocol entity�
A more general OM�protocol entity� that is able to maintain more than one association at a time
is easily expressed by the following top�level process�

BEHAVIOUR

associations �OSAP� RSAP� �A�n�

WHERE

PROCESS associations �OSAP� RSAP� �A � set�of�AId� n � AI� � NOEXIT �


CHOICE aa � AId �� �aa isin A� ��

�association �OSAP� RSAP� �aa�n�

���

i� associations �OSAP� RSAP� �remove�aa�A�� n� �

ENDPROC �	 associations 	�

This kind of description� however� cannot be dealt with by C�sar� and as such� again only one
association is considered�

��



The decomposition of one association

Analogous to Section ������ the decomposition of one association is considered in isolation� The
decomposition techniques discussed in Section ��� are used� Furthermore� the OM�protocol entity
makes a distinction to whether the side of the association that is considered is in a role of Manager�
or in the role of the Agent�

PROCESS association �OSAP� RSAP� �aa � AId� n � AI� � NOEXIT �


HIDE INIT� CON� UNC� MNS� REL� ABORT IN �

�n eq initiator�aa�� ��

�

�mupfs �OSAP� INIT� CON� UNC� MNS� REL� ABORT� �aa�n�

��OSAP��

manager �OSAP� �aa�

�

��INIT� CON� UNC� MNS� REL� ABORT��

�mlpfs �RSAP� INIT� CON� UNC� MNS� REL� ABORT� �aa�n���

��RSAP��

rrsi �RSAP� �n�aa�

�

�

��

�n eq responder�aa�� ��

�

�aupfs �OSAP� INIT� CON� UNC� MNS� REL� ABORT� �aa�n�

��OSAP��

agent �OSAP� �aa�

�

��INIT� CON� UNC� MNS� REL� ABORT��

�alpfs �RSAP� INIT� CON� UNC� MNS� REL� ABORT� �aa�n�

��RSAP��

rrsi �RSAP� �n� aa�

�

�

�

WHERE

Process association speci�es the interaction between the Upper Protocol Functions �process
mupfs for the Manager side of the association� and process aupfs for the Agent side of the associ�
ation
� and the Lower Protocol Functions �process mlpfs for the Manager side of the association�
and process alpfs for the Agent side of the association
� Processes manager and agent describe
the local constraints at the OSAP gate for the OM�protocol entity� and are as speci�ed in Section
������
The process rrsi is used to describe the interface at the RR�service boundary� Since this behaviour
is trivial� it is introduced without any comments�

PROCESS rrsi �RSAP� �n � AI� aa � AId� � NOEXIT �


RSAP 
n �s � RSP �k � AI �l � AI �p � OMPDU 
aa �j � nat

�not�k eq l� and �Iseventreport�s� eq Isreport�p���

rrsi �RSAP� �n�aa�

ENDPROC �	 rrsi 	�

The Upper Protocol Functions and the Lower Protocol Functions communicate over dedicated
gates INIT� CON� UNC� MNS� REL and ABORT� Communication over these gates represents the passing

��



of OM PDUs between the Upper Protocol Functions and the Lower Protocol Functions� First the
Upper Protocol Functions shall be described� The Lower Protocol Functions will be described on
page �� and onward�

The Upper Protocol Functions

The process mupfs is structured much like the process manager� This is because the main com�
munication takes place at the OM service boundary� The functionality this process exhibits is the
translation of service primitives over gate OSAP into OM PDUs� and vise versa� the translation of
OM PDUs into service primitives which again can be communicated over gate OSAP� The process
mupfs is described as follows�

PROCESS mupfs �OSAP�INIT�CON�UNC�MNS�REL�ABORT� �aa� AId� n� AI� � NOEXIT �


mu�initiate �OSAP�INIT� �aa�n�

��

��mu�communicate �OSAP�CON�UNC�MNS� �aa�n� ��� u�release �OSAP�REL� �aa�n� �

��

u�abort �OSAP�ABORT� �aa�n� �

��

mupfs �OSAP�INIT�CON�UNC�MNS�REL�ABORT� �aa�n�

ENDPROC �	 mupfs 	�

The process aupfs follows the same structure as the Manager counterpart process mupfs and is
described as follows�

PROCESS aupfs �OSAP�INIT�CON�UNC�MNS�REL�ABORT� �aa� AId� n� AI� � NOEXIT �


au�initiate �OSAP�INIT� �aa�n�

��

��au�communicate �OSAP�CON�UNC�MNS� �aa�n� ��� u�release �OSAP�REL� �aa�n� �

��

u�abort �OSAP�ABORT� �aa�n� �

��

aupfs �OSAP�INIT�CON�UNC�MNS�REL�ABORT� �aa�n�

ENDPROC �	 aupfs 	�

The processes used in the abovedescribed processes shall be further decomposed� Each process
describes the translation of service primitives used at the gate OSAP into OM PDUs in di
erent
states �cf� �gure ���
�

The Initial State � Upper Part

In the initial state� a service user is able to request the establishment of an association� in which
case he acts as a Manager� or a service user is o
ered an association� in which case he acts as
an Agent� The service primitives that a
ect this state are the enable service primitives� These
service primitives are passed on from the service boundary OSAP to the dedicated gate INIT� which
represents the corresponding OM PDU� and vice versa� The event structure at this gate can be
written as follows�

INIT �var� AId� �var� OMPDU�

INIT �var� AId� �var� OMPDU� �var� BOOL�

��



Note that again the polymorphic gate features of Lotos are used� This is again due to the prob�
lem mentioned on page ��� The �rst parameter binds the OM PDU that is passed in this gate
to the association that is used� The second parameter represents the OM PDU that is passed�
The optional third parameter is used to denote the success or failure of the establishment of the
association�

The process describing the upper protocol functions for the initial state for the Manager �process
mu initiate
 is very straightforward�

PROCESS mu�initiate �OSAP�INIT� �aa� AID� n � AI� � EXIT �


OSAP 
n 
enablereq 
aa�

INIT 
aa 
enable�

INIT 
aa 
enable �b � Bool�

OSAP 
n 
enableconf 
aa 
b�

� �b � �� EXIT

��

�not�b�� �� mu�initiate �OSAP�INIT� �aa�n�

�

ENDPROC �	 mu�initiate 	�

In order to prevent the Manager from receiving an enable con�rmation� prior to the Agent receiving
the enable indication� an additional� internal communication using gate INIT is used to signal that
the Agent has received the indication� No feed back by the Agent is requested� i�e� the agent does
not have to give a response to the enable indication� A time�out mechanism is introduced to model
the non�response of the Agent�

PROCESS au�initiate�OSAP�INIT��aa � aid� n � AI� � EXIT �


INIT 
aa 
enable�

� OSAP 
n 
enableind 
aa�

INIT 
aa 
enable 
true�

EXIT

��

i� �	 TIME�OUT 	�

INIT 
aa 
enable 
false�

au�initiate�OSAP�INIT��aa�n�

�

ENDPROC �	 au�initiate 	�

Note that the only service element that is allowed to be passed on in the INIT gate is the enable
service element�

These two processes de�ne the Upper Protocol Functions in the initial state� for both the Manager
and the Agent� Note that these two processes together represent the initial state of the protocol
entity� since the entity is supposed to be able to assume both the role of a Manager as well as the
role of the Agent�

The Communicating State � Upper Part

In the communicating state� messages can be sent from the Manager to the Agent and from the
Agent to the Manager� Every message can either be classi�ed as user con
rmed or uncon
rmed�
and every uncon�rmed message can itself be part of the MOS or the MNS �see Section ���
� For
reasons of clarity� this distinction shall be maintained by using di
erent gates for these three
classes of messages� the CON gate will be used for the user con�rmed OM PDUs� the UNC gate shall

��



be used for the uncon�rmed MOS OM PDUs� and the MNS gate shall be used for the uncon�rmed
MNS OM PDUs� The event structure at the gates can be described as follows�

CON �var� AId� �var� OMPDU� �var� KIND�

UNC �var� AId� �var� OMDDU�

MNS �var� AId� �var� OMPDU�

Again� the �rst parameter for all three gates identi�es the association that uses this gate� the sec�
ond parameter represents the PDU passed in that gate� and the optional third parameter indicates
the direction of travel in the protocol entity itself� by means of the sort KIND�

Two processes� mu communicate and au communicate describe the Upper Protocol Functions that
are o
ered in this state for respectively the Manager and the Agent� The simpli�cations� made
here are the same as those made in the OM�service model� only one user con�rmed message is
considered� being the get service element and two uncon�rmed messages� being the set service
element and the report service element�

PROCESS mu�communicate �OSAP�CON�UNC�MNS� �aa� aid� n� AI� � NOEXIT �


mu�con �OSAP�CON� �aa� n�

���

mu�unc �OSAP�UNC� �aa� n�

���

mu�mns �OSAP�MNS� �aa� n�

WHERE

PROCESS mu�con �OSAP�CON� �aa � AId� n � AI� � NOEXIT �


OSAP 
n 
getreq 
aa�

CON 
aa 
get 
req�

STOP

���

CON 
aa 
get 
conf�

OSAP 
n 
getconf 
aa�

STOP

ENDPROC �	 mu�con 	�

PROCESS mu�unc �OSAP�UNC� �aa� AId� n� AI� � NOEXIT �


OSAP 
n 
usetreq 
aa�

UNC 
aa 
uset�

STOP

ENDPROC �	 mu�unc 	�

PROCESS mu�mns �OSAP�MNS� �aa� AId� n� AI� � NOEXIT �


MNS 
aa 
report�

OSAP 
n 
reportind 
aa�

STOP

ENDPROC �	 mu�mns 	�

ENDPROC �	 mu�communicate 	�

In the preceding processes� each OM PDU is dealt with by de�ning auxiliary processes� each de�
scribing the interaction between the OM service boundary and the internal gate dedicated to a

��



special OM PDU� This way� a clear separation of concerns is maintained�

The Agent part of the Upper Protocol Functions for the communicating state is almost equivalent
to that for the Manager� since the same obvious distinctions� similar to those of the Manager� can
be made�

PROCESS au�communicate �OSAP�CON�UNC�MNS� �aa� AId� n� AI� � NOEXIT �


au�con �OSAP�CON� �aa� n�

���

au�unc �OSAP�UNC� �aa� n�

���

au�mns �OSAP�MNS� �aa� n�

WHERE

PROCESS au�con �OSAP�CON� �aa� AId� n� AI� � NOEXIT �


CON 
aa 
get 
ind�

OSAP 
n 
getind 
aa�

STOP

���

OSAP 
n 
getres 
aa�

CON 
aa 
get 
res�

STOP

ENDPROC �	 au�con 	�

PROCESS au�unc �OSAP�UNC� �aa� AId� n� AI� � NOEXIT �


UNC 
aa 
uset�

OSAP 
n 
usetind 
aa�

STOP

ENDPROC �	 au�unc 	�

PROCESS au�mns �OSAP�MNS� �aa� AId� n� AI� � NOEXIT �


OSAP 
n 
reportreq 
aa�

MNS 
aa 
report�

STOP

ENDPROC �	 au�unc 	�

ENDPROC �	 au�communicate 	�

The Releasing state � upper part

The releasing state is triggered by the OM service user�s invocation of a disable request� Local
constraints speci�ed in processes agent and manager take care that the communication at gate
OSAP is restricted when entering this state� The lower protocol functions have to take care� that
the passing on of OMPDUs over gates CON� UNC and MNS is restricted such that the OM�service
is o
ered and no deadlock state is introduced� A dedicated gate REL is introduced for passing on
the OM PDU representing the disable request communicated at gate OSAP� The event structure
at the gate REL is as follows �

REL �var� AId� �var� OMPDU�

��



Here� again the �rst parameter identi�es the association to be relinquished and the second param�
eter represents the PDU to be communicated over gate REL�
Only one process� process u release describes the Upper Protocol Functions that are o
ered in
this state for both the Manager and the Agent as follows�

PROCESS u�release �OSAP�REL� �aa� aid� n� AI� � NOEXIT �


OSAP 
n 
disablereq 
aa�

REL 
aa 
disable�

STOP

ENDPROC �	 u�release 	�

Obviously� the abovede�ned process is very elementary�

The Aborting State � Upper Part

This state is triggered by both a disable indication and a disable con�rmation and marks the end
of one session for the association� A dedicated gate� gate ABORT is used to communicate the OM
PDU that indicates the end of a session� The event structure at this gate is as follows�

ABORT �var� AId� �var� OMPDU� �var� KIND�

Here� again the �rst parameter identi�es the association to be released� and the second parameter
represents the OM PDU that is communicated over this gate� The third parameter is used to
identify the OM PDU as an indication or as a con�rmation�

Again� only one process is used to describe the Upper Protocol Functions that are o
ered in this
state for both the Manager and the Agent� These functions are expressed by process u abort and
are rather straightforward�

PROCESS u�abort �OSAP�ABORT� �aa� AId� n� AI� � EXIT �


ABORT 
aa 
disable 
ind�

OSAP 
n 
disableind 
aa�

EXIT

��

ABORT 
aa 
disable 
conf�

OSAP 
n 
disableconf 
aa�

EXIT

ENDPROC �	 u�abort 	�

This concludes the speci�cation of the Upper Protocol Funcions� Most of these processes are rather
straightforward� no translation of service primitives into OM PDUs and vice versa is speci�ed�
and as such� the Upper Protocol Functions are trivial� The Lower Protocol Functions� described
next� will prove to be more challenging�

The Lower Protocol Functions

The top�level processes� dealing with the Lower Protocol Functions� are the processes mlpfs and
alpfs� Their structure is much like the structures of processes mupfs and aupfs�

PROCESS mlpfs �RSAP�INIT�CON�UNC�MNS�REL�ABORT� �aa� AId� n� AI� j� nat� �NOEXIT �


ml�initiate �RSAP�INIT� �aa�n�j�

��

��



��ml�communicate �RSAP�CON�UNC�MNS� �aa�n�j�

��CON�UNC�MNS��

ml�release �RSAP�CON�UNC�MNS�REL� �aa�n�j� �

��

l�abort �RSAP�ABORT� �aa�n�j� �

��

mlpfs �RSAP�INIT�CON�UNC�MNS�REL�ABORT� �aa�n�succ�j��

ENDPROC �	 mlpfs 	�

PROCESS alpfs �RSAP�INIT�CON�UNC�MNS�REL�ABORT� �aa� AId� n� AI� �NOEXIT �


al�initiate �RSAP�INIT� �aa�n�

�� ACCEPT j � nat IN

��al�communicate �RSAP�CON�UNC�MNS� �aa�n�j�

��CON�UNC�MNS��

al�release �RSAP�CON�UNC�MNS�REL� �aa�n�j� �

��

l�abort �RSAP�ABORT� �aa�n�j� �

��

alpfs �RSAP�INIT�CON�UNC�MNS�REL�ABORT� �aa�n�

ENDPROC �	 alpfs 	�

Note the small di
erence in these processes� the Manager side of an association determines a
so�called session�identi�er� whereas the Agent side of the association can only accept this session�
identi�er after the association is established� This session�identi�er is used to distinguish between
the di
erent sessions of an association� but is of no concern to the OM�service user and is therefore
modelled in the Lower Protocol Functions�

The Initial State � Lower Part

The Lower Protocol Functions in the initial state must ensure the OM�protocol entity does not
block communications at the RSAP boundary� The main task for the OM�protocol entity is to deal
with PDUs related to the establishment of the association� The Lower Protocol Functions for
the Manager side of the association are di
erent from those of the Agent side of the association�
Informally� the following events can occur in this state for the Manager side of the association�

� When an enable PDU is o
ered at the INIT gate� an invoke request service primitive is
communicated� carrying the PDU and the current session�identi�er� Prior to this event�
every invoke indication is rejected using a reject request service primitive� and every other
indication is discarded�

� When a response indication� carrying the current session�identi�er and an enable PDU is
communicated at the RR service boundary� the setup is to be considered successful� An
enable PDU is constructed using the INIT gate� carrying the success indication�

� When a reject indication� carrying the current session�identi�er and an enable PDU is com�
municated at the RR service boundary� the setup is to be considered unsuccessful� An enable
PDU is constructed using the INIT gate� carrying the failure indication�

� Every invoke indication carrying a session�identi�er other than the current session�identi�er�
shall be rejected using a reject request service primitive�

� Every reject��response� and eventreport indication carrying a session�identi�er other than
the current session�identi�er� shall be discarded�

A more exact description of events is described by the Lotos� description of process ml initiate�

��



PROCESS ml�initiate �RSAP�INIT� �aa� AId� n� AI� j� nat� � EXIT �


ml�idle �RSAP� �aa�n�

��

�INIT 
aa 
enable�

RSAP 
n 
invokereq 
initiator�aa� 
responder�aa� 
enable 
aa 
j�

� ml�filter �RSAP� �aa�n�j�

��

� RSAP 
n �s � RSP 
responder�aa� 
initiator�aa� 
enable 
aa 
j

�IsResultInd�s� or IsRejectInd�s���

��IsResultInd�s�� �� INIT 
aa 
enable 
true�

EXIT

��

�IsRejectInd�s�� �� INIT 
aa 
enable 
false�

ml�initiate �RSAP�INIT� �aa�n�j�

�

�

�

�

WHERE

PROCESS ml�idle �RSAP� �aa� AId� n� AI� � NOEXIT �


RSAP 
n 
invokeind �k � AI �l � AI �p � OMPDU 
aa �j � nat�

RSAP 
n 
rejectreq 
l 
k 
p 
aa 
j�

ml�idle �RSAP� �aa�n�

��

RSAP 
n �s � RSP �k � AI �l � AI �p � OMPDU 
aa �j � nat

�not�IsInvokeInd�s�� and not�IsReq�s����

ml�idle �RSAP� �aa�n�

ENDPROC �	 ml�idle 	�

PROCESS ml�filter �RSAP� �aa� AId� n� AI� j� nat� � NOEXIT �


RSAP 
n 
invokeind �k � AI �l � AI �p � OMPDU 
aa �m � nat

�not �m eq j���

RSAP 
n 
rejectreq 
l 
k 
p 
aa 
m�

ml�filter �RSAP� �aa�n�j�

��

RSAP 
n �s � RSP �k � AI �l � AI �p � OMPDU 
aa �m � nat

�not�IsInvokeInd�s�� and not�IsReq�s�� and not�m eq j���

ml�filter �RSAP� �aa�n�j�

ENDPROC �	 ml�filter 	�

ENDPROC �	 ml�initiate 	�

The events that can occur in the Agent side of the association are somewhat di
erent from those
for the Manager side� Informally� they can be described as follows�

� Every invoke indication� not carrying an enable PDU is rejected using the reject request
service primitive�

� Every reject��result� or eventreport indication is discarded�

� An invoke indication carrying an enable PDU and a session�identi�er� causes the OM�
protocol entity to communicate this PDU using the INIT gate� When the association is

�	



accepted� a success PDU is communicated using the INIT gate� which is sent to the peer
entity using a result request service primitive� When the association is rejected� a failure
PDU is communicated using the INIT gate� which is sent to the peer entity using a reject
request service primitive�

PROCESS al�initiate �RSAP�INIT� �aa� AId� n� AI� � EXIT�nat� �


al�idle �RSAP� �aa�n�

��

RSAP 
n 
invokeind 
initiator�aa� 
responder�aa� 
enable 
aa �j � nat�

INIT 
aa 
enable�

INIT 
aa 
enable �b � bool�

� �not�b�� �� RSAP 
n 
rejectreq 
responder�aa� 
initiator�aa� 
enable 
aa 
j�

al�initiate �RSAP�INIT� �aa�n�

��

�b � �� RSAP 
n 
resultreq 
responder�aa� 
initiator�aa� 
enable 
aa 
j�

EXIT�j�

�

WHERE

PROCESS al�idle �RSAP� �aa� AId� n � AI� � NOEXIT �


RSAP 
n 
invokeind 
initiator�aa� 
responder�aa� �p � OMPDU 
aa �j � nat

�not�IsEnable�p����

RSAP 
n 
rejectreq 
responder�aa� 
initiator�aa� 
p 
aa 
j�

al�idle �RSAP� �aa�n�

��

RSAP 
n �s � RSP 
initiator�aa� 
responder�aa� �p � OMPDU 
aa �j � nat

�not�IsInvokeInd�s�� and not�IsReq�s����

al�idle �RSAP� �aa�n�

ENDPROC �	 al�idle 	�

ENDPROC �	 al�initiate 	�

Note that� when the Agent did accept the association� process al initiate exits with the current
session�identi�er� thus making this identi�er available to processes representing the other states
of the association� The additional processes �i�e� ml idle� ml filter and al idle
 are needed to
avoid the RR�layer from cluttering up with messages that are inopportune in this state� Process
ml filter only discards messages from previous sessions�

The Communicating State � Lower Part

When the OM�protocol entity resides in the communicating state� it has to make sure no OM
PDU gets lost� Actually� this state is easy to specify� Again a distinction is made concerning the
roles of Manager and Agent� Informally� the events that can occur for the Manager are as follows�

� Every PDU� communicated over gate CON� with a req parameter� will be sent to the peer
entity using an invoke request service primitive� carrying the current session�identi�er�

� Every PDU� communicated over gate UNC will be sent to the peer entity using an invoke
request service primitive� carrying the current session�identi�er�

� When a response indication is communicated over gate RSAP� carrying an OM PDU and a
session�identi�er equal to the current session�identi�er� the OM PDU is communicated over
gate CON with a conf parameter�

��



� When an eventreport indication is communicated over gate RSAP� carrying an OM PDU and
a session�identi�er equal to the current session�identi�er� the OM PDU is communicated
over gate MNS�

� Invoke indications� communicated over gate RSAP� carrying session�identi�ers� other than the
current session�identi�er� and an OM PDU� other than an enable PDU� are rejected using
the reject request service primitive�

� Reject�� response� and eventreport indications� communicated over gate RSAP� carrying a
session�identi�er other than the current session�identi�er� are discarded�

This concludes the brief informal description for the communicating state� dealing only with
opportune messages� The inopportune messages are dealt with in the aborting state� so these are
orthogonal to the events discussed above� A formal discription of the above described scheme is
given in process ml communicate�

PROCESS ml�communicate �RSAP�CON�UNC�MNS� �aa� AId� n� AI� j� nat� � NOEXIT �


ml�con �RSAP�CON� �aa�n�j�

���

ml�unc �RSAP�UNC� �aa�n�j�

���

ml�mns �RSAP�MNS� �aa�n�j�

���

ml�rejectold �RSAP� �aa�n�j�

WHERE

PROCESS ml�con �RSAP�CON� �aa� AId� n� AI� j� nat� � NOEXIT �


CON 
aa 
get 
req�

RSAP 
n 
invokereq 
initiator�aa� 
responder�aa� 
get 
aa 
j�

STOP

���

RSAP 
n 
resultind 
responder�aa� 
initiator�aa� 
get 
aa 
j�

CON 
aa 
get 
conf�

STOP

ENDPROC �	 ml�con 	�

PROCESS ml�unc �RSAP�UNC� �aa� AId� n� AI� j� nat� � NOEXIT �


UNC 
aa 
uset�

RSAP 
n 
invokereq 
initiator�aa� 
responder�aa� 
uset 
aa 
j�

STOP

ENDPROC �	 ml�unc 	�

PROCESS ml�mns �RSAP�MNS� �aa� AId� n� AI� j� nat� � NOEXIT �


RSAP 
n 
eventreportind 
responder�aa� 
initiator�aa� 
report 
aa 
j�

MNS 
aa 
report�

STOP

ENDPROC �	 ml�mns 	�

PROCESS ml�rejectold �RSAP� �aa� AId� n� AI� j� nat� � NOEXIT �


��



RSAP 
n 
invokeind 
responder�aa� 
initiator�aa� �p � OMPDU 
aa �m � nat

�not�m eq j� and not�IsEnable�p����

RSAP 
n 
rejectreq 
initiator�aa� 
responder�aa� 
p 
aa 
m�

ml�rejectold �RSAP� �aa�n�j�

��

RSAP 
n �s � RSP 
responder�aa� 
initiator�aa� �p � OMPDU 
aa �m � nat

�not�m eq j� and not�IsInvokeInd�s�� and IsInd�s���

ml�rejectold �RSAP� �aa�n�j�

ENDPROC �	 ml�rejectold 	�

ENDPROC �	 ml�communicate 	�

Again� some di
erences exist in the events that can occur in the communicating state for the
Agent side of the association� Informally� these events can be described as follows�

� When an invoke indication� carrying an OM PDU and a session�identi�er� equal to the
current session�identi�er� the OM PDU is communicated either over gate CON� when the
PDU is a get PDU �or in general� represents a user con�rmed service element
� or over gate
UNC� when the PDU is an uset PDU�

� Every PDU communicated over gate MNS will be sent to the peer entity using the eventreport
request service primitive� carrying the current session�identi�er�

� Invoke indications� communicated over gate RSAP� carrying session�identi�ers� other than the
current session�identi�er� and an OM PDU� other than an enable PDU� are rejected using
the reject request service primitive�

� Reject�� response� and eventreport indications� communicated over gate RSAP� carrying a
session�identi�er other than the current session�identi�er� are discarded�

These events are formally expressed by process al communicate�

PROCESS al�communicate �RSAP�CON�UNC�MNS� �aa� AId� n� AI� j � nat� �NOEXIT �


al�con �RSAP�CON� �aa�n�j�

���

al�unc �RSAP�UNC� �aa�n�j�

���

al�mns �RSAP�MNS� �aa�n�j�

���

al�rejectold �RSAP� �aa�n�j�

WHERE

PROCESS al�con �RSAP�CON� �aa� AId� n� AI� j� nat� � NOEXIT �


RSAP 
n 
invokeind 
initiator�aa� 
responder�aa� 
get 
aa 
j�

CON 
aa 
get 
ind�

STOP

���

CON 
aa 
get 
res�

RSAP 
n 
resultreq 
responder�aa� 
initiator�aa� 
get 
aa 
j�

STOP

ENDPROC �	 al�con 	�

PROCESS al�unc �RSAP�UNC� �aa� AId� n � AI� j� nat� � NOEXIT �


��



RSAP 
n 
invokeind 
initiator�aa� 
responder�aa� 
uset 
aa 
j�

UNC 
aa 
uset�

STOP

ENDPROC �	 al�unc 	�

PROCESS al�mns �RSAP�MNS� �aa� AId� n� AI� j� nat� � NOEXIT �


MNS 
aa 
report�

RSAP 
n 
eventreportreq 
responder�aa� 
initiator�aa� 
report 
aa 
j�

STOP

ENDPROC �	 al�unc 	�

PROCESS al�rejectold �RSAP� �aa� AId� n� AI� j� nat� � NOEXIT �


RSAP 
n 
invokeind 
initiator�aa� 
responder�aa� �p � OMPDU 
aa �m � nat

�not�m eq j� and not�IsEnable�p����

RSAP 
n 
rejectreq 
responder�aa� 
initiator�aa� 
p 
aa 
m�

al�rejectold �RSAP� �aa�n�j�

��

RSAP 
n �s � RSP 
initiator�aa� 
responder�aa� �p � OMPDU 
aa �m � nat

�not�m eq j� and not�IsInvokeInd�s�� and IsInd�s���

al�rejectold �RSAP� �aa�n�j�

ENDPROC �	 al�rejectold 	�

ENDPROC �	 al�communicate 	�

This concludes the Lower Protocol Functions for both the Manager and the Agent side of the
association in the communicating state� Note that in this state it was decided that the messages
communicated over gate RSAP� carrying session�identi�ers other than the current session�identi�er
are to be discarded� Deciding to accept for instance the old eventreports would have rendered a
di
erent service than the one o
ered here�

The Releasing state � Lower part

The Lower Protocol Functions for the releasing state are fairly easy to specify� since there is only
one PDU that a
ects this state� a disable PDU� The Manager and Agent side of the association
are almost equivalent in their functionality in this state� The informal description for the Manager
side of the association is as follows�

� When a disable PDU is communicated at the REL gate� this PDU is sent to the peer entity
using an invoke request carrying the current session�identi�er� Subsequently� all communi�
cation over gates MNS and UNC is blocked� Only communication over gate CON is still allowed�

Note that when the Manager issues the disable request� there may still be PDUs that can be
classi�ed as user con�rmed� that can be sent� even after the disable request was sent� However�
no new requests can be added� since the Upper Protocol Functions do not allow for this kind of
communication to take place anymore� The formal description in this state for the Manager side
of the association is speci�ed by process ml release�

PROCESS ml�release �RSAP�CON�UNC�MNS�REL� �aa� AId� n� AI� j � nat� � NOEXIT �


CON 
aa �p � OMPDU �k � KIND�

��



ml�release �RSAP�CON�UNC�MNS�REL� �aa�n�j�

��

UNC 
aa �p � OMPDU�

ml�release �RSAP�CON�UNC�MNS�REL� �aa�n�j�

��

MNS 
aa �p � OMPDU�

ml�release �RSAP�CON�UNC�MNS�REL� �aa�n�j�

��

REL 
aa 
disable�

RSAP 
n 
invokereq 
initiator�aa� 
responder�aa� 
disable 
aa 
j�

ml�releasing �RSAP�CON� �aa�n�j�

WHERE

PROCESS ml�releasing �RSAP�CON� �aa� AId� n� AI� j� nat� � NOEXIT �


CON 
aa �p � OMPDU �k � KIND�

ml�releasing �RSAP�CON� �aa�n�j�

��

RSAP 
n 
invokeind 
responder�aa� 
initiator�aa� �p � OMPDU 
aa 
j

�not�IsDisable�p����

RSAP 
n 
rejectreq 
initiator�aa� 
responder�aa� 
p 
aa 
j�

ml�releasing �RSAP�CON� �aa�n�j�

��

RSAP 
n 
resultind 
responder�aa� 
initiator�aa� �p � OMPDU 
aa 
j

�not�IsDisable�p����

ml�releasing �RSAP�CON� �aa�n�j�

��

RSAP 
n 
eventreportind 
responder�aa� 
initiator�aa� 
report 
aa 
j�

ml�releasing �RSAP�CON� �aa�n�j�

ENDPROC �	 ml�releasing 	�

ENDPROC �	 ml�release 	�

The process representing Lower Protocol Functions for the Agent side of the association in the
releasing state is �as stated before
 almost identical to that for the Manager� The informal de�
scription is as follows�

� When a disable PDU is communicated at the REL gate� this PDU is sent to the peer entity
using an invoke request carrying the current session�identi�er� Subsequently� all communi�
cation over gates MNS and UNC and CON is blocked�

Note that the possible responses for previously received indications of user con�rmed service
primitives cannot be sent once a disable PDU is sent�

PROCESS al�release �RSAP�CON�UNC�MNS�REL� �aa� AId� n� AI� j� nat� � NOEXIT �


CON 
aa �p � OMPDU �k � KIND�

al�release �RSAP�CON�UNC�MNS�REL� �aa�n�j�

��

UNC 
aa �p � OMPDU�

al�release �RSAP�CON�UNC�MNS�REL� �aa�n�j�

��

MNS 
aa �p � OMPDU�

al�release �RSAP�CON�UNC�MNS�REL� �aa�n�j�

��

REL 
aa 
disable�

RSAP 
n 
invokereq 
responder�aa� 
initiator�aa� 
disable 
aa 
j�

��



al�releasing�RSAP��aa�n�j�

WHERE

PROCESS al�releasing �RSAP� �aa� AId� n� AI� j� nat� � NOEXIT �


RSAP 
n 
invokeind 
initiator�aa� 
responder�aa� �p � OMPDU 
aa 
j

�not�IsDisable�p����

RSAP 
n 
rejectreq 
responder�aa� 
initiator�aa� 
p 
aa 
j�

al�releasing �RSAP� �aa�n�j�

��

RSAP 
n 
resultind 
initiator�aa� 
responder�aa� �p � OMPDU 
aa 
j

�not�IsDisable�p����

al�releasing �RSAP� �aa�n�j�

��

RSAP 
n 
eventreportind 
initiator�aa� 
responder�aa� 
report 
aa 
j�

al�releasing �RSAP� �aa�n�j�

ENDPROC �	 al�releasing 	�

ENDPROC �	 al�release 	�

Again� processes al release and ml release do not block communication at the gate RSAP� This
is done to insure progress�

The Aborting State � Lower Part

The �nal state is represented by the aborting state� The events that can occur in this state are
orthogonal to those in the communicating state and the releasing state� The process representing
this state is the same for both the Manager and the Agent side of the association� Informally� the
following events are speci�ed�

� When an invoke indication is communicated at the RSAP gate� carrying a disable PDU and
a session�identi�er equal to the current session�identi�er� a reply is sent using the response
request to carry the PDU� The PDU itself is communicated at the ABORT gate� parameterized
with an ind�

� When a reject indication is communicated at the RSAP gate� carrying a session�identi�er
equal to the current session�identi�er� this is interpretted as the fact that the peer is �out
of sync� with the entity itself� since it has rejected a previous message� A disable PDU is
communicated over gate ABORT� parameterized with an ind�

� When a result indication is communicated at the RSAP gate� carrying a disable PDU and a
session�identi�er equal to the current session�identi�er� this PDU is mapped onto the ABORT
gate� parameterized with a conf�

� When an invoke indication is communicated at the RSAP gate� carrying an enable PDU and
an arbitrary session�identi�er� a reply is constructed using the reject request to carry the
PDU� Furthermore� a disable PDU is communicated over gate ABORT� parameterized with
and ind� to reset the entity to the initial state� This is done since the peer entity is �out of
sync� with the entity receiving the PDU�

The above described events are formally described by process l abort�

PROCESS l�abort�RSAP�ABORT� �aa� AId� n� AI� j� nat� � EXIT �


RSAP 
n 
rejectind 
responder�aa� 
initiator�aa� �p � OMPDU 
aa 
j�

ABORT 
aa 
disable 
ind�

��



EXIT

��

RSAP 
n 
resultind 
responder�aa� 
initiator�aa� 
disable 
aa 
j�

ABORT 
aa 
disable 
conf�

EXIT

��

RSAP 
n 
invokeind 
responder�aa� 
initiator�aa� 
disable 
aa 
j�

RSAP 
n 
resultreq 
initiator�aa� 
responder�aa� 
disable 
aa 
j�

ABORT 
aa 
disable 
ind�

EXIT

��

RSAP 
n 
invokeind 
responder�aa� 
initiator�aa� 
enable 
aa �m � nat�

RSAP 
n 
rejectreq 
initiator�aa� 
responder�aa� 
enable 
aa 
m�

ABORT 
aa 
disable 
ind�

EXIT

ENDPROC �	 l�abort 	�

ENDPROC �	 association 	�

ENDSPEC

��� Summary

In this Chapter� the OM protocol entity model is presented� formally described using Lotos and
the decomposition techniques described in Section ���� Note that again several simpli�cations have
been made with respect to the speci�cation found in Appendix B� most notably the following�

� The number of communications is reduced�

� The number of associations an OM�protocol entity can handle is reduced to only one�

These simpli�cations were made to meet the demands C�sar poses on a Lotos speci�cation �see
also Chapter � and �
�

��



Chapter �

Tools and Validation

The main issues� addressed in this Chapter� are the validation of the three models presented in
the previous Chapters and the results thereof� The validation was performed using two toolboxes�
Lite �Eer��� and Eucalyptus �Gar���� A brief introduction on these toolboxes will be given
in Section ���� Validation using Lite will be described in Section ��� and the validation using
Eucalyptus will be discussed in Section ����

��� Toolboxes

The toolboxes used for the validation are Lite and Eucalyptus� Both toolboxes o
er a wide
range of utilities to aid the user in understanding a Lotos�speci�cation� and proving properties
of the speci�cations�

The toolbox Lite harbours some advanced techniques such as goal�oriented execution and trans�
formation of speci�cations into Extended Finite State Machines� Furthermore� the interactive
simulation of Lotos�speci�cations is possible� and the Lotos�speci�cation can be checked both
syntactically and static�semantically� A graphical representations of a Lotos�description can au�
tomatically be drawn as well� Several other utilities are o
ered for Lite� however� the version
available at CMG was only a limited version� o
ering not all tools that usually come with the
toolbox�

The toolbox Eucalyptus o
ers a wide range of functionalities� including simulation� compilation�
veri�cation and test case generation for Lotos descriptions� The veri�cation includes verifying
temporal logic formulas� and proving bisimulation�equivalences between two Lotos�descriptions�
The version of this toolbox� available at CMG does not o
er the complete set of programs that come
with the toolbox� However� the important tools� such as C�sar� C�sar�adt and Aldebaran

are supported� These tools provide the means for simulation� validation and generating Labeled
Transition Systems �LTSs
�

��� Using Lite

The models presented in Chapters �� � and �� were modelled after initial speci�cations for the
OM�service� the RR�service and the OM�protocol entity� These initial speci�cations� described in
full�Lotos� represented the information found in �AVV��� and some additional requirements �see
Appendices A and B for the speci�cations and the requirements
�

A �rst step in the validation of these speci�cations was to check the syntax and the static seman�
tics of the Lotos�descriptions� Lite was used to check for this automatically� As was expected�

��



this revealed several errors in the speci�cations� which had to be corrected� The most recurring
errors were those where the functionalities of processes was incorrect �i�e� EXIT which should be
NOEXIT and vice versa
�

Subsequently� after the correction of these errors� single step simulation of the OM�service spec�
i�cation using Smile� was used to obtain an initial indication on the correctness of the speci�ed
system� The single step mechanism allows one to evaluate all possible next events starting at a
given event�
This again resulted in the rewriting of several processes� most of them dealing with the synchro�
nizing end�to�end processes� which proved either too restrictive or introduced deadlocks�

When �nally� the OM�service speci�cation was believed to be correct �with respect to its be�
haviour
� several test cases were made to strengthen this believe� Some theoretical re�ections on
test cases are discussed in Section ������ Subsequently� Section ����� describes the actual simulation
of these test cases using Lite�

����� Di	erent Classes of Test Cases

When considering test cases� a distinction between two classes of test cases can be made� A test
case can be classi�ed either as a may test case� or a must test case� In general� the may test
cases are more restrictive than the must test cases� when a may test case is run in parallel with
a speci�cation� deadlocks can be produced� but at least one trace must successfully terminate for
the speci�cation to adhere to the test case� May test cases usually specify a behaviour that a
speci�cation must exhibit under certain conditions�
The must test cases are usually more general than the speci�cation that is to be tested� and as
such no deadlock may occur when run in parallel with a speci�cation�

The following example will clarify the distinction between these two classes of test cases� The
example is taken from �BW���� and although there it is used to show the di
erence between two
processes� it can also be used to show the di
erence between the two classes of test cases�

Example The example describes the following situation� you �nd yourself in a building with
two elevators� one of which is perfectly safe� but the other de�nitely is not� In the hall you �nd
two elevator doors� but unfortunately you cannot tell which one leads to the safe elevator� Now
you call for the elevator by pushing the �up��button and after a while a door opens � � �
Using the following atomic actions we can describe this situation�

� DOOR � the elevator doors open�

� RISK � the o
ered elevator is highly dangerous�

� SAFE � the o
ered elevator is perfectly safe�

The above sketched situation� can be described by the following Lotos�description �see also �gure
���
�

DOOR� RISK� EXIT

��

DOOR� SAFE� EXIT

Suppose one of the properties that is to be tested� is whether this description includes a scenario
that involves using the elevator and going up in a safe way� This test case can be described by the
following Lotos�description �see also �gure ���
�

DOOR� SAFE� EXIT

��



Figure ���� The elevator dilemma� an example

Figure ���� A may test case

The test case� depicted in �gure ���� is a typical example of a may testcase� it describes only the
situation in which� by chance perhaps� the safe elevator was chosen� but the option that describes
that the dangerous elevator is chosen is discarded� When this test case is run in parallel with the
description represented by �gure ���� the execution sequences reveal one deadlocking trace �due
to the non�determinism in the process represented by �gure ���
�

DOOR� STOP

and one successfully terminating trace�

DOOR� SAFE� EXIT

Now suppose you volunteer to test which of the elevators is safe and which is dangerous� Once
the doors open� the elevator o
ered is either safe or dangerous� and you will �nd out by getting
in only� This can be described by the following Lotos�description �see also �gure ���
�

DOOR�

� SAFE� EXIT

��

RISK� EXIT �

Figure ���� A must test case

The test case� depicted in �gure ���� is a typical example of a must test case� the non�determinism
in the process represented by �gure ��� is taken into account� When this test case is run in parallel
with the description represented by �gure ���� the execution sequences reveal no deadlocking traces
and two successfully terminating traces�

�	



DOOR� SAFE� EXIT

and

DOOR� RISK� EXIT

Although must test cases are preferable with regard to deadlock detection and exhaustive testing�
these test cases are very hard to specify� This usually has to do with both the non�determinism
in� and the magnitude of the speci�cation that is to be tested� May test cases� however� are much
easier to specify� since they only highlight one aspect of the speci�cation that is to be tested�

����� Validating Speci
cations using Lite

After initial simulation was performed using the tool Smile� part of the toolbox Lite� several test
cases were constructed �see Appendix C
 that each speci�ed desired properties the OM�service
speci�cation should exhibit� These test cases can be classi�ed as may test cases� since every test
case highlights only one aspect of the OM�service speci�cation� and not the overall behaviour of
the OM�service speci�cation�
It must be noted that these test cases were not formally derived� but they were inspired by the
view the Managed Objects have on the states an association can be in �see �gure ���
� Every state
is at least once visited by at least one test case�

The speci�ed test cases were �rst run in parallel with the OM�service speci�cation� using the
Run Test command� which allows to execute the parallel composition of a test case and the
speci�cation� Smile o
ers several options for performing simulations of this kind�

� Goal oriented execution�

� Expansion up to a pre�de�ned unfold depth�

� Single step expansion�

Goal oriented execution and expansion� The goal oriented execution and the expansion up
to a certain depth can be performed breadth��rst or depth��rst� Using the goal oriented execution�
one must mark an event in the Lotos�description as the target� Next� Smile tries to execute
the speci�cation in such a way that the target behaviour expression is reached� Not all events
are computed� events de�nitely not leading to the goal are omitted� and as such� only partial
expansion takes place�
The expansion up to a prede�ned unfold depth is a complete expansion� every event is evaluated
until the prede�ned depth is reached�

Unfortunately� on a speci�cation with a large data component �such as in the OM�service speci�
�cation
� the two above described methods do not lead to satisfactory results� the computation
time is long and runs out of memory before the results are available� Most of this has to do with
the evaluation of the Abstract Data Types� �nding solutions to predicates takes� if even possible�
very long and is very memory consuming�

Single step expansion� Another option for performing the simulation of the test cases is by
single stepping through the speci�cation� Using this method� one is able to selectively expand
the speci�cation� which both reduces the amount of time spent and the amount of memory used
in the computation� Selecting the right events to expand one step is aided by the option Find
Action Pre�x� This option shows which action pre�x expression �or the process in which the
action pre�x expression occurs
 is de�ned� and thus enables one to see which processes participate

��



in the event� This option also helps in getting a more profound understanding of the speci�cation�

The test cases revealed that several modi�cations had to be made to the OM�service speci�cation�
The OM�service speci�cation did not adhere to all the test cases� Again the problem was mostly
found in the end�to�end constraints� which were too restrictive� After several corrections� �nally
the OM�service speci�cation adhered to the test cases�
Subsequently these test cases were used again for the OM�protocol� Again� the test cases revealed
several misconceptions in the OM�protocol� which resulted in modi�cations for the OM�protocol�
Although the OM�protocol was in essence harder to specify� less errors were found� This probably
was due to the following three reasons�

�� A gained insight in the speci�cation styles�

�� A gained insight in the speci�cation formalism�

�� The already established framework in which to specify the OM�protocol entity �i�e� the local
constraints in the OM�service speci�cation
�

Finally� both OM�service and OM�protocol adhered to the test cases� and were considered to be
ready for further validation and analysis�
An attempt was made to build an Extended Finite State Machine for the OM�service and the
OM�protocol� however� this failed� The reasons for this were again the amount of memory and
time needed for the computations�
The possibilities of Lite for further validation are limited� for instance no deadlock detection and
livelock detection is supported� To this end� the toolbox Eucalyptus was used�

��� Using Eucalyptus

The toolbox Eucalyptus o
ers several tools for analyzing and validating a Lotos�description�
However� a major drawback of the tools that come with Eucalyptus is the restrictions they pose
on the Lotos�descriptions� not the full set of Lotos�operators is supported� In order to be able
to perform deadlock detection� livelock detection� etc� on the speci�cations� the speci�cation has
to be simpli�ed� Thus� not the speci�cation itself is validated� but a model of the speci�cation
is validated� Remarks on the simpli�cations made for the OM�service and the OM�protocol are
discussed in Section ������ A discussion on the use of the tools and the results is given in Section
������

����� Some Notes on the Simpli
cations

In order to analyse the speci�cations using Eucalyptus� several simpli�cations had to be made�
Most of these simpli�cations dealt with the rewriting of Lotos�descriptions� since Eucalyptus
only accepts a subset of the Lotos�language� This� of course� can have its impact on the dy�
namic behaviour of any speci�cation� properties get lost or are modi�ed� The restrictions on the
Lotos�operators are the following� no process recursion is allowed on the left and right hand
part of the parallel�operator �	������ nor on the left hand part of the enable�operator 

 and
the disable operator 	
� Of these restrictions� the restrictions on the parallel�operator have the
most impact for the OM�service speci�cation and the OM�protocol speci�cation� For instance�
the message reordering in the OM�service speci�cation is speci�ed using the interleaving operator
���� a special case of the parallel�operator �	������

For the OM�service speci�cation� as described in Appendix A� there exist two problem�areas�

� The number of concurrent associations� modelled in the OM�service speci�cation using the
interleaving operator in combination with process recursion�

��



� The number of messages in transit at one point in time� also modelled using the interleaving
operator in combination with process recursion�

It was decided to model the �possibly in�nite
 number of concurrent associations with only one
association� This simpli�cation is not seen as too restrictive� as each association is modelled as an
independent process� and has a unique identi�er that is used to address this association� Thus it
is unlikely that one association in�uences another association�
A second simpli�cation that was made concerns the number of messages that can be in transit at
one point in time� It was decided that only three messages� one user con�rmed and two uncon�
�rmed messages are modelled� Again� this simpli�cation is not considered to be too restrictive�
part of the message reordering is still present in the model� since for instance one uncon�rmed
message can still �overtake� a user con�rmed message� Furthermore� it is not expected that the
messages communicated in the communicating state present problems with respect to the state
transition from the communicating state to the releasing state or the aborting state�

An additional problem was encountered for the ADT OM Service Primitives� which could not be
dealt with by C�sar� The reason for this problem �also mentioned on page �����
� was found out
by trial�and�error� The solution to this problem� i�e� rewriting the ADT OM Service Primitives

and using the polymorphic gate features of Lotos� involved the rewriting of all Lotos�descriptions
using the sort OSP�

The OM�protocol entity has� besides the problems mentioned for the OM�service� some additional
problem�areas�

� The underlying service� i�e� the RR�service speci�cation which speci�es a �possibly in�nite

number of messages in transit� modelled using the interleaving operator�

� The number of sessions for one association� which can be in�nite� each session is identi�ed
using a unique natural number�

With respect to the underlying service� this is restricted to a �nite number of messages� with a
maximum of four� that can be in transit at one point in time� Allowing for more messages would
yield LTSs that exceed the limits of computer memory�

Surprisingly� the number of sessions is one of the items that has to be reduced as well� This is due
to the restrictions that are imposed on the datapart of a Lotos�description� only a �nite subset
of the natural numbers can be used� As such� the current session�identi�er� used to distinguish
the current session from previous �or future
 sessions can only be chosen from a �nite set� Two
options exist� reuse used session�identi�ers or considering only a �nite number of sessions� For
simplicity� the latter option is chosen�

����� Validating Speci
cations using Eucalyptus

The toolbox Eucalyptus o
ers several tools� Each of these tools has its own functionalities� The
tools used mainly on the models described in Chapters �� � and � are the following�

� C�sar

� C�sar�adt

� Aldebaran

The tools C�sar and C�sar�adt are both used to compile the Lotos�speci�cations into Labeled
Transition Systems �LTSs
� First� the speci�cation is syntactically and static�semantically checked�
Then the speci�cation is checked to be in accordance with the restrictions imposed on the static
and dynamic parts of the Lotos language� Finally an LTS is built� These LTSs are then used to

��



further analyse and validate the speci�cation� This analysis and validation is performed mainly
by Aldebaran�
The tool Aldebaran is used to check the LTSs for deadlock and livelock� Other options are to
reduce the LTSs� generated by C�sar and C�sar�adtmodulo some equivalence relation �strong�
observational� etc�
�

����� Validation of the OM�service model

In order to validate the OM�service model� described in Chapter �� an LTS has to be generated
using C�sar and C�sar�adt� To this end� two approaches can be used�

�� generate the LTS representing the OM�service model at once �i�e� non�compositionally
�

�� generate the LTS representing the OM�service model compositionally�

The non�compositional approach� Although the OM�service model was considered to be
relatively small� during the generation of the LTS in one run� it was found out that this approach
was a long running process� More than three hours of computing time were necessary to �nish the
LTS� The computation of an LTS that is equivalent� modulo strong equivalence� to the OM�service
model LTS could not be completed due to the limits of memory� Statistics of this approach can
be found in table ����

Process � States � Transitions � � Transitions Reduction Modulo
association ������ ������� n�c none

n�c� n�c� n�c� strong equivalence

Table ���� Statistics for the OM�service model non�compositional approach
The n�c� means that this could not be computed

The compositional approach� A second option is to generate the LTS for the OM�service
model using a compositional strategy� This strategy enables one to generate LTSs for individual
processes which in turn can be combined� To illustrate� the process association is a parallel
composition of three distinct processes�

PROCESS association �OSAP� �aa � aid� � NOEXIT �


�agent �OSAP� �aa� ��� manager �OSAP� �aa� � �� sync �OSAP� �aa�

ENDPROC �	 association 	�

The toolsC�sar and C�sar�adt are used to generate LTSs for the processes agent� manager and
sync� Next� these LTSs can be reduced modulo strong equivalence� yielding new LTSs� Assuming
the �le containing the reduced LTS for process agent is agent�aut� the reduced LTS for process
manager is contained in �le manager�aut and the reduced LTS for process sync is contained in �le
sync�aut� These LTSs can then be combined by generating the LTS for a �le service�exp� containing
the following information�

BEHAVIOUR �agent ��� manager� �� sync

The LTS thus created represents process association� and can be reduced modulo strong equiva�
lence� yielding an LTS that is free of deadlock and free of livelock� Table ��� contains the statistics
for the LTSs thus created�

��



Process � States � Transitions � � Transitions Reduction Modulo
sync �		� ��	�� ��	� none

���� ��	�� ���� strong equivalence
agent �� �	� � none

�� �	� � strong equivalence
manager �� ��� � none

�	 ��� � strong equivalence
association ����	 ������ �����	 none

����	 �	���� 	���� strong equivalence

Table ���� Statistics for the OM�service model� compositional approach

Previous models for the OM�service� checked using this approach� contained some unwanted be�
haviour with respect to the too strict separation between the establishing and the relinquishing of
an association� This was found out by interactive simulation of the service model using the tool
xsimulator� This resulted in several adaptions of the process pcsync and �nally resulted in the
OM�service model as described in Chapter ��

Compared to the non�compositional approach� the compositional approach is much faster� To
illustrate� the calculation of the OM�service model using the non�compositional approach took
more than three hours� whereas the calculation of the OM�service model using the compositional
approach all in all took less than �� minutes�

����� Validation of the OM�protocol model

The OM�protocol model� validated in this Section� is described by the following Lotos speci�ca�
tion�

SPECIFICATION OM�Protocol �OSAP� � NOEXIT

BEHAVIOUR

HIDE RSAP IN �

� OM�Protocol�Entity �OSAP� RSAP� �aid�offset�neighbour��offset�

���

OM�Protocol�Entity �OSAP� RSAP� �aid�offset�neighbour��neighbour� �

��RSAP��

RR�Service �RSAP�

�

ENDSPEC �	 OM�Protocol 	�

This process uses the speci�cation for the OM�protocol entity model as described in Chapter ��
and the speci�cation for the lower�layer service� the RR�service model� described in Chapter ��

In order to check this OM�protocol model for absence of deadlock and livelock� adjustments have
to be made to two processes described in Chapters � and �� These adaptions are introduced to
accomodate for the maximal number of sessions that are considered� First� the process manager

is adapted� to disallow the Manager from starting more than one session� The process that
subsequently is used is the following�

PROCESS manager�OSAP��aa � aid� j � nat� � NOEXIT �


�j lt succ���� �� �

minitiate �OSAP� �aa�

��



��

���mcommunicate �OSAP� �aa� �� initiaterelease �OSAP� �initiator�aa�� �

��

forcerelease �OSAP� �initiator�aa�� �

��

syncdisable �OSAP� �initiator�aa�� �

��

manager �OSAP� �aa� succ�j��

�

��

�j eq succ���� �� �i� manager �OSAP� �aa�j� �

ENDPROC �	manager	�

The initial call for process manager in process association in the OM�protocol entity model� is
changed from manager	OSAP� �aa� into manager	OSAP� �aa����

Another restriction that is imposed on the OM�protocol� is the restriction of the lower layer
service� Process rrsi� used in the OM�protocol entity� which represents the local interface with
the RR�service� is constrained as follows�

PROCESS rrsi �RSAP� �n � AI� aa� AId� � NOEXIT �


RSAP 
n �s � RSP �k � AI �l � AI �p � OMPDU 
aa 
�

�not�k eq l� and �IsEventreport�s� eq Isreport�p����

rrsi �RSAP� �n� aa�

ENDPROC �	 rrsi 	�

This process is adapted to allow for communication over gate RSAP constrained to one session�
identi�er only� Furthermore� a strict relation on several gate parameters is enforced� in order to
generate an LTS as small as possible� If these constraints are omitted� the LTS that has to be
generated will be beyond the scope of computation time �and memory
�

The Compositional Approach

The number of states represented by the OM�protocol is still too large to deal with in one piece� the
generation of an LTS is beyond the capabilities of C�sar within the limits of memory and time�
Fortunately� C�sar allows for compositional generation of LTSs� In the case of the OM�protocol�
three processes can be distinguished�

� One process represents the lower layer service� the RR�service�

� One process represents the Agent side of the association �i�e� the Agent OM�protocol Entity
�APE
 
�

� One process represents the Manager side of the association �i�e� the Manager OM�protocol
entity �MPE
 
�

The RR�service model� The RR�service model is restricted to at most four messages that
can be in transit at any point in time� Furthermore� it is restricted by running it in parallel with
process rrsi� which represents the interface with an OM�protocol entity� The generation of the
LTS representing this RR�service model using the non�compositional approach� however� is still
very time�consuming�

Fortunately� the RR�service model can be dealt with compositionally as well� which decreases
the amount of time needed vastly� First an LTS is generated for process communication� which

��



represents only one communication� The LTS thus generated is reduced modulo strong equiva�
lence� Next� this reduced LTS is interleaved with itself� yielding an LTS representing at most two
communications that can be in transit at any point in time� Again� this LTS is reduced modulo
strong equivalence� This is repeated until a reduced LTS for four messages in transit is obtained�

Absence of deadlock and livelock was validated using Aldebaran� The statistics with respect to
the LTSs generated can be found in table ����

� Messages in Transit � States � Transitions � � Transitions Reduction Modulo
one �� ��	 � none

�� �� � strong equivalence
two ��� �	�	 � none

��	 ���� � strong equivalence
three ����� ����� � none

���� ����� � strong equivalence
four �	��	 ������ � none

����� �����	 � strong equivalence

Table ���� Statistics for the RR�service model� compositional approach

Compared to the non�compositional approach� again the compositional approach is much faster�
the results presented above can be calculated within �� minutes� whereas the calculation using the
non�compositional approach was aborted after �� hours� since no progress had been noticed for 	
hours in a row�

The Manager OM�protocol entity� The problems encountered for the RR�service layer re�
peated themselves using the non�compositional approach for the Manager OM�protocol entity�
Again� the compositional approach was endeavored� An LTS was generated for the Upper Pro�
tocol Functions� and one LTS was generated for the Lower Protocol Functions� These LTSs were
reduced modulo strong equivalence and subsequently combined into a new LTS� This LTS in turn�
representing the MPE� was reduced modulo strong equivalence� Statistics can be found in table
����

Process � States � Transitions � � Transitions Reduction Modulo
Upper Protocol Functions ��	 ���� �� none

��� ��� �� strong equivalence
Lower Protocol Functions ����� �	���� �� none

��� ���� � strong equivalence
MPE ���� ����� ��	� none

	�� ���� ��� strong equivalence

Table ���� Statistics for the Manager OM�protocol entity model� compositional approach

The Agent OM�protocol entity� For the Agent OM�protocol entity� the compositional ap�
proach is used as well� An LTS was generated for the Upper Protocol Functions� and one LTS was
generated for the Lower Protocol Functions� These LTSs were reduced modulo strong equivalence
and subsequently combined into a new LTS� This LTS in turn� representing the APE� was reduced
modulo strong equivalence� Statistics can be found in table ����

The calculation of the Lower Protocol Functions were clearly harder than the Upper Protocol
Functions� For instance� the calculation of the Lower Protocol Functions for the MPE took more
than �� minutes� whereas the Upper Protocol Functions for the MPE took less than �� seconds�
Combining these two LTSs is a matter of minutes� Clearly� using the non�compositional approach

��



Process � States � Transitions � � Transitions Reduction Modulo
Upper Protocol Functions ��� 	�� �� none

	� ��� �	 strong equivalence
Lower Protocol Functions ���� ���	� �� none

��� ���� � strong equivalence
APE ��� ��	� ��	 none

��� �	�� ��� strong equivalence

Table ���� Statistics for the Agent OM�protocol entity model� compositional approach

would have taken much longer�

The OM�protocol model� Finally� the three LTSs were combined� yielding one LTS� repre�
senting the OM�protocol model� This model was reduced modulo strong equivalence� Statistics
concerning these LTSs can be found in table ���� The OM�protocol model� thus created� was found
not to be free of deadlock� A trace� containing the deadlock was analyzed and revealed that a
request for a �fth message caused the deadlock� This was cured by adding a �fth message that
can be in transit to the RR�service model�

Process � States � Transitions � � Transitions Reduction Modulo
OM�Protocol ����� ������ ����	 none

��	� ����� ����� strong equivalence

Table ���� Statistics for the OM�protocol model� compositional approach

Considering more than one session� An e
ort was made to apply the above sketched ap�
proach in order to calculate the LTSs for the OM�protocol that represented two sessions� This�
however� failed due to the amount of memory needed in this calculation� Considering even more
than two sessions therefore seems a goal beyond reality�

����� The OM�service Model versus the OM�protocol Model

The tool Aldebaran o
ers the possibility to compare two LTSs modulo various equivalence and
preorder relations� In order to check whether the OM�protocol is indeed an implementation of the
OM�service� the LTSs generated for both models are compared� Since it is unlikely equivalence
exists between these two models �the OM�protocol model only describes one session
� �rst an
attempt is made to check for various preorder relations� The preorders that can be checked are
strong preorder� �

�a preorder and safety preorder �BFG����� According to Aldebaran the two
latter preorders are equivalent� Aldebaran was able to prove that the modulo strong equivalence
reduced LTS for the OM�protocol model was indeed a �

�a preorder and a safety preorder for the
modulo strong equivalence reduced LTS for the OM�service model� The strong preorder could not
be proven�

��� Summary

In this Chapter� the validation of the models described in this thesis is discussed� Furthermore� the
simulation of the speci�cations� found in Appendices A and B is highlighted� Several important
issues concerning the tools� and the use of the tools were found out�

� In general� tools assist in the understanding of speci�cations�

��



� Tools can strengthen the believe in the correctness of a speci�cation�

� The potential of tools is limited in a sense that the state explosion problem is still a problem�

With respect to the state explosion problem it must be noted that the compositional approach�
o
ered in Eucalyptus� does lead to better results�

However� the models� as described in previous Chapters� are severe simpli�cations of the speci��
cation found in the Appendices� As such� it still is vital to know which abstractions can safely be
made�

��



Chapter �

Concluding Remarks

This Chapter highlights several aspects of both this thesis and the traineeship� Again� this Chap�
ter is divided into several Sections� each dealing with distinct �elds� Section ��� discusses the
documents this thesis is based on� Section ��� gives some hints as to how the relationship was
between CMG and AVV during the traineeship� Some commentary notes are give on the FDT
Lotos in Section ���� together with a discussion on the use of tools in Section ���� Finally� Section
��� gives an overview for issues for further research�


�� Formalizing Informal Documents

This thesis is based on documents written by AVV� and in particular on the document �AVV����
One of the major omissions in this latter document is� as already mentioned� the lack of speci�
�cations concerning the dynamic behaviour of the OM�RR�data communications protocol� This
omission formed the starting point for the investigation for this thesis�

Another omission� not noticed until a thorough study was made of �AVV���� is the lack of require�
ments the OM�RR�protocol has to adhere to� Requirements are felt to be at the heart of both
formal speci�cations and informal speci�cations for any system� This is because the requirements
state what the demands are for the system and what the system�s users expects the system to do�
As such� these requirements are essential for writing service speci�cations� arguing about these
speci�cations� validating these speci�cations and testing implementations for these speci�cations�
Requirements found in �AVV���� and related documents were mostly concerned with the perfor�
mance aspects of the systems instead of functional requirements� Although important as well� this
re�ects only a minor part of the requirements needed to design or specify the actual system�

Since no dynamic behaviour was speci�ed in �AVV��� on the one hand� and hardly any require�
ments regarding the behaviour of the OM�RR�protocol could be found on the other hand� the
speci�cations and the models described in this thesis can only be considered to be a �rst step
towards a real speci�cation� Section ��� gives some clues as to what might be changed in both the
requirements and the speci�cations for the system to be according to the needs for the OSS system�

The formalization of a protocol is very hard� If this formalization is to be based on informal
documents� the problems encountered usually not so much deal with the �rewriting� of the in�
formal speci�cation into the formal speci�cation� A real problem is often found in the omissions
encountered in the informal documents� Formalizing informal documents can thus be regarded as
a di�cult task� in which many assumptions have to be made�

With respect to the system OSS� a conclusion that can be drawn from this exercise is that the
implementation of the system OSS� based on the current documents� has a high risk of failing

�	



because of the underspeci�cation found in various documents� Most notably are the underspeci�
�cation concerning the OM�RR�protocol and the lack of documents relating to the authorization
protocol�


�� Relation with Respect to AVV

The formal speci�cation for the OM�RR�protocol was to be based on the documents written by
AVV� in particular �AVV���� Soon� it was understood� as mentioned in Section ��� that these
document alone were not a su�cient basis for this task� Although knowledge of some of the
requirements concerning the OM�RR�protocol was available within CMG� several questions re�
mained unanswered�

In order to retrieve this information� a memo containing the more important questions was sent
to AVV� Due to management�political reasons� no answer for this memo was received� and as
such� several assumptions concerning these questions were made� Although now the speci�cations
were no longer considered to be according to the demands that actually existed on the OM�RR�
protocol� it was felt that at least these initial speci�cations could serve as guidelines to possibly
new speci�cations�

In later stages of the traineeship� feedback by AVV was possible again� An investigative conversa�
tion was organized between CMG and AVV concerning the formal speci�cations of the OM�RR�
protocol� The goals for this conversation were set to �nd out how much of the assumptions that
were made concerning the requirements for the OM�RR�protocol� were realistic and�or correct�
Subsequently� a list of comments and suggestions on the speci�cations and the assumptions con�
cerning the requirements as they had been presented to AVV� was received� A second conversation
followed� which was more instructive than the �rst� and more requirements surfaced� Most of these
requirements and changes to the current speci�cations� are discussed in Section ������

The conversations with AVV can be characterized as conversations not so much about design
and speci�cation� as about implementation� Every so often� remarks were made that steered the
discussion into implementation details� and lifting the discussion up to a design level was not
always possible� This made it very hard to get to the essence of the matter and retrieve the
information�


�� The Use of the FDT Lotos

The FDT Lotos is found to be very suitable for describing complex systems such as protocol
speci�cations� It o
ers the possibility for both concise and comprehensive descriptions� and sup�
ports the four �major
 classes of speci�cation styles� Knowledge about process algebras has to be
present� to be able to use Lotos� and this may form a threshold for potential users�

In relation to ACP it must be mentioned that ACP was found to be more intuitive at �rst� For
instance communication in ACP is� compared to communication in Lotos� easier to understand�
This is because in ACP every communication is explicitly de�ned using a communication func�
tion� in contrast to Lotos� where communication is synchronised over gates� This makes it hard
sometimes to get the overall view of the behaviour of a Lotos description�

Apart from the few conceptual di
erences in Lotos� compared to ACP� some operators are o
ered
in Lotos� which are not o
ered in ACP� Most notably is the disable operator 	
� frequently used
in the speci�cations found in this thesis� This operator is found to be very useful in specifying
events that interupt processes that are currently running� Since this is commonly found in data

��



communications protocols� this operator is very e
ective in modelling real�life situations�

The data part of Lotos� the Abstract Data Types� was found to be very cumbersome to use�
Although a sound formalism� the Abstract Data Types do not add much comfort for the user of
the FDT Lotos� The ADTs as such do not assist in understanding Lotos descriptions� unlike
the dynamic part of Lotos� As such� a more convenient way of specifying data and functions
would be welcome�

Although the industry could very well bene�t from the use of Formal Methods in general� the
threshold of the FDTs is not lowered by user�unfriendly methods such as Abstract Data Types�


�� Tool assistence

This Section is divided into two separate Sections� Section ����� discusses some issues on tools in
general and the tools used in speci�c� and Section ����� subsequently discusses the results found
by the assistence of tools�

����� Notes on the Tools

Tool support for simulation and validation of large formal speci�cations is necessary to gain con�
�dence in the speci�cation� This can be regarded as one of the more important conclusions that
can be drawn from this thesis� Actually being able to see that execution sequences exist where a
speci�cation is incorrect� or not according to the requirements� strengthens the believe in Formal
Methods�
However� there are still some major drawbacks with respect to the use of most tools�

It is still the fact that a �realisticly large
 speci�cation has to be simpli�ed to be veri�ed� thus
introducing the risk of abstracting too much of the original speci�cation and thereby omitting
faulty behaviour �or introducing faulty behaviour
�

The use of tools is complicated� Firstly� a profound understanding of the speci�cation language is
needed� and even then it is hard to use tools without prior knowledge on these tools� Secondly� the
toolboxes� for instance Eucalyptus� often have only brief documentation on the functionalities
they o
er� so obtaining knowledge about these tools is often a case of trial�and�error� The easiest
way of learning about these tools �and about the speci�cation language as well
 is by starting
with very small examples and gradually using bigger examples� A data communications protocol
as discussed in this thesis for instance� is clearly too big to learn the elementaries of the toolbox
Eucalyptus well�
Other drawbacks of tools are concerned with computer memory and computing time� Although
nowadays computers have access to an increasing amount of memory� and still gain in computing
speed� it is not likely the state explosion problems will be solved in the near future�

Besides these drawbacks� it must be mentioned that tools are man�made� Since people make
mistakes� one must always keep in mind that the used tool itself can be incorrect as well� In
order to �nd out about this� a profound understanding of the speci�cation formalism is necessary�
This knowledge of the speci�cation formalism is also needed to convince sceptics a speci�cation is
correct�

In general� the use of Formal Description Techniques is assisted by the existence of tools� However�
these tools are often again as complicated as the formalisms they try to visualize and assist� In
the worst case� instead of a preference for Formal Methods� this might even result in an aversion
for �the application of
 Formal Methods�

��



����� Results Found by the Tools

The results found in Chapter � using the toolbox Eucalyptus are a bit poor� Partly this is
because of the limited amount of time that could be put into the validation excercise� Other
reasons� however� are just as signi�cant in this�

�� The computer system harbouring the toolbox Eucalyptus was �limited� in its memory
capacity and its availability of time�

�� The documentation that was available for the toolbox Eucalyptus is very brief�

�� The gap that exists between the analyzed LTSs and the Lotos�description�

Especially the third item was slowing down the process of validation� If for instance a deadlock
is found in an LTS� the processes that introduce this deadlock cannot be recovered automatically�
After modifying the speci�cation� the very time�consuming generation of the LTSs is needed again
to check for the absence of the deadlock�

Although a preorder relation was con�rmed between the OM�protocol model on the one hand
and the OM�service model on the other hand� the ultimate goal was to prove the existence of an
equivalence between these two models� Unfortunately� this could not be proven�


�� Further Research Topics

Several remarks can be made with respect to the speci�cations discussed in this thesis� Since these
speci�cations must be regarded as a �rst e
ort� it is felt that several changes can be made� These
changes� discusses in Section ������ are motivated by conversations in later stages of the develop�
ment of the speci�cations with AVV� Suggestions concerning the tools used in this traineeship�
and the use of these tools� are given in Section �����

����� Changes to the OM�RR�protocol

In the second conversation with AVV� it became clear that several changes had to be made to
the OM�RR�protocol� Although no concrete changes are suggested by AVV� it was felt that the
following items are subject to change�

The most notable change would be to model multiple associations on OM�service level� instead
of the use of binary associations� assumed in this thesis� To be more speci�c� a one�to�many
association is considered to be the most appropriate for the OM�service layer� In that model�
one Agent can be associated to any number of Managers at any time �i�e� one Agent versus a
set of Managers
� The OM�service layer can then administrate the so�called �subscribers�� i�e� a
subset of the Managers that have an association with the Agent� This allows for the inclusion
of the omitted service elements such as the non�addressed report service and the non�addressed
noti�cation service�

The second change concerns the RR�service layer� Instead of the connectionless service it now
o
ers� a connection oriented service will have to be described� With respect to the dynamic
behaviour of the RR�service layer� the Routing Support Agents �RSAs
� described in one of the
documents for the OSS� can be taken as a guideline�

Other� conceptual changes are the terminology used in �AVV��� and this thesis� It was found out�
that the Invoker and Performer� described in �AVV���� are equivalent to the Manager and Agent�
described in this thesis� The Initiator and Responder then are terms used for the �connection�
oriented
 RR�service layer�

Besides these changes� several obscurities remain�

��



� The notion of subscribers on the level of the RR�service layer is still unclear� It is felt that�
with the changes proposed above� the OM�service layer maintains the subscriptions� instead
of the RR�service layer�

� The de�nition of �having a subscription� remains vague and the subscription mechanism is
not clearly described�

� The impact the create service element and the delete service element have on the OM�service�
under which circumstances these services can be used� and the mechanism used by the create
service element and the delete service element all are still unclear�

In order to �nd out about these obscurities� conversations with AVV are necessary� Furthermore�
the dynamic behaviour of the OM�service and the OM�protocol are not validated by AVV� and
may reveal �other than the in this Section mentioned
 unwanted behaviour that is incorporated
in the speci�cations�

����� Research on the Tools

Although the toolbox Eucalyptus o
ers quite a range of functionalities� there are still several
items that deserve some extra attention� Three items� felt to be worth investigating are listed
below�

� Extending the ADT�compiling algorithm with respect to the omission found� discussed on
page ���

� Performance analysis of the toolbox�

� Guidelines on the use of the compositional approach in generating LTSs�

Concerning the omission found on page ��� curing this omission is not felt to present much prob�
lems�

With respect to the performance analysis of the toolbox� it must be noted that it could be worth�
while to have some guidelines describing how a Lotos�description could best be written to reach
faster results� This applies to both the static part� speci�ed in act�one� as to the dynamic part�

With respect to the last item� it must be mentioned that the compositional generation of the LTS
for the OM�protocol could have been done in more than one way� To illustrate� it was found out
that restricting the RR�service model to a maximum of four messages that can be in transit at
any point in time was too restrictive and introduced a deadlock� To cure this� one extra instance
of process communication was added to the RR�service� Instead of generating the LTS for this
new RR�service� the following construction was used to describe the new OM�protocol�

BEHAVIOUR �rr� ��� rr�� �� �APE ��� MPE�

In the above described construction rr
 is a reference to the �le rr��aut which contains the LTS
for the RR�service speci�cation restricted to a maximum of four messages that can be in transit
at any point in time� and rr� is a reference to the �le rr��aut� which contains the LTS for the
RR�service speci�cation restricted to at most one message that can be in transit at any point
in time� APE and MPE refer to the �les APE�aut and MPE�aut� which contain the LTSs for the
Agent OM�protocol entity and the Manager OM�protocol entity� Generating the LTS for the new
RR�service was thus avoided� Instead of the above described construction� however� the following
construction could have easily been used as well�

BEHAVIOUR �rr� ��� rr� ��� rr� ��� rr� ��� rr�� �� �APE ��� MPE�

��



It is interesting to investigate� which of these two constructions is more time and�or memory
e�cient in generating the corresponding LTS� and more general� if the choice between the two
constructions can be automated� The ultimate challenge is to automate the compositional ap�
proach itself�

Another issue that can be investigated is the relation between an EFSM generated by Smile and
an LTS� generated by C�sar� It is interesting to investigate if� or under which circumstances�
the restrictions imposed on the Lotos�operators by C�sar can be overcome by transforming a
speci�cation into an EFSM �rst� and only then translate the EFSM into an LTS�


�
 Recommendations for Similar Excercises

The approach followed in this thesis �i�e� �rst describing the speci�cations found in the Appendices�
and only then modelling these speci�cations
 did lead to some satisfactory results �e�g� absence
of deadlock in the OM�protocol model and the OM�service could be proven
�
Another approach is to �rst describe the models� validate these models and then gradually add
more functionality to these models� ultimately giving a full speci�cation�
Both approaches have their advantages and disadvantages�

The advantage of the approach followed in this thesis is that the models could be modelled after
an already formal speci�cation� thus easing the di�cult task of determining what areas are critical
and which are not�
A disadvantage� experienced during the traineeship is that it is very di�cult to determine how
many simpli�cations have to be made to the original speci�cations in order to obtain a model that
can be validated by tools�

The other approach has as a disadvantage that initially it is very hard to distinguish the �vital�
parts of the system under speci�cation� As such� it is often hard to write a �rst model� Further�
more� once a model is described� it is hard to leave the already established framework behind if it
is not suitable to add a new functionality to it�
An obvious advantage is that tool assistance is o
ered from the very beginning� The turning point
of which functionalities incorporated in the models can still be validated by the tools and which
cannot is easier to distinguish� Another advantage is that if the speci�cation formalism is not well
understood� this approach o
ers the possibility to gradually better understand the formalism�

It is hard to say which of these two approaches is best� Probably a mixture of both approaches
yields the best �and fastest
 results�

��



Appendix A

The OM�Service Speci�cation

The requirements that can be found �although in no case� explicitly formulated� in �AVV���� or have been assumed� are
the following 	


� A number of concurrent Associations are to be provided by the OM Service Provider � �AVV����


� An Association can be identi�ed by its Manager and its Agent �thus the tuple �Manager�Agent� uniquely identi�es
the association� � This has been assumed �as stated before� �AVV��� does not acknowledge the roles of Managers
and Agents ��

�� Once an association has started� it can only be terminated by a disable request� This disable request can be issued
both by the Manager and the Agent and always succeeds � �AVV����

�� Furthermore� a service provided termination is allowed � assumed�

�� Associations can only be set up between existing� di�erent Managed Objects � assumed�

�� Both a disable indication and a disable con�rmation denote the de�nite end of the corresponding association� �
�AVV���

�� A Managed Object can always be deleted when it is not one of the association members engaging in this operation
� assumed�

�� A Managed Object can only be created when it does not already exist � assumed�

�� The Objects that are addressed� are identi�ed by a dynamic set of object�ids� which� however� is not the task of
the OM Service Provider to maintain � assumed�


�� Objects involved in an association cannot cease to exist spontaneously� but must �rst disable all associations they
are involved in � assumed�

SPECIFICATION OM�Service �OSAP� � NOEXIT

LIBRARY
boolean
naturalnumber

ENDLIB

TYPE OM�Address
IS Boolean

SORTS OA
OPNS

offset � �� OA
neighbour � OA �� OA
�eq���lt� � OA� OA �� Bool

EQNS
FORALL

x�y � OA
OFSORT

Bool

offset eq offset � true	
offset eq neighbour
x� � false	
neighbour
x� eq offset � false	
neighbour
x� eq neighbour
y� � x eq y	
offset lt offset � false	

offset lt neighbour
x� � true	
neighbour
x� lt offset � false	
neighbour
x� lt neighbour
y� � x lt y	

��



ENDTYPE
�OM�Address��

TYPE ID�Number
IS Boolean
SORTS ID
OPNS


 � �� ID
succ � ID �� ID
�eq���lt� � ID� ID �� Bool

EQNS
FORALL

x�y � ID
OFSORT Bool


 eq 
 � true	

 eq succ
x� � false	
succ
x� eq 
 � false	

succ
x� eq succ
y� � x eq y	

ENDTYPE
�ID�Number��

TYPE AssociationSet

IS set ACTUALIZEDBY AId USING
SORTNAMES

AId FOR Element
AIdSet FOR Set

Bool FOR FBool
OPNNAMES

empty FOR ��
ENDTYPE
�AssociationSet��

TYPE AId
IS OM�Address� ID�Number� Boolean
SORTS

AId

OPNS
AId � OA� OA �� AId
Initiator � AId �� OA
Responder � AId �� OA
�eq���ne���lt�� AId� AId �� Bool

EQNS
FORALL

a��a� � OA� as��as� � AId
OFSORT OA

Initiator
AId
a��a��� � a�	

Responder
AId
a��a��� � a�	
OFSORT Bool

as� eq as� � 
Initiator
as�� eq Initiator
as��� and

Responder
as�� eq Responder
as���	

as� ne as� � not
as� eq as��	
as� lt as� � 
Initiator
as�� lt Initiator
as��� or



Initiator
as�� eq Initiator
as���
and 
Responder
as�� lt Responder
as����	

ENDTYPE
�AId��

TYPE OM�Service�Primitives
IS OM�Address� ID�Number� AId
SORTS

OSP
OPNS

getreq � AID� ID �� OSP
csetreq � AID� ID �� OSP
usetreq � AID� ID �� OSP

actionreq � AID� ID �� OSP
enablereq � AID� ID �� OSP
disablereq � AID� ID �� OSP
reportreq � AID� ID �� OSP

notificationreq � AID� ID �� OSP
createreq � AID� ID� OA �� OSP
deletereq � AID� ID� OA �� OSP
getind � AID� ID �� OSP
csetind � AID� ID �� OSP

usetind � AID� ID �� OSP
actionind � AID� ID �� OSP
enableind � AID� ID �� OSP
disableind � AID� ID �� OSP
reportind � AID� ID �� OSP

notificationind � AID� ID �� OSP

��



createind � AID� ID� OA �� OSP
deleteind � AID� ID� OA �� OSP

getres � AID� ID �� OSP
csetres � AID� ID �� OSP
actionres � AID� ID �� OSP
createres � AID� ID� OA �� OSP
deleteres � AID� ID� OA �� OSP

getconf � AID� ID �� OSP
csetconf � AID� ID �� OSP
actionconf � AID� ID �� OSP
enableconf � AID� ID� Bool �� OSP
disableconf � AID� ID �� OSP

createconf � AID� ID� OA �� OSP
deleteconf � AID� ID� OA �� OSP

ENDTYPE
� OM�Service�Primitives��

TYPE Doublet
IS Boolean� NaturalNumber
SORTS

Tuplet
OPNS

One� Two � �� Tuplet
�eq�� �ne�� �lt� � Tuplet� Tuplet �� Bool
h � Tuplet �� Nat

EQNS

FORALL x�y � Tuplet
OFSORT Nat

h
One� � 
	
h
Two� � succ
h
one��	

OFSORT Bool

x eq y � h
x� eq h
y�	
x ne y � h
x� ne h
y�	
x lt y � h
x� lt h
y�	

ENDTYPE 
�Doublet��

TYPE EightTuplet
IS Doublet
OPNS

Three� Four� Five� Six� Seven� Eight ��� Tuplet

EQNS
OFSORT Nat

h
Three� � succ
h
Two��	
h
Four� � succ
h
Three��	
h
Five� � succ
h
Four��	

h
Six� � succ
h
Five��	
h
Seven� � succ
h
Six��	
h
Eight� � succ
h
Seven��	

ENDTYPE 
�EightTuplet��

TYPE SixteenTuplet
IS EightTuplet
OPNS

Nine�Ten�Eleven�Twelve�Thirteen�Fourteen�
Fifteen�Sixteen ��� Tuplet

EQNS
OFSORT Nat

h
Nine� � succ
h
Eight��	

h
Ten� � succ
h
Nine��	
h
Eleven� � succ
h
Ten��	
h
Twelve� � succ
h
Eleven��	
h
Thirteen� � succ
h
Twelve��	
h
Fourteen� � succ
h
Thirteen��	

h
Fifteen� � succ
h
Fourteen��	
h
Sixteen� � succ
h
Fifteen��

ENDTYPE 
�SixteenTuplet��

TYPE ThirtytwoTuplet
IS SixteenTuplet
OPNS

Seventeen� Eighteen� Nineteen� Twenty� Twone�

Twtwo� Twthree� Twfour� Twfive� Twsix� Twseven�
Tweight� Twnine� Thirty� Thone� Thtwo ��� Tuplet

EQNS
OFSORT Nat

h
Seventeen� � succ
h
Sixteen��	

h
Eighteen� � succ
h
Seventeen��	

��



h
Nineteen� � succ
h
Eighteen��	
h
Twenty� � succ
h
Nineteen��	

h
Twone� � succ
h
Twenty��	
h
Twtwo� � succ
h
Twone��	
h
TwThree� � succ
h
TwTwo��	
h
TwFour� � succ
h
TwThree��	
h
TwFive� � succ
h
TwFour��	

h
TwSix� � succ
h
TwFive��	
h
TwSeven� � succ
h
TwSix��	
h
TwEight� � succ
h
TwSeven��	
h
TwNine� � succ
h
TwEight��	
h
Thirty� � succ
h
Twnine��	

h
Thone� � succ
h
Thirty��	
h
Thtwo� � succ
h
Thone��	

ENDTYPE 
�ThirtytwoTuplet��

TYPE OSPClass IS ThirtytwoTuplet RENAMEDBY
SORTNAMES

OSPClass FOR Tuplet
OPNNAMES

GetRequest FOR one

USetRequest FOR two
CSetRequest FOR three
ActionRequest FOR four
EnableRequest FOR five

DisableRequest FOR six
ReportRequest FOR seven
NotificationRequest FOR eight
CreateRequest FOR nine
DeleteRequest FOR ten

GetIndication FOR eleven
USetIndication FOR twelve
CSetIndication FOR thirteen
ActionIndication FOR fourteen
EnableIndication FOR fifteen

DisableIndication FOR sixteen
ReportIndication FOR seventeen
NotificationIndication FOR eighteen
CreateIndication FOR nineteen
DeleteIndication FOR twenty

GetResponse FOR twone
CSetResponse FOR twtwo
ActionResponse FOR twthree
CreateResponse FOR twfour
DeleteResponse FOR twfive

GetConfirmation FOR twsix
CSetConfirmation FOR twseven
ActionConfirmation FOR tweight
EnableConfirmation FOR twnine

DisableConfirmation FOR thirty
CreateConfirmation FOR thone
DeleteConfirmation FOR thtwo

ENDTYPE
�OSP�Class��

TYPE OSP�Classifier
IS OSPClass� OM�Service�Primitives� AId
OPNS

Map � OSP �� OSPClass

IsGetReq � OSP �� Bool
IsCsetReq � OSP �� Bool
IsUsetReq � OSP �� Bool
IsActionReq � OSP �� Bool
IsEnableReq � OSP �� Bool

IsDisableReq � OSP �� Bool
IsReportReq � OSP �� Bool
IsNotificationReq � OSP �� Bool
IsCreateReq � OSP �� Bool

IsDeleteReq � OSP �� Bool
IsGetInd � OSP �� Bool
IsCsetInd � OSP �� Bool
IsUsetInd � OSP �� Bool
IsActionInd � OSP �� Bool

IsEnableInd � OSP �� Bool
IsDisableInd � OSP �� Bool
IsReportInd � OSP �� Bool
IsNotificationInd � OSP �� Bool
IsCreateInd � OSP �� Bool

IsDeleteInd � OSP �� Bool

��



IsGetRes � OSP �� Bool
IsCsetRes � OSP �� Bool

IsActionRes � OSP �� Bool
IsCreateRes � OSP �� Bool
IsDeleteRes � OSP �� Bool
IsGetConf � OSP �� Bool
IsCsetConf � OSP �� Bool

IsActionConf � OSP �� Bool
IsEnableConf � OSP �� Bool
IsDisableConf � OSP �� Bool
IsCreateConf � OSP �� Bool
IsDeleteConf � OSP �� Bool

EQNS
FORALL

a � OA� as��as � AId� j � ID� prim � OSP� b � Bool
OFSORT OSPClass

Map
GetReq
as�j�� � GetRequest	

Map
USetReq
as�j�� � USetRequest	
Map
CSetReq
as�j�� � CSetRequest	
Map
ActionReq
as�j�� � ActionRequest	
Map
EnableReq
as�j�� � EnableRequest	
Map
DisableReq
as�j�� � DisableRequest	

Map
ReportReq
as�j�� � ReportRequest	
Map
NotificationReq
as�j�� � NotificationRequest	
Map
CreateReq
as�j�a�� � CreateRequest	
Map
DeleteReq
as�j�a�� � DeleteRequest	

Map
GetInd
as�j�� � GetIndication	
Map
USetInd
as�j�� � USetIndication	
Map
CSetInd
as�j�� � CSetIndication	
Map
ActionInd
as�j�� � ActionIndication	
Map
EnableInd
as�j�� � EnableIndication	

Map
DisableInd
as�j�� � DisableIndication	
Map
ReportInd
as�j�� � ReportIndication	
Map
NotificationInd
as�j�� � NotificationIndication	
Map
CreateInd
as�j�a�� � CreateIndication	
Map
DeleteInd
as�j�a�� � DeleteIndication	

Map
GetRes
as�j�� � GetResponse	
Map
CSetRes
as�j�� � CSetResponse	
Map
ActionRes
as�j�� � ActionResponse	
Map
CreateRes
as�j�a�� � CreateResponse	
Map
DeleteRes
as�j�a�� � DeleteResponse	

Map
GetConf
as�j�� � GetConfirmation	
Map
CSetConf
as�j�� � CSetConfirmation	
Map
ActionConf
as�j�� � ActionConfirmation	
Map
EnableConf
as�j�b�� � EnableConfirmation	
Map
DisableConf
as�j�� � DisableConfirmation	

Map
CreateConf
as�j�a�� � CreateConfirmation	
Map
DeleteConf
as�j�a�� � DeleteConfirmation	

OFSORT Bool
IsGetReq
prim� � map
prim� eq getrequest	

IsCsetReq
prim� � map
prim� eq CSetRequest	
IsUsetReq
prim� � map
prim� eq USetRequest	
IsActionReq
prim� � map
prim� eq ActionRequest	
IsEnableReq
prim� � map
prim� eq EnableRequest	
IsDisableReq
prim� � map
prim� eq DisableRequest	

IsReportReq
prim� � map
prim� eq ReportRequest	
IsNotificationReq
prim� � map
prim� eq NotificationRequest	
IsCreateReq
prim� � map
prim� eq CreateRequest	
IsDeleteReq
prim� � map
prim� eq DeleteRequest	
IsGetInd
prim� � map
prim� eq GetIndication	

IsCsetInd
prim� � map
prim� eq USetIndication	
IsUsetInd
prim� � map
prim� eq CSetIndication	
IsActionInd
prim� � map
prim� eq ActionIndication	
IsEnableInd
prim� � map
prim� eq EnableIndication	
IsDisableInd
prim� � map
prim� eq DisableIndication	

IsReportInd
prim� � map
prim� eq ReportIndication	
IsNotificationInd
prim� � map
prim� eq NotificationIndication	
IsCreateInd
prim� � map
prim� eq CreateIndication	
IsDeleteInd
prim� � map
prim� eq DeleteIndication	

IsGetRes
prim� � map
prim� eq GetResponse	
IsCsetRes
prim� � map
prim� eq CSetResponse	
IsActionRes
prim� � map
prim� eq ActionResponse	
IsCreateRes
prim� � map
prim� eq CreateResponse	
IsDeleteRes
prim� � map
prim� eq DeleteResponse	

IsGetConf
prim� � map
prim� eq GetConfirmation	
IsCsetConf
prim� � map
prim� eq CSetConfirmation	
IsActionConf
prim� � map
prim� eq ActionConfirmation	
IsEnableConf
prim� � map
prim� eq EnableConfirmation	
IsDisableConf
prim� � map
prim� eq DisableConfirmation	

IsCreateConf
prim� � map
prim� eq CreateConfirmation	

�	



IsDeleteConf
prim� � map
prim� eq DeleteConfirmation	
ENDTYPE
�OSP�Classifier��

TYPE OSP�Attributes
IS OSP�Classifier� AId� Boolean
OPNS

GetId � OSP �� ID
Subj � OSP �� OA
GetAId � OSP �� AId
GetSuccess � OSP �� Bool

EQNS

FORALL
a � OA� j � ID� as � AId� b � Bool

OFSORT Bool
GetSuccess
EnableConf
as�j�b�� � b	

OFSORT ID

GetId
GetReq
as�j�� � j	
GetId
USetReq
as�j�� � j	
GetId
CSetReq
as�j�� � j	
GetId
ActionReq
as�j�� � j	
GetId
EnableReq
as�j�� � j	

GetId
DisableReq
as�j�� � j	
GetId
ReportReq
as�j�� � j	
GetId
NotificationReq
as�j�� � j	
GetId
CreateReq
as�j�a�� � j	

GetId
DeleteReq
as�j�a�� � j	
GetId
GetInd
as�j�� � j	
GetId
USetInd
as�j�� � j	
GetId
CSetInd
as�j�� � j	
GetId
ActionInd
as�j�� � j	

GetId
EnableInd
as�j�� � j	
GetId
DisableInd
as�j�� � j	
GetId
ReportInd
as�j�� � j	
GetId
NotificationInd
as�j�� � j	
GetId
CreateInd
as�j�a�� � j	

GetId
DeleteInd
as�j�a�� � j	
GetId
GetRes
as�j�� � j	
GetId
CSetRes
as�j�� � j	
GetId
ActionRes
as�j�� � j	
GetId
CreateRes
as�j�a�� � j	

GetId
DeleteRes
as�j�a�� � j	
GetId
GetConf
as�j�� � j	
GetId
CSetConf
as�j�� � j	
GetId
ActionConf
as�j�� � j	
GetId
EnableConf
as�j�b�� � j	

GetId
DisableConf
as�j�� � j	
GetId
CreateConf
as�j�a�� � j	
GetId
DeleteConf
as�j�a�� � j	

OFSORT OA

Subj
CreateReq
as�j�a�� � a	
Subj
DeleteReq
as�j�a�� � a	
Subj
CreateInd
as�j�a�� � a	
Subj
DeleteInd
as�j�a�� � a	
Subj
CreateRes
as�j�a�� � a	

Subj
DeleteRes
as�j�a�� � a	
Subj
CreateConf
as�j�a�� � a	
Subj
DeleteConf
as�j�a�� � a	

OFSORT AId
GetAId
GetReq
as�j�� � as	

GetAID
USetReq
as�j�� � as	
GetAID
CSetReq
as�j�� � as	
GetAID
ActionReq
as�j�� � as	
GetAID
EnableReq
as�j�� � as	
GetAID
DisableReq
as�j�� � as	

GetAID
ReportReq
as�j�� � as	
GetAID
NotificationReq
as�j�� � as	
GetAID
CreateReq
as�j�a�� � as	
GetAID
DeleteReq
as�j�a�� � as	

GetAID
GetInd
as�j�� � as	
GetAID
USetInd
as�j�� � as	
GetAID
CSetInd
as�j�� � as	
GetAID
ActionInd
as�j�� � as	
GetAID
EnableInd
as�j�� � as	

GetAID
DisableInd
as�j�� � as	
GetAID
ReportInd
as�j�� � as	
GetAID
NotificationInd
as�j�� � as	
GetAID
CreateInd
as�j�a�� � as	
GetAID
DeleteInd
as�j�a�� � as	

GetAID
GetRes
as�j�� � as	

��



GetAID
CSetRes
as�j�� � as	
GetAID
ActionRes
as�j�� � as	

GetAID
CreateRes
as�j�a�� � as	
GetAID
DeleteRes
as�j�a�� � as	
GetAID
GetConf
as�j�� � as	
GetAID
CSetConf
as�j�� � as	
GetAID
ActionConf
as�j�� � as	

GetAID
EnableConf
as�j�b�� � as	
GetAID
DisableConf
as�j�� � as	
GetAID
CreateConf
as�j�a�� � as	
GetAID
DeleteConf
as�j�a�� � as	

ENDTYPE
�OSP�Attributes��

TYPE OSP�ServiceTYPE
IS OSP�Classifier

OPNS
IsReq � OSP �� Bool
IsInd � OSP �� Bool
IsRes � OSP �� Bool
IsConf � OSP �� Bool

EQNS
FORALL

prim � OSP

OFSORT bool

IsReq
prim� � IsGetReq
prim� or IsCSetReq
prim� or
IsUSetReq
prim� or IsActionReq
prim� or
IsEnableReq
prim� or IsDisableReq
prim� or

IsCreateReq
prim� or IsDeleteReq
prim� or
IsReportReq
prim� or IsNotificationReq
prim�	

IsInd
prim� � IsGetInd
prim� or IsCSetInd
prim� or
IsUSetInd
prim� or IsActionInd
prim� or
IsEnableInd
prim� or IsDisableInd
prim� or

IsCreateInd
prim� or IsDeleteInd
prim� or
IsReportInd
prim� or IsNotificationInd
prim�	

IsRes
prim� � IsGetRes
prim� or IsCSetRes
prim� or
IsActionRes
prim� or
IsCreateRes
prim� or IsDeleteRes
prim�	

IsConf
prim� � IsGetConf
prim� or IsCSetConf
prim� or
IsActionConf
prim� or
IsEnableConf
prim� or IsDisableConf
prim� or
IsCreateConf
prim� or IsDeleteConf
prim�	

ENDTYPE 
� OSP�ServiceTYPE ��

TYPE OSP�Elements is OSP�Classifier� Boolean
OPNS

IsGet � OSP �� Bool
IsCSet � OSP �� Bool
IsUSet � OSP �� Bool
IsAction � OSP �� Bool
IsEnable � OSP �� Bool

IsDisable � OSP �� Bool
IsReport � OSP �� Bool
IsNotification � OSP �� Bool
IsCreate � OSP �� Bool
IsDelete � OSP �� Bool

EQNS
FORALL

prim � OSP
OFSORT bool

IsGet
prim� � IsGetReq
prim� or IsGetInd
prim� or

IsGetRes
prim� or IsGetConf
prim�	
IsCSet
prim� � IsCSetReq
prim� or IsCSetInd
prim� or

IsCSetRes
prim� or IsCSetConf
prim�	
IsAction
prim� � IsActionReq
prim� or IsActionInd
prim� or

IsActionRes
prim� or IsActionConf
prim�	
IsUSet
prim� � IsUSetReq
prim� or IsUSetInd
prim�	
IsEnable
prim� � IsEnableReq
prim� or IsEnableInd
prim� or

IsEnableConf
prim�	
IsDisable
prim� � IsDisableReq
prim� or IsDisableInd
prim� or

IsDisableConf
prim�	
IsReport
prim� � IsReportReq
prim� or IsReportInd
prim�	
IsNotification
prim�� IsNotificationReq
prim� or IsNotificationInd
prim�	
IsCreate
prim� � IsCreateReq
prim� or IsCreateInd
prim� or

IsCreateRes
prim� or IsCreateConf
prim�	

IsDelete
prim� � IsDeleteReq
prim� or IsDeleteInd
prim� or

	�



IsDeleteRes
prim� or IsDeleteConf
prim�	
ENDTYPE
�OSP�Elements��

TYPE OSP�Type
IS

Boolean� OSP�Elements

OPNS

IsUnConf � OSP �� Bool
IsUserConf � OSP �� Bool

IsProviderConf � OSP �� Bool

EQNS
FORALL prim � OSP

OFSORT Bool
IsUnConf
prim� � IsUSet
prim� or IsReport
prim� or

IsNotification
prim�	
IsUserConf
prim� � IsGet
prim� or IsCSet
prim� or

IsAction
prim� or IsCreate
prim� or

IsDelete
prim�	
IsProviderConf
prim� � IsEnable
prim� or IsDisable
prim�	

ENDTYPE 
� OSP�Type ��

TYPE OSP�Match
IS OSP�Elements� Boolean
OPNS

�matches� � OSP� OSP �� Bool
EQNS

FORALL p�q � OSP
OFSORT Bool

p matches q � 
Isdisable
p� and Isdisable
q�� or

IsEnable
p� and IsEnable
q�� or

IsGet
p� and IsGet
q�� or


IsCSet
p� and IsCSet
q�� or

IsUSet
p� and IsUSet
q�� or

IsAction
p� and IsAction
q�� or

IsCreate
p� and IsCreate
q�� or

IsReport
p� and IsReport
q�� or


IsDelete
p� and IsDelete
q�� or

IsNotification
p� and IsNotification
q��	

ENDTYPE 
� OSP�Match ��

TYPE OSP�Primitives�Relations

IS OSP�Classifier� Boolean� OSP�Attributes� ID�Number�OSP�Servicetype�OSP�Match
OPNS

�ConfForReq� � OSP� OSP �� Bool
�ConfForRes� � OSP� OSP �� Bool

�IndForReq� � OSP� OSP �� Bool
�ResForInd� � OSP� OSP �� Bool

EQNS
FORALL prim��prim� � OSP
OFSORT Bool

prim� ConfForReq prim� � IsConf
prim�� and IsReq
prim�� and

GetId
prim�� eq GetId
prim��� and

prim� matches prim��	

prim� ConfForRes prim� � IsConf
prim�� and IsRes
prim�� and

GetId
prim�� eq GetId
prim��� and


prim� matches prim��	
prim� IndForReq prim� � IsInd
prim�� and IsReq
prim�� and


GetId
prim�� eq GetId
prim��� and

prim� matches prim��	

prim� ResForInd prim� � IsRes
prim�� and IsInd
prim�� and


GetId
prim�� eq GetId
prim��� and

prim� matches prim��	

ENDTYPE
�OSP�Primitives�Relations��

BEHAVIOUR

associations�OSAP�
insert
aid
offset�neighbour
offset���


insert
aid
neighbour
offset��offset�� empty����

WHERE

PROCESS associations�OSAP�
A � aidset� � NOEXIT ��

	�



CHOICE aa � aid �� �
aa isin A� and not
initiator
aa� eq responder
aa��� ��


i	 associations�OSAP�
remove
aa�A� �
���
association�OSAP�
aa�

�

ENDPROC
�associations��

PROCESS association�OSAP�
aa � aid� � NOEXIT ��


 manager�OSAP�
aa� ��� agent�OSAP�
aa� �

��
sync�OSAP�
aa�

ENDPROC 
�association��

PROCESS manager�OSAP�
aa � aid� � NOEXIT ��

minitiate�OSAP�
aa�
��

mcommunicate�OSAP�
aa�

��
initiaterelease�OSAP�
initiator
aa��

��

forcerelease�OSAP�
initiator
aa�� �� manager�OSAP�
aa� �

ENDPROC 
�manager��

PROCESS agent�OSAP�
aa � aid� � NOEXIT ��

ainitiate�OSAP�
aa�
��

acommunicate�OSAP�
aa�
��

initiaterelease�OSAP�
responder
aa��
��


forcerelease�OSAP�
responder
aa�� �� agent�OSAP�
aa� �

ENDPROC 
�agent��

PROCESS minitiate�OSAP�
aa � aid� � EXIT ��

OSAP
�initiator
aa�

�p� � OSP�IsEnableReq
p�� and 
aa eq GetAID
p����	
OSAP

�initiator
aa�
�p� � OSP�p� ConfForReq p��	


�not
GetSuccess
p���� �� minitiate�OSAP�
aa�
��
�GetSuccess
p��� �� EXIT�

ENDPROC 
�minitiate��

PROCESS ainitiate�OSAP�
aa � aid� � EXIT ��

OSAP

�responder
aa�
�p� � OSP�IsEnableInd
p�� and 
aa eq GetAID
p����	

EXIT

ENDPROC 
�ainitiate��

PROCESS mcommunicate�OSAP�
aa � aid� � NOEXIT ��

mnsm�Osap�
aa� ��� mosm�Osap�
aa�

ENDPROC 
� mcommunicate ��

PROCESS acommunicate�Osap�
aa � aid� � NOEXIT ��

mnsa�Osap�
aa� ��� mosa�Osap�
aa�

ENDPROC 
� acommunicate ��

PROCESS mosm�OSAP�
aa � aid� � NOEXIT ��

	�



mpconfirmed�OSAP�
initiator
aa��
���

munconfirmed�OSAP�
initiator
aa��
���


 muserconfirmed�OSAP�
initiator
aa��
�� validoperations�OSAP�
initiator
aa���

���

i	
mosm�OSAP�
aa�

ENDPROC 
� mosm ��

PROCESS mosa�OSAP�
aa � aid� � NOEXIT ��

apconfirmed�OSAP�
responder
aa��
���

aunconfirmed�OSAP�
responder
aa��
���

auserconfirmed�OSAP�
responder
aa��
���

i	

mosa�OSAP�
aa�

ENDPROC 
� mosa ��

PROCESS mpconfirmed�OSAP�
x � oa� � EXIT ��

OSAP
�x
�p� � OSP�IsDisableReq
p���	

EXIT

ENDPROC 
� mpconfirmed ��

PROCESS apconfirmed�OSAP�
x � oa� � EXIT ��

OSAP
�x
�p� � OSP�IsDisableReq
p���	

EXIT

ENDPROC 
� apconfirmed ��

PROCESS munconfirmed�OSAP�
x � oa� � EXIT ��

OSAP
�x
�p� � OSP�IsUsetReq
p���	

EXIT

ENDPROC 
� munconfirmed ��

PROCESS aunconfirmed�OSAP�
x � oa� � EXIT ��

OSAP
�x
�p� � OSP�IsUsetInd
p���	

EXIT

ENDPROC 
� aunconfirmed ��

PROCESS muserconfirmed�OSAP�
x � oa� � EXIT ��

OSAP
�x

�p� � OSP�IsReq
p�� and IsUserConf
p���	
OSAP

�x
�p� � OSP�p� ConfForReq p��	

EXIT

ENDPROC 
� muserconfirmed ��

PROCESS auserconfirmed�OSAP�
x � oa� � EXIT ��

	�



OSAP
�x

�p� � OSP�IsInd
p�� and IsUserConf
p���	
OSAP

�x
�p� � OSP�p� ResForInd p��	

EXIT

ENDPROC 
� auserconfirmed ��

PROCESS validoperations�OSAP�
x � oa� � NOEXIT ��

OSAP
�x
�p� � OSP�
IsDelete
p�� or IsCreate
p��� implies

not

subj
p�� eq initiator
getaid
p���� or


subj
p�� eq responder
getaid
p������	
validoperations�OSAP�
x�

ENDPROC

PROCESS mnsm�OSAP�
aa � aid� � NOEXIT ��

mreport�OSAP�
initiator
aa��
���

mnotification�OSAP�
initiator
aa��
���

i	
mnsm�OSAP�
aa�

ENDPROC 
� mnsm ��

PROCESS mnsa�OSAP�
aa � aid� � NOEXIT ��

areport�OSAP�
responder
aa��
���

anotification�OSAP�
responder
aa��
���

i	

mnsa�OSAP�
aa�

ENDPROC 
� mnsa ��

PROCESS mreport�OSAP�
x � oa� � EXIT ��

OSAP
�x

�p� � OSP�IsReportInd
p���	
EXIT

ENDPROC 
� mreport ��

PROCESS mnotification�OSAP�
x � oa� � EXIT ��

OSAP
�x

�p� � OSP�Isnotification
p���	
EXIT

ENDPROC 
� mnotification ��

PROCESS areport�OSAP�
x � oa� � EXIT ��

OSAP

�x
�p� � OSP�IsReportReq
p���	

EXIT

ENDPROC 
� areport ��

PROCESS anotification�OSAP�
x � oa� � EXIT ��

OSAP

�x

	�



�p� � OSP�Isnotification
p���	
EXIT

ENDPROC 
� anotification ��

PROCESS forcerelease�OSAP�
x � OA� � EXIT ��

OSAP
�x
�p� � OSP�IsDisableConf
p�� or IsDisableInd
p���	

EXIT

ENDPROC 
� forcerelease ��

PROCESS initiaterelease�OSAP�
x � OA� � NOEXIT ��

OSAP

�x
�p� � OSP	


�not
IsDisableReq
p���� �� initiaterelease�OSAP�
x�
��
�IsDisableReq
p��� �� releasing�OSAP�
x�

�
WHERE

PROCESS releasing�Osap�
y � OA� � NOEXIT ��

OSAP
�y
�p� � OSP�IsConf
p�� or IsDisableInd
p���	

releasing�Osap�
y�

ENDPROC 
� releasing ��

ENDPROC 
� initiaterelease ��

PROCESS sync�OSAP�
aa � aid� � NOEXIT ��


pcsync�OSAP�
aa�
���

ucsync�OSAP�
aa�

���
unsync�OSAP�
aa� �

��
identification�OSAP�
aa�

WHERE

PROCESS identification�OSAP�
aa � aid� � NOEXIT ��

OSAP
�initiator
aa�
�p� � OSP�aa eq getaid
p���	

identification�OSAP�
aa�
��

OSAP
�responder
aa�
�p� � OSP�aa eq getaid
p���	

identification�OSAP�
aa�

ENDPROC 
� identification ��

PROCESS ucsync�OSAP�
aa � aid� � NOEXIT ��

OSAP

�initiator
aa�
�p� � OSP�IsReq
p�� and IsUserConf
p���	

OSAP
�responder
aa�

�p� � OSP�p� IndForReq p��	
EXIT

���
OSAP

�responder
aa�

�p� � OSP�IsRes
p�� and IsUserConf
p���	
OSAP

�initiator
aa�
�p� � OSP�p� ConfForRes p��	

EXIT

���

	�



i	
ucsync�OSAP�
aa�

ENDPROC 
� ucsync ��

PROCESS unsync�OSAP�
aa � aid� � NOEXIT ��

OSAP
�n � OA
�p� � OSP�

n eq initiator
aa�� or 
n eq responder
aa��� and IsReq
p�� and IsUnConf
p���	

OSAP

�n � OA
�p� � OSP�

n eq initiator
aa�� or 
n eq responder
aa��� and 
p� IndForReq p���	

EXIT
���
i	

unsync�OSAP�
aa�

ENDPROC 
� uncsync ��

PROCESS pcsync�OSAP�
aa � aid� � NOEXIT ��

sinitiate�OSAP�
aa�
��

 srelease�OSAP�
initiator
aa�� responder
aa� �

��
srelease�OSAP�
responder
aa�� initiator
aa� �

�
��
pcsync�OSAP�
aa�

WHERE

PROCESS sinitiate�OSAP�
aa � aid� � EXIT ��

OSAP
�initiator
aa�
�p� � OSP�IsEnableReq
p���	


 OSAP

�initiator
aa�
�p� � OSP�IsEnableConf
p�� and not
GetSuccess
p����	

sinitiate�OSAP�
aa�
��

OSAP

�responder
aa�
�p� � OSP�p� IndForReq p��	

OSAP
�initiator
aa�

�p� � OSP�IsEnableConf
p�� and GetSuccess
p���	
EXIT

�

ENDPROC 
� sinitiate ��

PROCESS srelease�OSAP�
x�y � OA� � EXIT ��

OSAP

�x
�p� � OSP�IsDisableReq
p���	



OSAP

�y

�p� � OSP�IsDisableReq
p���	




scenario��OSAP�
x�y�p�� �� EXIT�
��


scenario��OSAP�
y�x�p�� �� EXIT�
��


scenario��OSAP�
x�y�p��p�� �� EXIT�
��


scenario��OSAP�
y�x�p��p�� �� EXIT�

�
��


scenario��OSAP�
x�y�p�� �� EXIT�
��


scenario��OSAP�
x�y� �� EXIT�

��

	�




scenario��OSAP�
x�y�p�� �� EXIT�
�

��

scenario��OSAP�
x�y� �� EXIT�

WHERE

PROCESS scenario��OSAP�
x�y � oa� p � osp� � EXIT ��

i	
� decide that process x should terminate ��
OSAP

�x

�p� � OSP�IsDisableInd
p���	



OSAP
�y
�p� � OSP�p� IndForReq p�	

EXIT
��

i	
� decide that process y should terminate ��
OSAP

�y

�p� � OSP�IsDisableInd
p���	
EXIT

�

ENDPROC 
� scenario� ��

PROCESS scenario��OSAP�
x�y � oa� � EXIT ��

i	
� decide that process x and y should terminate ��

OSAP
�y
�p� � OSP�IsDisableInd
p���	

OSAP
�x

�p� � OSP�IsDisableInd
p���	
EXIT

ENDPROC 
� scenario� ��

PROCESS scenario��OSAP�
x�y � oa� p�q � osp� � EXIT ��

OSAP
�x
�p� � OSP�p� IndForReq q�	



OSAP

�y
�p� � OSP�IsDisableConf
p���	

EXIT
��

OSAP
�y
�p� � OSP�p� IndForReq p�	

EXIT
��

i	
� decide that process y should terminate ��
OSAP

�y

�p� � OSP�IsDisableInd
p���	
EXIT

�

ENDPROC 
� scenario� ��

PROCESS scenario��OSAP�
x�y � oa� � EXIT ��

i	
� decide that process x should terminate ��

OSAP
�x
�p� � OSP�IsDisableInd
p���	



OSAP

�y
�p� � OSP�IsDisableReq
p���	

OSAP
�x
�p� � OSP�IsDisableInd
p���	

EXIT

	�



��
i	
� decide that process y should terminate ��

OSAP
�y
�p� � OSP�IsDisableInd
p���	

EXIT
�

ENDPROC 
� scenario� ��

PROCESS scenario��OSAP�
x�y � oa�p � osp� � EXIT ��

OSAP
�y
�p� � OSP�p� IndForReq p�	




OSAP
�x
�p� � OSP�IsDisableConf
p���	

EXIT
��

i	
� decide that process x should terminate ��
OSAP

�x
�p� � OSP�IsDisableInd
p���	

EXIT
�

ENDPROC 
� scenario� ��

ENDPROC 
� srelease ��

ENDPROC 
� pcsync ��

ENDPROC 
�sync��

ENDSPEC 
�OM�Spec��

		



Appendix B

The OM�protocol Speci�cation

SPECIFICATION OM�Protocol�OSAP� � NOEXIT

LIBRARY
set�NaturalNumber� boolean� element

ENDLIB

TYPE RR�Service�Primitives
IS Address�Identifier� ID�Number� dataunits
SORTS

RSP

OPNS
invokereq � AI� AI� ID� OMPDU �� RSP
invokeind � AI� AI� ID� OMPDU �� RSP
invokeconf � AI� AI� ID� OMPDU� BOOL �� RSP
resultreq � AI� AI� ID� OMPDU �� RSP

resultind � AI� AI� ID� OMPDU �� RSP
errorreq � AI� AI� ID� OMPDU �� RSP
errorind � AI� AI� ID� OMPDU �� RSP
eventreportreq � AI� AI� ID� OMPDU �� RSP
eventreportind � AI� AI� ID� OMPDU �� RSP

notificationreq � AI� AI� ID� OMPDU �� RSP
notificationind � AI� AI� ID� OMPDU �� RSP
rejectreq � AI� AI� ID� OMPDU �� RSP
rejectind � AI� AI� ID� OMPDU �� RSP

ENDTYPE
�RSP�Primitives��

TYPE RSPClass IS SixteenTuplet RENAMEDBY
SORTNAMES

RSPClass FOR Tuplet
OPNNAMES

InvokeRequest FOR one
ResultRequest FOR two
ErrorRequest FOR three

EventReportRequest FOR four
NotificationRequest FOR five
InvokeIndication FOR six
ResultIndication FOR seven
ErrorIndication FOR eight

EventReportIndication FOR nine
NotificationIndication FOR ten
InvokeConfirmation FOR eleven
RejectRequest FOR twelve
RejectIndication FOR thirteen

ENDTYPE
�RSP�Class��

TYPE RSP�Classifier

IS RSPClass� RR�Service�Primitives� DataUnits
OPNS

Map � RSP �� RSPClass
IsInvokeReq � RSP �� Bool

IsResultReq � RSP �� Bool
IsErrorReq � RSP �� Bool
IsEventReportReq � RSP �� Bool
IsNotificationReq � RSP �� Bool

	�



IsInvokeInd � RSP �� Bool
IsResultInd � RSP �� Bool

IsErrorInd � RSP �� Bool
IsEventReportInd � RSP �� Bool
IsNotificationInd � RSP �� Bool
IsInvokeConf � RSP �� Bool
IsRejectReq � RSP �� Bool

IsRejectInd � RSP �� Bool

EQNS
FORALL

a��a� � AI� j � ID� prim � RSP� o � OMPDU� b � BOOL

OFSORT RSPClass
Map
InvokeReq
a��a��j�o�� � InvokeRequest	
Map
ResultReq
a��a��j�o�� � ResultRequest	
Map
ErrorReq
a��a��j�o�� � ErrorRequest	
Map
EventReportReq
a��a��j�o�� � EventReportRequest	

Map
NotificationReq
a��a��j�o�� � NotificationRequest	
Map
InvokeInd
a��a��j�o�� � InvokeIndication	
Map
ResultInd
a��a��j�o�� � ResultIndication	
Map
ErrorInd
a��a��j�o�� � ErrorIndication	
Map
EventReportInd
a��a��j�o�� � EventReportIndication	

Map
NotificationInd
a��a��j�o�� � NotificationIndication	
Map
invokeconf
a��a��j�o�b�� � InvokeConfirmation	
Map
RejectReq
a��a��j�o�� � RejectRequest	
Map
RejectInd
a��a��j�o�� � RejectIndication	

OFSORT Bool
IsInvokeReq
prim� � map
prim� eq Invokerequest	
IsResultReq
prim� � map
prim� eq ResultRequest	
IsErrorReq
prim� � map
prim� eq ErrorRequest	

IsEventReportReq
prim� � map
prim� eq EventReportRequest	
IsNotificationReq
prim� � map
prim� eq NotificationRequest	
IsInvokeInd
prim� � map
prim� eq InvokeIndication	
IsResultInd
prim� � map
prim� eq ResultIndication	
IsErrorInd
prim� � map
prim� eq ErrorIndication	

IsEventReportInd
prim� � map
prim� eq EventReportIndication	
IsNotificationInd
prim� � map
prim� eq NotificationIndication	
IsInvokeConf
prim� � map
prim� eq InvokeConfirmation	
IsRejectReq
prim� � map
prim� eq RejectRequest	
IsRejectInd
prim� � map
prim� eq RejectIndication	

ENDTYPE
�RSP�Classifier��

TYPE RSP�Attributes

IS RSP�Classifier� Boolean� DataUnits
OPNS

GetId � RSP �� ID
Inv � RSP �� AI

Perf � RSP �� AI
pdu � RSP �� OMPDU
IsAck � RSP �� BOOL
IsNack � RSP �� BOOL

EQNS

FORALL
a��a� � AI� j � ID� o � ompdu� b � bool

OFSORT ID
GetId
InvokeReq
a��a��j�o�� � j	
GetId
ResultReq
a��a��j�o�� � j	

GetId
ErrorReq
a��a��j�o�� � j	
GetId
EventReportReq
a��a��j�o�� � j	
GetId
NotificationReq
a��a��j�o�� � j	
GetId
InvokeInd
a��a��j�o�� � j	
GetId
ResultInd
a��a��j�o�� � j	

GetId
ErrorInd
a��a��j�o�� � j	
GetId
EventReportInd
a��a��j�o�� � j	
GetId
NotificationInd
a��a��j�o�� � j	
GetId
InvokeConf
a��a��j�o�b�� � j	

GetId
RejectReq
a��a��j�o�� � j	
GetId
RejectInd
a��a��j�o�� � j	

OFSORT AI
Inv
InvokeReq
a��a��j�o�� � a�	

Inv
ResultReq
a��a��j�o�� � a�	
Inv
ErrorReq
a��a��j�o�� � a�	
Inv
EventReportReq
a��a��j�o�� � a�	
Inv
NotificationReq
a��a��j�o�� � a�	
Inv
InvokeInd
a��a��j�o�� � a�	

Inv
ResultInd
a��a��j�o�� � a�	

��



Inv
ErrorInd
a��a��j�o�� � a�	
Inv
EventReportInd
a��a��j�o�� � a�	

Inv
NotificationInd
a��a��j�o�� � a�	
Inv
invokeconf
a��a��j�o�b�� � a�	
Inv
RejectReq
a��a��j�o�� � a�	
Inv
RejectInd
a��a��j�o�� � a�	

OFSORT AI
Perf
InvokeReq
a��a��j�o�� � a�	
Perf
ResultReq
a��a��j�o�� � a�	
Perf
ErrorReq
a��a��j�o�� � a�	
Perf
EventReportReq
a��a��j�o�� � a�	

Perf
NotificationReq
a��a��j�o�� � a�	
Perf
InvokeInd
a��a��j�o�� � a�	
Perf
ResultInd
a��a��j�o�� � a�	
Perf
ErrorInd
a��a��j�o�� � a�	
Perf
EventReportInd
a��a��j�o�� � a�	

Perf
NotificationInd
a��a��j�o�� � a�	
Perf
invokeconf
a��a��j�o�b�� � a�	
Perf
RejectReq
a��a��j�o�� � a�	
Perf
RejectInd
a��a��j�o�� � a�	

OFSORT BOOL

IsAck
invokeconf
a��a��j�o�b�� � b	
IsNack
invokeconf
a��a��j�o�b�� � not
b�	

OFSORT OMPDU

pdu
InvokeReq
a��a��j�o�� � o	
pdu
ResultReq
a��a��j�o�� � o	

pdu
ErrorReq
a��a��j�o�� � o	
pdu
EventReportReq
a��a��j�o�� � o	
pdu
NotificationReq
a��a��j�o�� � o	
pdu
InvokeInd
a��a��j�o�� � o	
pdu
ResultInd
a��a��j�o�� � o	

pdu
ErrorInd
a��a��j�o�� � o	
pdu
EventReportInd
a��a��j�o�� � o	
pdu
NotificationInd
a��a��j�o�� � o	
pdu
invokeconf
a��a��j�o�b�� � o	
pdu
RejectReq
a��a��j�o�� � o	

pdu
RejectInd
a��a��j�o�� � o	

ENDTYPE
�RSP�Attributes��

TYPE RSP�ServiceType
IS RSP�Classifier� RSP�ServiceElements

OPNS

IsReq � RSP �� Bool
IsInd � RSP �� Bool
IsConf � RSP �� Bool

EQNS

FORALL
prim � RSP

OFSORT bool

IsReq
prim� � IsInvokeReq
prim� or IsResultReq
prim� or

IsErrorReq
prim� or IsRejectReq
prim� or
IsEventReportReq
prim� or IsNotificationReq
prim�	

IsInd
prim� � IsInvokeInd
prim� or IsResultInd
prim� or
IsErrorInd
prim� or IsRejectInd
prim� or
IsEventReportInd
prim� or IsNotificationInd
prim�	

IsConf
prim� � Isinvokeconf
prim�	

ENDTYPE
�RSP�ServiceType��

TYPE RSP�ServiceElements is RSP�Classifier� Boolean
OPNS

IsInvoke � RSP �� Bool
IsResult � RSP �� Bool

IsError � RSP �� Bool
IsEventReport � RSP �� Bool
IsNotification � RSP �� Bool
IsReject � RSP �� Bool

EQNS

FORALL

��



prim � RSP
OFSORT bool

IsInvoke
prim� � IsInvokeReq
prim� or IsInvokeInd
prim� or
IsInvokeConf
prim�	

IsResult
prim� � IsResultReq
prim� or IsResultInd
prim�	
IsError
prim� � IsErrorReq
prim� or IsErrorInd
prim�	
IsEventReport
prim� � IsEventReportReq
prim� or IsEventReportInd
prim�	

IsNotification
prim�� IsNotificationReq
prim� or IsNotificationInd
prim�	
IsReject
prim� � IsRejectInd
prim� or IsRejectReq
prim�	

ENDTYPE
�RSP�ServiceElements��

TYPE matching�
IS RSP�ServiceElements� Boolean
OPNS

�matches�� � RSP� RSP �� Bool

EQNS
FORALL

p�q � RSP
OFSORT bool

p matches� q � 
Isinvoke
p� and Isinvoke
q�� or


IsResult
p� and IsResult
q�� or

IsError
p� and IsError
q�� or

IsEventReport
p� and IsEventReport
q�� or

IsNotification
p� and IsNotification
q�� or


IsReject
p� and IsReject
q��	

ENDTYPE 
� matching� ��

TYPE RSP�Relations
IS RSP�Classifier� Boolean� RSP�Attributes� ID�Number�

RSP�Servicetype�matching�� kind� dataunitsfunctions
OPNS

�IndForReq� � RSP� RSP �� Bool

�ConfForReq� � RSP� RSP �� Bool
�AnswerForInv� � RSP� RSP �� Bool
�AnswerToInv� � RSP� RSP �� Bool

EQNS

FORALL prim��prim� � RSP
OFSORT Bool

prim� IndForReq prim� � IsInd
prim�� and IsReq
prim�� and

GetId
prim�� eq GetId
prim��� and

prim� matches� prim�� and


inv
prim�� eq inv
prim��� and

perf
prim�� eq perf
prim��� and

pdu
prim�� eq pdu
prim���	

prim� ConfForReq prim� � IsConf
prim�� and IsReq
prim�� and


GetId
prim�� eq GetId
prim��� and

prim� matches� prim�� and

inv
prim�� eq perf
prim��� and

inv
prim�� eq perf
prim��� and

pdu
prim�� eq pdu
prim���	

prim� AnswerForInv prim� � 
GetId
prim�� eq GetId
prim��� and

IsErrorReq
prim�� or IsRejectReq
prim�� or
IsResultReq
prim��� and IsInvokeInd
prim�� and


inv
prim�� eq perf
prim��� and

inv
prim�� eq perf
prim���	

prim� AnswerToInv prim� � 
GetId
prim�� eq GetId
prim��� and

IsErrorInd
prim�� or IsRejectInd
prim�� or
IsResultInd
prim��� and IsInvokeReq
prim�� and


inv
prim�� eq perf
prim��� and

inv
prim�� eq perf
prim���	

ENDTYPE
�RSP�Relations��

TYPE kind IS
SORTS

kind
OPNS

req � �� kind
ind � �� kind
res � �� kind

conf � �� kind
ENDTYPE 
� kind ��

TYPE dataunits IS ID�Number� Boolean� AId

SORTS

��



ompdu
OPNS

enableresult � aid�id�bool �� ompdu
enable � aid�id �� ompdu
disable � aid�id �� ompdu
uset � aid�id �� ompdu
create � aid�id�AI �� ompdu

notification � aid�id �� ompdu
report � aid�id �� ompdu

ENDTYPE 
� dataunits ��

TYPE dataunitsfunctions IS dataunits�om�service�primitives� kind�
boolean� OSP�Match� OSP�Classifier� ID�Number� AID

OPNS
decode � ompdu� kind �� osp

code � osp �� ompdu
�eq� � ompdu�ompdu �� bool
getpduaid � ompdu �� aid

EQNS
FORALL j�j� �id� aa�aa� �aid� b�b� � bool� a�a� � AI

OFSORT bool
enableresult
aa�j�b� eq enableresult
aa��j��b�� � 
aa eq aa�� and 
j eq j�� and 
b eq b��	
enable
aa�j� eq enable
aa��j�� � 
aa eq aa�� and 
j eq j��	
disable
aa�j� eq disable
aa��j�� � 
aa eq aa�� and 
j eq j��	

uset
aa�j� eq uset
aa��j�� � 
aa eq aa�� and 
j eq j��	
create
aa�j�a� eq create
aa��j��a�� � 
aa eq aa�� and 
j eq j�� and 
a eq a��	
notification
aa�j� eq notification
aa��j�� � 
aa eq aa�� and 
j eq j��	
report
aa�j� eq report
aa��j�� � 
aa eq aa�� and 
j eq j��	

OFSORT aid

getpduaid
enable
aa�j�� � aa	
getpduaid
enableresult
aa�j�b��� aa	
getpduaid
disable
aa�j�� � aa	
getpduaid
uset
aa�j�� � aa	
getpduaid
create
aa�j�a�� � aa	

getpduaid
notification
aa�j�� � aa	
getpduaid
report
aa�j�� � aa	

OFSORT osp
decode
disable
aa�j��ind� � disableind
aa�j�	
decode
disable
aa�j��req� � disablereq
aa�j�	

decode
disable
aa�j��conf� � disableconf
aa�j�	
decode
enable
aa�j��ind� � enableind
aa�j�	
decode
enable
aa�j��req� � enablereq
aa�j�	
decode
enableresult
aa�j�b��conf� � enableconf
aa�j�b�	
decode
uset
aa�j��req� � usetreq
aa�j�	

decode
uset
aa�j��ind� � usetind
aa�j�	
decode
create
aa�j�a��req� � createreq
aa�j�a�	
decode
create
aa�j�a��ind� � createind
aa�j�a�	
decode
create
aa�j�a��res� � createres
aa�j�a�	

decode
create
aa�j�a��conf� � createconf
aa�j�a�	
decode
notification
aa�j��req�� notificationreq
aa�j�	
decode
notification
aa�j��ind�� notificationind
aa�j�	
decode
report
aa�j��req� � reportreq
aa�j�	
decode
report
aa�j��ind� � reportind
aa�j�	

OFSORT ompdu
code
disableind
aa�j�� � disable
aa�j�	
code
disablereq
aa�j�� � disable
aa�j�	
code
disableconf
aa�j�� � disable
aa�j�	
code
enableind
aa�j�� � enable
aa�j�	

code
enablereq
aa�j�� � enable
aa�j�	
code
enableconf
aa�j�b�� � enableresult
aa�j�b�	
code
usetreq
aa�j�� � uset
aa�j�	
code
usetind
aa�j�� � uset
aa�j�	
code
createreq
aa�j�a�� � create
aa�j�a�	

code
createind
aa�j�a�� � create
aa�j�a�	
code
createres
aa�j�a�� � create
aa�j�a�	
code
createconf
aa�j�a�� � create
aa�j�a�	
code
notificationreq
aa�j�� � notification
aa�j�	

code
notificationind
aa�j�� � notification
aa�j�	
code
reportreq
aa�j�� � report
aa�j�	
code
reportind
aa�j�� � report
aa�j�	

ENDTYPE 
� dataunits ��

TYPE fifoqueue IS boolean
FORMALSORTS data
SORTS queue
OPNS

null � �� queue

��



add � data�queue �� queue
head � queue �� data

tail � queue �� queue
isempty � queue �� bool

EQNS
FORALL d��d� � data� q�r � queue

OFSORT queue
tail
null� � null	
tail
add
d��null�� � null	
tail
add
d��add
d��q��� � add
d��tail
add
d��q���	

OFSORT data

head
add
d��null�� � d�	
head
add
d��add
d��q��� � head
add
d��q��	

OFSORT bool
isempty
null� � true	
isempty
add
d��q�� � false	

ENDTYPE 
� fifoqueue ��

TYPE pduqueue IS fifoqueue ACTUALIZEDBY dataunits USING
SORTNAMES

ompdu FOR data
pduqueue FOR queue

ENDTYPE 
� pduqueue ��

TYPE Address�Identifier
IS Boolean
SORTS AI
OPNS offset � �� AI

neighbour � AI �� AI
�eq���lt� � AI� AI �� Bool

EQNS
FORALL

x�y � AI

OFSORT Bool
offset eq offset � true	
offset eq neighbour
x� � false	
neighbour
x� eq offset � false	
neighbour
x� eq neighbour
y� � x eq y	

offset lt offset � false	
offset lt neighbour
x� � true	
neighbour
x� lt offset � false	
neighbour
x� lt neighbour
y� � x lt y	

ENDTYPE
�Address�Identifier��

TYPE ID�Number
IS Boolean

SORTS ID
OPNS 
 � �� ID

succ � ID �� ID
�eq���lt���ne� � ID� ID �� Bool

EQNS

FORALL
x�y � ID

OFSORT Bool

 eq 
 � true	

 eq succ
x� � false	

succ
x� eq 
 � false	
succ
x� eq succ
y� � x eq y	
x ne y � not
x eq y�	

 lt 
 � false	

 lt succ
x� � true	

succ
x� lt 
 � false	
succ
x� lt succ
y� � x lt y	

ENDTYPE
�ID�Number��

TYPE IDSet
IS set ACTUALIZEDBY ID�Number USING
SORTNAMES ID FOR Element

IDSet FOR Set

Bool FOR FBool
OPNNAMES noid FOR ��
ENDTYPE 
� IDSet ��

TYPE AId

��



IS Address�Identifier� ID�Number� Boolean
SORTS AId

OPNS
AId � AI� AI �� AId
Initiator � AId �� AI
Responder � AId �� AI
�eq���ne���lt�� AId� AId �� Bool

EQNS
FORALL

a��a� � AI� as��as� � AId
OFSORT AI

Initiator
AId
a��a��� � a�	

Responder
AId
a��a��� � a�	
OFSORT Bool

as� eq as� � 
Initiator
as�� eq Initiator
as��� and

Responder
as�� eq Responder
as���	

as� ne as� � not
as� eq as��	

as� lt as� � 
Initiator
as�� lt Initiator
as��� or


Initiator
as�� eq Initiator
as��� and

Responder
as�� lt Responder
as����	

ENDTYPE
�AId��

TYPE AssociationSet
IS set ACTUALIZEDBY AId USING
SORTNAMES

AId FOR Element

AIdSet FOR Set
Bool FOR FBool

OPNNAMES
empty FOR ��

ENDTYPE
�AssociationSet��

TYPE OM�Service�Primitives
IS Address�Identifier� ID�Number� AId
SORTS OSP

OPNS usetreq � AID� ID �� OSP
enablereq � AID� ID �� OSP
disablereq � AID� ID �� OSP
reportreq � AID� ID �� OSP
notificationreq � AID� ID �� OSP

createreq � AID� ID� AI �� OSP
usetind � AID� ID �� OSP
enableind � AID� ID �� OSP
disableind � AID� ID �� OSP
reportind � AID� ID �� OSP

notificationind � AID� ID �� OSP
createind � AID� ID� AI �� OSP
createres � AID� ID� AI �� OSP
enableconf � AID� ID� Bool �� OSP

disableconf � AID� ID �� OSP
createconf � AID� ID� AI �� OSP

ENDTYPE
� OM�Service�Primitives��

TYPE Doublet
IS Boolean� NaturalNumber
SORTS Tuplet
OPNS One� Two � �� Tuplet

�eq�� �ne�� �lt� � Tuplet� Tuplet �� Bool

h � Tuplet �� Nat
EQNS
FORALL x�y � Tuplet
OFSORT Nat

h
One� � 
	

h
Two� � succ
h
one��	
OFSORT Bool

x eq y � h
x� eq h
y�	
x ne y � h
x� ne h
y�	

x lt y � h
x� lt h
y�	
ENDTYPE 
�Doublet��

TYPE SixteenTuplet

IS Doublet
OPNS Three� Four� Five� Six� Seven� Eight� Nine� Ten�

Eleven� Twelve� Thirteen� Fourteen� Fifteen� Sixteen ��� Tuplet
EQNS
OFSORT Nat

h
Three� � succ
h
Two��	

��



h
Four� � succ
h
Three��	
h
Five� � succ
h
Four��	

h
Six� � succ
h
Five��	
h
Seven� � succ
h
Six��	
h
Eight� � succ
h
Seven��	
h
Nine� � succ
h
Eight��	
h
Ten� � succ
h
Nine��	

h
Eleven� � succ
h
Ten��	
h
Twelve� � succ
h
Eleven��	
h
Thirteen� � succ
h
Twelve��	
h
Fourteen� � succ
h
Thirteen��	
h
Fifteen� � succ
h
Fourteen��	

h
Sixteen� � succ
h
Fifteen��	
ENDTYPE 
�SixteenTuplet��

TYPE OSPCLASS IS SixteenTuplet RENAMEDBY

SORTNAMES
OSPCLASS FOR Tuplet

OPNNAMES
USetRequest FOR One
EnableRequest FOR Two

DisableRequest FOR Three
ReportRequest FOR Four
NotificationRequest FOR Five
CreateRequest FOR Six

USetIndication FOR Seven
EnableIndication FOR Eight
DisableIndication FOR Nine
ReportIndication FOR Ten
NotificationIndication FOR Eleven

CreateIndication FOR Twelve
CreateResponse FOR Thirteen
EnableConfirmation FOR Fourteen
DisableConfirmation FOR Fifteen
CreateConfirmation FOR Sixteen

ENDTYPE
� OSPCLASS ��

TYPE OSP�Classifier
IS OSPClass� OM�Service�Primitives� AId

OPNS Map � OSP �� OSPClass
IsUsetReq � OSP �� Bool
IsEnableReq � OSP �� Bool
IsDisableReq � OSP �� Bool
IsReportReq � OSP �� Bool

IsNotificationReq � OSP �� Bool
IsCreateReq � OSP �� Bool
IsUsetInd � OSP �� Bool
IsEnableInd � OSP �� Bool

IsDisableInd � OSP �� Bool
IsReportInd � OSP �� Bool
IsNotificationInd � OSP �� Bool
IsCreateInd � OSP �� Bool
IsCreateRes � OSP �� Bool

IsEnableConf � OSP �� Bool
IsDisableConf � OSP �� Bool
IsCreateConf � OSP �� Bool

EQNS
FORALL

a � AI� as��as � AId� j � ID� prim � OSP� b � Bool
OFSORT OSPClass

Map
USetReq
as�j�� � USetRequest	
Map
EnableReq
as�j�� � EnableRequest	
Map
DisableReq
as�j�� � DisableRequest	

Map
ReportReq
as�j�� � ReportRequest	
Map
NotificationReq
as�j�� � NotificationRequest	
Map
CreateReq
as�j�a�� � CreateRequest	
Map
USetInd
as�j�� � USetIndication	

Map
EnableInd
as�j�� � EnableIndication	
Map
DisableInd
as�j�� � DisableIndication	
Map
ReportInd
as�j�� � ReportIndication	
Map
NotificationInd
as�j�� � NotificationIndication	
Map
CreateInd
as�j�a�� � CreateIndication	

Map
CreateRes
as�j�a�� � CreateResponse	
Map
EnableConf
as�j�b�� � EnableConfirmation	
Map
DisableConf
as�j�� � DisableConfirmation	
Map
CreateConf
as�j�a�� � CreateConfirmation	

OFSORT Bool

IsUsetReq
prim� � map
prim� eq USetRequest	

��



IsEnableReq
prim� � map
prim� eq EnableRequest	
IsDisableReq
prim� � map
prim� eq DisableRequest	

IsReportReq
prim� � map
prim� eq ReportRequest	
IsNotificationReq
prim� � map
prim� eq NotificationRequest	
IsCreateReq
prim� � map
prim� eq CreateRequest	
IsUsetInd
prim� � map
prim� eq USetIndication	
IsEnableInd
prim� � map
prim� eq EnableIndication	

IsDisableInd
prim� � map
prim� eq DisableIndication	
IsReportInd
prim� � map
prim� eq ReportIndication	
IsNotificationInd
prim� � map
prim� eq NotificationIndication	
IsCreateInd
prim� � map
prim� eq CreateIndication	
IsCreateRes
prim� � map
prim� eq CreateResponse	

IsEnableConf
prim� � map
prim� eq EnableConfirmation	
IsDisableConf
prim� � map
prim� eq DisableConfirmation	
IsCreateConf
prim� � map
prim� eq CreateConfirmation	

ENDTYPE
�OSP�Classifier��

TYPE OSP�Attributes
IS OSP�Classifier� AId� Boolean
OPNS GetId � OSP �� ID

Subj � OSP �� AI

GetAId � OSP �� AId
GetSuccess � OSP �� Bool

EQNS
FORALL

a � AI� j � ID� as � AId� b � Bool
OFSORT Bool

GetSuccess
EnableConf
as�j�b�� � b	
OFSORT ID

GetId
USetReq
as�j�� � j	

GetId
EnableReq
as�j�� � j	
GetId
DisableReq
as�j�� � j	
GetId
ReportReq
as�j�� � j	
GetId
NotificationReq
as�j�� � j	
GetId
CreateReq
as�j�a�� � j	

GetId
USetInd
as�j�� � j	
GetId
EnableInd
as�j�� � j	
GetId
DisableInd
as�j�� � j	
GetId
ReportInd
as�j�� � j	
GetId
NotificationInd
as�j�� � j	

GetId
CreateInd
as�j�a�� � j	
GetId
CreateRes
as�j�a�� � j	
GetId
EnableConf
as�j�b�� � j	
GetId
DisableConf
as�j�� � j	
GetId
CreateConf
as�j�a�� � j	

OFSORT AI
Subj
CreateReq
as�j�a�� � a	
Subj
CreateInd
as�j�a�� � a	
Subj
CreateRes
as�j�a�� � a	

Subj
CreateConf
as�j�a�� � a	
OFSORT AId

GetAID
USetReq
as�j�� � as	
GetAID
EnableReq
as�j�� � as	
GetAID
DisableReq
as�j�� � as	

GetAID
ReportReq
as�j�� � as	
GetAID
NotificationReq
as�j�� � as	
GetAID
CreateReq
as�j�a�� � as	
GetAID
USetInd
as�j�� � as	
GetAID
EnableInd
as�j�� � as	

GetAID
DisableInd
as�j�� � as	
GetAID
ReportInd
as�j�� � as	
GetAID
NotificationInd
as�j�� � as	
GetAID
CreateInd
as�j�a�� � as	
GetAID
CreateRes
as�j�a�� � as	

GetAID
EnableConf
as�j�b�� � as	
GetAID
DisableConf
as�j�� � as	
GetAID
CreateConf
as�j�a�� � as	

ENDTYPE
�OSP�Attributes��

TYPE OSP�Servicetype
IS OSP�Classifier

OPNS
IsReq � OSP �� Bool
IsInd � OSP �� Bool
IsRes � OSP �� Bool
IsConf � OSP �� Bool

��



EQNS
FORALL

prim � OSP
OFSORT bool

IsReq
prim� � IsUSetReq
prim� or IsEnableReq
prim� or
IsDisableReq
prim� or IsCreateReq
prim� or

IsReportReq
prim� or IsNotificationReq
prim�	
IsInd
prim� � IsUSetInd
prim� or IsEnableInd
prim� or

IsDisableInd
prim� or IsCreateInd
prim� or
IsReportInd
prim� or IsNotificationInd
prim�	

IsRes
prim� � IsCreateRes
prim�	

IsConf
prim� � IsEnableConf
prim� or IsDisableConf
prim� or
IsCreateConf
prim�	

ENDTYPE
�OSP�ServiceType��

TYPE OSP�Elements is OSP�Classifier� Boolean
OPNS

IsUSet � OSP �� Bool
IsEnable � OSP �� Bool

IsDisable � OSP �� Bool
IsReport � OSP �� Bool
IsNotification � OSP �� Bool
IsCreate � OSP �� Bool

EQNS
FORALL

prim � OSP
OFSORT bool

IsUSet
prim� � IsUSetReq
prim� or IsUSetInd
prim�	

IsEnable
prim� � IsEnableReq
prim� or IsEnableInd
prim� or
IsEnableConf
prim�	

IsDisable
prim� � IsDisableReq
prim� or IsDisableInd
prim� or
IsDisableConf
prim�	

IsReport
prim� � IsReportReq
prim� or IsReportInd
prim�	

IsNotification
prim�� IsNotificationReq
prim� or IsNotificationInd
prim�	
IsCreate
prim� � IsCreateReq
prim� or IsCreateInd
prim� or

IsCreateRes
prim� or IsCreateConf
prim�	
ENDTYPE
�OSP�Elements��

TYPE OSP�Type
IS

Boolean� OSP�Elements

OPNS

IsUnConf � OSP �� Bool
IsUserConf � OSP �� Bool

IsProviderConf � OSP �� Bool

EQNS
FORALL prim � OSP

OFSORT Bool
IsUnConf
prim� � IsUSet
prim� or IsReport
prim� or

IsNotification
prim�	
IsUserConf
prim� � IsCreate
prim�	
IsProviderConf
prim� � IsEnable
prim� or IsDisable
prim�	

ENDTYPE 
� OSP�Type ��

TYPE OSP�Match
IS OSP�Elements� Boolean

OPNS
�matches� � OSP� OSP �� Bool

EQNS
FORALL p�q � OSP

OFSORT Bool
p matches q � 
IsDisable
p� and IsDisable
q�� or


IsEnable
p� and IsEnable
q�� or

IsUset
p� and IsUset
q�� or

IsCreate
p� and IsCreate
q�� or


IsReport
p� and IsReport
q�� or

IsNotification
p� and IsNotification
q��	

ENDTYPE 
� OSP�Match ��

�	



TYPE OSP�Primitives�Relations
IS OSP�Classifier� Boolean� OSP�Attributes� ID�Number�OSP�Servicetype�

OSP�Match
OPNS

�ConfForReq� � OSP� OSP �� Bool
�ConfForRes� � OSP� OSP �� Bool
�IndForReq� � OSP� OSP �� Bool

�ResForInd� � OSP� OSP �� Bool
EQNS
FORALL prim��prim� � OSP
OFSORT Bool

prim� ConfForReq prim� � IsConf
prim�� and IsReq
prim�� and


GetId
prim�� eq GetId
prim��� and

prim� matches prim��	

prim� ConfForRes prim� � IsConf
prim�� and IsRes
prim�� and

GetId
prim�� eq GetId
prim��� and

prim� matches prim��	

prim� IndForReq prim� � IsInd
prim�� and IsReq
prim�� and

GetId
prim�� eq GetId
prim��� and

prim� matches prim��	

prim� ResForInd prim� � IsRes
prim�� and IsInd
prim�� and

GetId
prim�� eq GetId
prim��� and


prim� matches prim��	
ENDTYPE
�OSP�Primitives�Relations��

BEHAVIOUR

HIDE RSAP IN 



omampe�OSAP�RSAP�
insert
aid
offset�neighbour
offset���empty�� neighbour
offset��

���
omampe�OSAP�RSAP�
insert
aid
offset�neighbour
offset���empty��offset�
�

��RSAP��
communications�RSAP� �

WHERE

PROCESS communications�RSAP� � NOEXIT ��

communication�RSAP�
���

i	

communications�RSAP�

ENDPROC 
� communications ��

PROCESS communication�RSAP� � EXIT ��


invoker�RSAP� ��� performer�RSAP��
��

syncip�RSAP�

ENDPROC 
� communication ��

PROCESS invoker�RSAP� � EXIT ��

RSAP �n � AI �p�� RSP �IsInvokeReq
p���	

 RSAP �n �p�� RSP �
p� ConfForReq p�� and IsAck
p���	
RSAP �n �p�� RSP �
p� AnswerToInv p���	

EXIT
��
i	 
� TimeOut ��
RSAP �n �p�� RSP �
p� ConfForReq p�� and IsNack
p���	

EXIT
�

��
RSAP �n � AI �p�� RSP �IsNotificationReq
p�� or IsEventReportReq
p���	
EXIT

ENDPROC 
� invoker ��

PROCESS performer�RSAP� � EXIT ��

��



RSAP �n � AI �p�� RSP �IsInvokeInd
p���	
RSAP �n �p�� RSP �p� AnswerForInv p��	

EXIT
��

RSAP �n � AI �p�� RSP�IsNotificationInd
p�� or IsEventReportInd
p���	
EXIT

ENDPROC 
� performer ��

PROCESS syncip�RSAP� � EXIT ��

RSAP �n � AI �p�� RSP �IsInvokeReq
p���	

 RSAP �n �p�� RSP �IsInvokeConf
p�� and IsNack
p���	
EXIT

��
RSAP �perf
p�� �p�� RSP �p� IndForReq p��	

RSAP �n �p�� RSP �IsInvokeConf
p�� and IsAck
p���	
RSAP �perf
p�� �p�� RSP �IsReq
p�� and


IsError
p�� or IsReject
p�� or IsResult
p����	
RSAP �n �p�� RSP �p� IndForReq p��	
EXIT �

��
RSAP �n � AI �p�� RSP�IsEventReportReq
p�� or IsNotificationReq
p���	
RSAP �perf
p�� �p�� RSP�p� IndForReq p��	
EXIT

ENDPROC 
� syncip ��

PROCESS omampe�OSAP�RSAP�
A � aidset� n � AI� � NOEXIT ��

associations�OSAP�RSAP�
A�n�

ENDPROC 
� omampe ��

PROCESS associations�OSAP�RSAP�
A � aidset� n � AI� � NOEXIT ��

CHOICE aa � aid �� �aa IsIn A� ��

i	 associations�OSAP�RSAP�
remove
aa�A��n� ��� association�OSAP�RSAP�
aa�n� �

ENDPROC 
� associations ��

PROCESS association�OSAP�RSAP�
aa � aid� n � AI� � NOEXIT ��

HIDE INIT�CON�UNC�MNS�REL�ABORT IN

upfs�OSAP�INIT�CON�UNC�MNS�REL�ABORT�
aa�n� ��OSAP�� omsi�OSAP�
aa�n� �

��INIT�CON�UNC�MNS�REL�ABORT��


lpfs�RSAP�INIT�CON�UNC�MNS�REL�ABORT�
aa�n� ��RSAP�� rrsi�RSAP�
aa�n� �

ENDPROC 
� association ��

PROCESS omsi�OSAP�
aa � aid� n � ai� � NOEXIT ��

�n eq initiator
aa�� �� manager�OSAP�
aa�

��
�n eq responder
aa�� �� agent�OSAP�
aa�

ENDPROC 
� omsi ��

PROCESS rrsi�RSAP�
aa � aid� n � ai� � NOEXIT ��


invoker�RSAP� ��� performer�RSAP��

���
i	rrsi�RSAP�
aa�n�

ENDPROC 
� rrsi ��

PROCESS upfs�OSAP�INIT�CON�UNC�MNS�REL�ABORT�
aa � aid� n � AI�� noexit ��

�n eq initiator
aa�� �� mupfs�OSAP�INIT�CON�UNC�MNS�REL�ABORT�
aa�n�
��

�n eq responder
aa�� �� aupfs�OSAP�INIT�CON�UNC�MNS�REL�ABORT�
aa�n�

���



ENDPROC 
� upfs ��

PROCESS lpfs�RSAP�INIT�CON�UNC�MNS�REL�ABORT�
aa � aid� n � AI�� noexit ��

�n eq initiator
aa�� �� mlpfs�RSAP�INIT�CON�UNC�MNS�REL�ABORT�
aa�n�

��
�n eq responder
aa�� �� alpfs�RSAP�INIT�CON�UNC�MNS�REL�ABORT�
aa�n�

ENDPROC 
� lpfs ��

PROCESS mupfs�OSAP�INIT�CON�UNC�MNS�REL�ABORT�
aa � aid� n � AI�� NOEXIT ��

mu�initiate�OSAP�INIT�
aa�n� ��

 mu�communicate�OSAP�CON�UNC�MNS�
aa�n� ��� mu�release�OSAP�REL�
aa�n� �

��
mu�abort�OSAP�ABORT�
aa�n� �� mupfs�OSAP�INIT�CON�UNC�MNS�REL�ABORT�
aa�n�

ENDPROC 
� mupfs ��

PROCESS aupfs�OSAP�INIT�CON�UNC�MNS�REL�ABORT�
aa � aid� n � AI�� NOEXIT ��

au�initiate�OSAP�INIT�
aa�n� ��


 au�communicate�OSAP�CON�UNC�MNS�
aa�n� ��� au�release�OSAP�REL�
aa�n� �
��

au�abort�OSAP�ABORT�
aa�n� �� aupfs�OSAP�INIT�CON�UNC�MNS�REL�ABORT�
aa�n�

ENDPROC 
� aupfs ��

PROCESS mlpfs�RSAP�INIT�CON�UNC�MNS�REL�ABORT�
aa � aid� n � AI�� NOEXIT ��




ml�initiate�RSAP�INIT�
aa�n� ��


 ml�communicate�RSAP�CON�UNC�MNS�ABORT�
aa�n� ��CON�UNC�MNS�ABORT��

ml�release�RSAP�CON�UNC�MNS�REL�ABORT�
aa�n� �
��

ml�abort�RSAP�ABORT�
aa�n�� �� mlpfs�RSAP�INIT�CON�UNC�MNS�REL�ABORT�
aa�n�

�
��RSAP��

identification�RSAP�
aa�n�

ENDPROC 
� mlpfs ��

PROCESS alpfs�RSAP�INIT�CON�UNC�MNS�REL�ABORT�
aa � aid� n � AI�� NOEXIT ��



al�initiate�RSAP�INIT�
aa�n� ��


 al�communicate�RSAP�CON�UNC�MNS�ABORT�
aa�n� ��CON�UNC�MNS�ABORT��

al�release�RSAP�CON�UNC�MNS�REL�ABORT�
aa�n� �
��

al�abort�RSAP�ABORT�
aa�n�� �� alpfs�RSAP�INIT�CON�UNC�MNS�REL�ABORT�
aa�n�
�

��RSAP��
identification�RSAP�
aa�n�

ENDPROC 
� alpfs ��
PROCESS mu�initiate�OSAP�INIT�
aa � aid� n � AI� � EXIT ��

OSAP �n �p � OSP �IsEnableReq
p� and 
aa eq getaid
p���	
INIT �aa �getid
p� �code
p�	

INIT �aa �getid
p� �pp � ompdu	
OSAP �n �decode
pp�conf�	


 �not
getsuccess
decode
pp�conf���� �� mu�initiate�OSAP�INIT�
aa�n�
��

�getsuccess
decode
pp�conf�� � �� EXIT �

ENDPROC 
� mu�initiate ��

PROCESS au�initiate�OSAP�INIT�
aa � aid� n � AI� � EXIT ��

INIT �aa �j � id �p � ompdu	
OSAP �n �decode
p�ind�	
INIT �aa �j �code
enableconf
aa�j�true��	

EXIT

���



ENDPROC 
� au�initiate ��

PROCESS mu�communicate�OSAP�CON�UNC�MNS�
aa � aid� n � AI� � NOEXIT ��

mu�con�OSAP�CON�
aa� n� null�

���
mu�unc�OSAP�UNC�
aa� n�

���
mu�mns�OSAP�MNS�
aa� n�

WHERE

PROCESS mu�con�OSAP�CON�
aa � aid� n � AI� q � pduqueue� � NOEXIT ��

OSAP �n �p � OSP�IsUserConf
p� and IsReq
p� and 
aa eq getaid
p���	

mu�con�OSAP�CON�
aa�n� add
code
p��q��
��

�not
isempty
q��� �� CON �aa �getid
decode
head
q��req�� �head
q� �req	
mu�con�OSAP�CON�
aa�n�tail
q��

��

CON �aa �j � ID �p � ompdu �conf	
OSAP �n �decode
p�conf�	
mu�con�OSAP�CON�
aa�n�q�

ENDPROC 
� mu�con ��

PROCESS mu�unc�OSAP�UNC�
aa � aid� n � AI� � NOEXIT ��

OSAP �n �p � OSP�IsUSet
p� and 
aa eq getaid
p�� and IsReq
p��	

UNC �aa �getid
p� �code
p� �req	
EXIT

���
i	
mu�unc�OSAP�UNC�
aa�n�

ENDPROC 
� mu�unc ��

PROCESS mu�mns�OSAP�MNS�
aa � aid� n � AI� � NOEXIT ��

MNS �aa �j � ID �p � ompdu �ind	
OSAP �n �decode
p�ind�	
EXIT

���
OSAP �n �p � OSP�IsNotificationReq
p� and 
aa eq getaid
p���	

MNS �aa �getid
p� �code
p� �req	
EXIT

���
i	

mu�mns�OSAP�MNS�
aa�n�

ENDPROC 
� mu�mns ��

ENDPROC 
� mu�communicate ��

PROCESS au�communicate�OSAP�CON�UNC�MNS�
aa � aid� n � AI� � NOEXIT ��

au�con�OSAP�CON�
aa� n�

���
au�unc�OSAP�UNC�
aa� n�

���
au�mns�OSAP�MNS�
aa� n�

WHERE

PROCESS au�con�OSAP�CON�
aa � aid� n � AI� � NOEXIT ��

CON �aa �j � ID �p � ompdu �ind	
OSAP �n �decode
p�ind�	
OSAP �n �pp � OSP�pp ResForInd decode
p�ind��	
CON �aa �getid
pp� �code
pp� �res	
EXIT

���
i	
au�con�OSAP�CON�
aa�n�

ENDPROC 
� au�con ��

���



PROCESS au�unc�OSAP�UNC�
aa � aid� n � AI� � NOEXIT ��

UNC �aa �j � ID �p � ompdu �ind	
OSAP �n �decode
p�ind�	
EXIT

���
i	

au�unc�OSAP�UNC�
aa�n�

ENDPROC 
� au�unc ��

PROCESS au�mns�OSAP�MNS�
aa � aid� n � AI� � NOEXIT ��

MNS �aa �j � ID �p � ompdu �ind	
OSAP �n �decode
p�ind�	
EXIT

���

OSAP �n �p � OSP�
IsNotificationReq
p� or IsReportReq
p�� and 
aa eq getaid
p���	
MNS �aa �getid
p� �code
p� �req	
EXIT

���
i	

au�mns�OSAP�MNS�
aa�n�

ENDPROC 
� au�unc ��

ENDPROC 
� au�communicate ��

PROCESS mu�release�OSAP�REL�
aa � aid� n � AI� � NOEXIT ��

OSAP �n �p � OSP �IsDisableReq
p� and 
aa eq getaid
p���	
REL �aa �getid
p� �code
p�	
STOP

ENDPROC 
� mu�release ��

PROCESS au�release�OSAP�REL�
aa � aid� n � AI� � NOEXIT ��

OSAP �n �p � OSP �IsDisableReq
p� and 
aa eq getaid
p���	
REL �aa �getid
p� �code
p�	

STOP

ENDPROC 
� au�release ��

PROCESS mu�abort�OSAP�ABORT�
aa � aid� n � AI� � EXIT ��

ABORT �aa �j � ID �p � ompdu �k � kind	
OSAP �n �decode
p�k�	

EXIT

ENDPROC 
� mu�abort ��

PROCESS au�abort�OSAP�ABORT�
aa � aid� n � AI� � EXIT ��

ABORT �aa �j � ID �p � ompdu �k � kind	
OSAP �n �decode
p�k�	
EXIT

ENDPROC 
� au�abort ��

PROCESS identification�RSAP�
aa � aid�n � ai� � NOEXIT ��

RSAP �n � AI �p � RSP�getpduaid
pdu
p�� eq aa�	
identification�RSAP�
aa�n�

ENDPROC 
� identification ��

PROCESS ml�initiate�RSAP�INIT�
aa � aid� n � AI� � EXIT ��
ml�idle�RSAP�
aa�n�

��
INIT �aa �j � ID �p� ompdu	
RSAP �n �invokereq
n�responder
aa��j�p�	
filter�RSAP�
aa�n�j� �� ACCEPT p � ompdu� j � id IN
�getsuccess
decode
p�conf��� �� INIT �aa �j �p	 EXIT

��

���



�not
getsuccess
decode
p�conf���� �� INIT �aa �j �p	 ml�initiate�RSAP�INIT�
aa�n�

WHERE

PROCESS ml�idle�RSAP�
aa � aid� n � AI� � NOEXIT ��

RSAP �n �p � RSP �IsInvokeInd
p��	

RSAP �n �rejectreq
n�responder
aa��getid
p��pdu
p��	
EXIT

���
RSAP �n �p � RSP�not
IsInvokeInd
p� or IsInvokeReq
p���	
EXIT

���
i	
ml�idle�RSAP�
aa�n�

ENDPROC 
� ml�idle ��

PROCESS filter�RSAP�
aa � aid� n � AI� j � id� � EXIT
ompdu�id� ��

ml�waiting��RSAP�
aa�n�j�
��

RSAP �n �p � RSP�
j eq GetId
p�� and IsInvokeConf
p��	

 �isnack
p�� ��

EXIT
code
enableconf
aa�j�false���j�
��

�isack
p� � ��

ml�waiting��RSAP�
aa�n�j�

��
RSAP �n �p � RSP�
j eq GetId
p�� and 
IsErrorInd
p� or

IsResultInd
p� or IsRejectInd
p���	

EXIT
pdu
p��j��
�

WHERE

PROCESS ml�waiting��RSAP�
aa � aid� n � AI� j � id� � NOEXIT ��

RSAP �n �p � RSP �not
IsInvokeInd
p� or

IsInvokeConf
p� and 
j eq getid
p�����	

EXIT

���
RSAP �n �p � RSP �IsInvokeInd
p��	
RSAP �n �rejectreq
n�responder
aa��getid
p��pdu
p��	
EXIT

���

i	
ml�waiting��RSAP�
aa�n�j�

ENDPROC 
� ml�waiting� ��

PROCESS ml�waiting��RSAP�
aa � aid� n � AI� j � id� � NOEXIT ��

RSAP �n �p � RSP �not
IsInvokeInd
p� or


IsErrorInd
p� or IsResultInd
p� or

IsRejectInd
p�� and 
j eq getid
p�����	
EXIT

���
RSAP �n �p � RSP �IsInvokeInd
p��	
RSAP �n �rejectreq
n�responder
aa��getid
p��pdu
p��	

EXIT
���

i	
ml�waiting��RSAP�
aa�n�j�

ENDPROC 
� ml�waiting� ��

ENDPROC 
� filter ��

ENDPROC 
� ml�initiate ��

PROCESS al�initiate�RSAP�INIT�
aa � aid� n � AI� � EXIT ��

al�idle�RSAP�
aa�n�
��

 RSAP �n �p � RSP�Isinvokeind
p� and isenable
decode
pdu
p��ind���	

INIT �aa �getid
p� �pdu
p�	
INIT �aa �getid
p� �pp � ompdu	

RSAP �n �resultreq
n�initiator
aa��getid
p��pp�	

���



EXIT
�

WHERE

PROCESS al�idle�RSAP�
aa � aid� n � AI� � NOEXIT ��

RSAP �n �p � RSP�not
IsInvokeInd
p� and IsEnable
decode
pdu
p��ind����	
EXIT

���
RSAP �n �p � RSP�IsInvokeInd
p� and not
IsEnable
decode
pdu
p��ind����	
RSAP �n �rejectreq
n�initiator
aa��getid
p��pdu
p��	

EXIT
���

i	
al�idle�RSAP�
aa�n�

ENDPROC 
� al�idle ��

ENDPROC 
� al�initiate ��

PROCESS ml�communicate�RSAP�CON�UNC�MNS�ABORT�
aa � aid� n � AI� � EXIT ��



ml�con�RSAP�CON�
aa�n�noid�

���
ml�unc�RSAP�UNC�
aa�n�

���
ml�mns�RSAP�MNS�
aa�n�

���

ml�confirmations�RSAP�
aa�n�
�
�� ABORT �aa �j � ID �p � ompdu �conf	 EXIT

WHERE

PROCESS ml�confirmations�RSAP�
aa � aid� n � AI� � NOEXIT ��

RSAP �n �p � RSP�IsInvokeConf
p� and IsAck
p��	
ml�confirmations�RSAP�
aa�n�

ENDPROC 
� ml�confirmations ��

PROCESS ml�con�RSAP�CON�
aa � aid� n � AI� ids � idset� � NOEXIT ��

CON �aa �j � ID �p � ompdu �req	
RSAP �n �invokereq
n�responder
aa��j�p�	
ml�con�RSAP�CON�
aa�n�insert
j�ids��

��

RSAP �n �p � RSP�
IsErrorInd
p� or IsResultInd
p�� and

getid
p� IsIn ids��	

CON �aa �getid
p� �pdu
p� �ind	
ml�con�RSAP�CON�
aa�n�remove
getid
p��ids��

��

RSAP �n �p � RSP�
IsErrorInd
p� or IsResultInd
p�� and
not

getid
p� IsIn ids� or IsProviderConf
decode
pdu
p��ind����	

ml�con�RSAP�CON�
aa�n�ids�

ENDPROC

PROCESS ml�unc�RSAP�UNC�
aa� aid� n � AI� � NOEXIT ��

UNC �aa �j � ID �p � ompdu �req	
RSAP �n �invokereq
n�responder
aa��j�p�	

EXIT
���

i	
ml�unc�RSAP�UNC�
aa�n�

ENDPROC 
� ml�unc ��

PROCESS ml�mns�RSAP�MNS�
aa� aid� n � AI� � NOEXIT ��

RSAP �n �p � RSP�IsnotificationInd
p� or IsEventReportInd
p��	
MNS �aa �getid
p� �pdu
p� �ind	
EXIT

���
MNS �aa �j � ID �p � ompdu �req	

RSAP �n �notificationreq
n�responder
aa��j�p�	

���



EXIT
���

i	
ml�mns�RSAP�MNS�
aa�n�

ENDPROC 
� ml�mns ��

ENDPROC 
� ml�communicate ��

PROCESS al�communicate�RSAP�CON�UNC�MNS�ABORT�
aa � aid� n � AI� � EXIT ��



al�con�RSAP�CON�
aa�n�

���
al�unc�RSAP�UNC�
aa�n�

���

al�mns�RSAP�MNS�
aa�n�
�
�� ABORT �aa �j � ID �p � ompdu �k � kind	 EXIT

WHERE

PROCESS al�con�RSAP�CON�
aa � aid� n � AI� � NOEXIT ��

RSAP �n �p � RSP�Isinvokeind
p� and IsUserConf
decode
pdu
p��ind���	

CON �aa �getid
p� �pdu
p� �ind	
CON �aa �getid
p� �pp � ompdu �res	

 RSAP �n �resultreq
n�initiator
aa��getid
p��pp�	

EXIT
��

RSAP �n �errorreq
n�initiator
aa��getid
p��pp�	
EXIT

�
���

i	

al�con�RSAP�CON�
aa�n�

ENDPROC

PROCESS al�unc�RSAP�UNC�
aa� aid� n � AI� � NOEXIT ��

RSAP �n �p � RSP�Isinvokeind
p� and IsUSet
decode
pdu
p��ind���	
UNC �aa �getid
p� �pdu
p� �ind	
RSAP �n �resultreq
n�initiator
aa��getid
decode
pdu
p��ind���pdu
p��	
EXIT

���
i	
al�unc�RSAP�UNC�
aa�n�

ENDPROC 
� al�unc ��

PROCESS al�mns�RSAP�MNS�
aa � aid� n � AI� � NOEXIT ��

RSAP �n �p � RSP�IsnotificationInd
p��	

MNS �aa �getid
p� �pdu
p� �ind	
EXIT

���
MNS �aa �j � ID �p � ompdu �req �IsNotification
decode
p�req���	
RSAP �n �notificationreq
n�initiator
aa��j�p�	

EXIT
���

MNS �aa �j � ID �p � ompdu �req �IsReport
decode
p�req���	
RSAP �n �eventreportreq
n�initiator
aa��j�p�	
EXIT

���
i	
al�mns�RSAP�MNS�
aa�n�

ENDPROC 
� al�unc ��

ENDPROC 
� al�communicate ��

PROCESS ml�release�RSAP�CON�UNC�MNS�REL�ABORT�
aa � aid� n � AI� � EXIT ��

CON �aa �j � ID �p � ompdu �k � kind	
ml�release�RSAP�CON�UNC�MNS�REL�ABORT�
aa�n�

��

UNC �aa �j � ID �p � ompdu �k � kind	

���



ml�release�RSAP�CON�UNC�MNS�REL�ABORT�
aa�n�
��

MNS �aa �j � ID �p � ompdu �k � kind	
ml�release�RSAP�CON�UNC�MNS�REL�ABORT�
aa�n�

��
REL �aa �j � ID �p � ompdu	
RSAP �n �invokereq
n�responder
aa��j�p�	

ml�releasing�RSAP�CON�ABORT�
aa�n�j�

WHERE

PROCESS ml�releasing�RSAP�CON�ABORT�
aa � aid� n � AI� j � ID� � EXIT ��

CON �aa �j � ID �p � ompdu �k � kind	
ml�releasing�RSAP�CON�ABORT�
aa�n�j�

��
RSAP �n �p � RSP�
IsResultInd
p� or IsErrorInd
p�� and

IsDisable
decode
pdu
p��conf�� and 
j eq getid
p���	
ABORT �aa �getid
p� �pdu
p� �conf	
EXIT

��
RSAP �n �p � RSP�IsInvokeConf
p� and IsAck
p��	

ml�releasing�RSAP�CON�ABORT�
aa�n�j�
��

RSAP �n �p � RSP�IsInvokeInd
p� and not
IsProviderConf
decode
pdu
p��ind����	
RSAP �n �rejectreq
n�responder
aa��getid
p��pdu
p��	

ml�releasing�RSAP�CON�ABORT�
aa�n�j�
��

RSAP �n �p � RSP�
IsResultInd
p� or IsErrorInd
p�� and
not
IsDisable
decode
pdu
p��conf����	

ml�releasing�RSAP�CON�ABORT�
aa�n�j�

ENDPROC 
� ml�releasing ��

ENDPROC 
� ml�release ��

PROCESS al�release�RSAP�CON�UNC�MNS�REL�ABORT�
aa � aid� n � AI� � EXIT ��

CON �aa �j � ID �p � ompdu �k � kind	
al�release�RSAP�CON�UNC�MNS�REL�ABORT�
aa�n�

��
UNC �aa �j � ID �p � ompdu �k � kind	
al�release�RSAP�CON�UNC�MNS�REL�ABORT�
aa�n�

��
MNS �aa �j � ID �p � ompdu �k � kind	

al�release�RSAP�CON�UNC�MNS�REL�ABORT�
aa�n�
��

REL �aa �j � ID �p � ompdu�IsDisableReq
decode
p�req���	
RSAP �n �invokereq
n�initiator
aa��j�p�	

al�releasing�RSAP�ABORT�
aa�n�j�

WHERE

PROCESS al�releasing�RSAP�ABORT�
aa � aid� n � AI� j � ID� � EXIT ��

RSAP �n �p � RSP�
IsResultInd
p� or IsErrorInd
p�� and IsDisable
decode
pdu
p��conf�� and 
j eq getid
p���	
ABORT �aa �getid
p� �pdu
p� �conf	
EXIT

��

RSAP �n �p � RSP�IsInvokeInd
p� and not
IsProviderConf
decode
pdu
p��ind����	
RSAP �n �rejectreq
n�responder
aa��getid
p��pdu
p��	
al�releasing�RSAP�ABORT�
aa�n�j�

��
RSAP �n �p � RSP�IsInvokeConf
p� and IsAck
p��	

al�releasing�RSAP�ABORT�
aa�n�j�
��

RSAP �n �p � RSP�
IsResultInd
p� or IsErrorInd
p�� and not 
IsDisable
decode
pdu
p��conf����	
al�releasing�RSAP�ABORT�
aa�n�j�

ENDPROC 
� al�releasing ��

ENDPROC 
� al�release ��

PROCESS ml�abort�RSAP�ABORT�
aa �aid� n � AI� � EXIT ��

RSAP �n �p � RSP�IsInvokeConf
p� and IsNack
p��	
ABORT �aa �getid
p� �code
disableind
aa�getid
p��� �ind	

EXIT

���



��
RSAP �n �p � RSP�IsRejectInd
p��	

ABORT �aa �getid
p� �code
disableind
aa�getid
p��� �ind	
EXIT

��
RSAP �n �p � RSP�
IsResultInd
p� or IsErrorInd
p�� and IsEnable
decode
pdu
p��conf���	
ABORT �aa �getid
p� �code
disableind
aa�getid
p��� �ind	

EXIT
��

RSAP �n �p � RSP�IsInvokeInd
p� and IsDisable
decode
pdu
p��ind���	
ABORT �aa �getid
p� �code
disableind
aa�getid
decode
pdu
p��ind���� �ind	
RSAP �n �resultreq
n�responder
aa��getid
p��code
disableconf
aa�getid
p����	

EXIT

ENDPROC 
� ml�abort ��

PROCESS al�abort�RSAP�ABORT�
aa �aid� n � AI� � EXIT ��

RSAP �n �p � RSP�IsInvokeConf
p� and IsNack
p��	
ABORT �aa �getid
p� �code
disableind
aa�getid
p��� �ind	
EXIT

��
RSAP �n �p � RSP�IsRejectInd
p��	
ABORT �aa �getid
p� �code
disableind
aa�getid
p��� �ind	
EXIT

��
RSAP �n �p � RSP�IsInvokeInd
p� and IsEnable
decode
pdu
p��ind���	
ABORT �aa �getid
p� �code
disableind
aa�getid
p��� �ind	
EXIT

��

RSAP �n �p � RSP�IsInvokeInd
p� and IsDisable
decode
pdu
p��ind���	
ABORT �aa �getid
p� �code
disableind
aa�getid
p��� �ind	
RSAP �n �resultreq
n�initiator
aa��getid
p��code
disableconf
aa�getid
p����	
EXIT

ENDPROC 
� ml�abort ��

PROCESS manager�OSAP�
aa � aid� � NOEXIT ��

minitiate�OSAP�
aa�
��

mcommunicate�OSAP�
aa�
��

initiaterelease�OSAP�
initiator
aa��

��

forcerelease�OSAP�
initiator
aa�� �� manager�OSAP�
aa� �

ENDPROC 
�manager��

PROCESS agent�OSAP�
aa � aid� � NOEXIT ��

ainitiate�OSAP�
aa�

��
acommunicate�OSAP�
aa�

��
initiaterelease�OSAP�
responder
aa��

��


forcerelease�OSAP�
responder
aa�� �� agent�OSAP�
aa� �

ENDPROC 
�agent��

PROCESS minitiate�OSAP�
aa � aid� � EXIT ��

OSAP �initiator
aa� �p� � OSP �IsEnableReq
p�� and 
aa eq GetAID
p����	
OSAP �initiator
aa� �p� � OSP �p� ConfForReq p��	


�not
GetSuccess
p���� �� minitiate�OSAP�
aa�
��
�GetSuccess
p��� �� EXIT �

ENDPROC 
�minitiate��

PROCESS ainitiate�OSAP�
aa � aid� � EXIT ��

OSAP �responder
aa� �p� � OSP �IsEnableInd
p�� and 
aa eq GetAID
p����	

EXIT

��	



ENDPROC 
�ainitiate��

PROCESS mcommunicate�OSAP�
aa � aid� � NOEXIT ��

mnsm�Osap�
aa� ��� mosm�Osap�
aa�

ENDPROC 
� mcommunicate ��

PROCESS acommunicate�Osap�
aa � aid� � NOEXIT ��

mnsa�Osap�
aa� ��� mosa�Osap�
aa�

ENDPROC 
� acommunicate ��

PROCESS mosm�OSAP�
aa � aid� � NOEXIT ��

mpconfirmed�OSAP�
initiator
aa��
���

munconfirmed�OSAP�
initiator
aa��

���

 muserconfirmed�OSAP�
initiator
aa��
�� validoperations�OSAP�
initiator
aa���

���

i	
mosm�OSAP�
aa�

ENDPROC 
� mosm ��

PROCESS mosa�OSAP�
aa � aid� � NOEXIT ��

apconfirmed�OSAP�
responder
aa��
���

aunconfirmed�OSAP�
responder
aa��
���

auserconfirmed�OSAP�
responder
aa��
���

i	

mosa�OSAP�
aa�

ENDPROC 
� mosa ��

PROCESS mpconfirmed�OSAP�
x � AI� � EXIT ��

OSAP �x �p� � OSP �IsDisableReq
p���	
EXIT

ENDPROC 
� mpconfirmed ��

PROCESS apconfirmed�OSAP�
x � AI� � EXIT ��

OSAP �x �p� � OSP �IsDisableReq
p���	

EXIT

ENDPROC 
� apconfirmed ��

PROCESS munconfirmed�OSAP�
x � AI� � EXIT ��

OSAP �x �p� � OSP �IsUsetReq
p���	
EXIT

ENDPROC 
� munconfirmed ��

PROCESS aunconfirmed�OSAP�
x � AI� � EXIT ��

OSAP �x �p� � OSP �IsUsetInd
p���	
EXIT

ENDPROC 
� aunconfirmed ��

PROCESS muserconfirmed�OSAP�
x � AI� � EXIT ��

OSAP �x �p� � OSP �IsReq
p�� and IsUserConf
p���	

OSAP �x �p� � OSP �p� ConfForReq p��	

���



EXIT

ENDPROC 
� muserconfirmed ��

PROCESS auserconfirmed�OSAP�
x � AI� � EXIT ��

OSAP �x �p� � OSP �IsInd
p�� and IsUserConf
p���	
OSAP �x �p� � OSP �p� ResForInd p��	
EXIT

ENDPROC 
� auserconfirmed ��

PROCESS validoperations�OSAP�
x � AI� � NOEXIT ��

OSAP �x �p� � OSP

�IsCreate
p�� implies
not

subj
p�� eq initiator
getaid
p���� or


subj
p�� eq responder
getaid
p������	
validoperations�OSAP�
x�

ENDPROC

PROCESS mnsm�OSAP�
aa � aid� � NOEXIT ��

mreport�OSAP�
initiator
aa��
���

mnotification�OSAP�
initiator
aa��
���

i	
mnsm�OSAP�
aa�

ENDPROC 
� mnsm ��

PROCESS mnsa�OSAP�
aa � aid� � NOEXIT ��

areport�OSAP�
responder
aa��
���

anotification�OSAP�
responder
aa��
���

i	
mnsa�OSAP�
aa�

ENDPROC 
� mnsa ��

PROCESS mreport�OSAP�
x � AI� � EXIT ��

OSAP �x �p� � OSP �IsReportInd
p���	
EXIT

ENDPROC 
� mreport ��

PROCESS mnotification�OSAP�
x � AI� � EXIT ��

OSAP �x �p� � OSP �Isnotification
p���	

EXIT

ENDPROC 
� mnotification ��

PROCESS areport�OSAP�
x � AI� � EXIT ��

OSAP �x �p� � OSP �IsReportReq
p���	
EXIT

ENDPROC 
� areport ��

PROCESS anotification�OSAP�
x � AI� � EXIT ��

OSAP �x �p� � OSP �Isnotification
p���	
EXIT

ENDPROC 
� anotification ��

���



PROCESS forcerelease�OSAP�
x � AI� � EXIT ��

OSAP �x �p� � OSP �IsDisableConf
p�� or IsDisableInd
p���	
EXIT

ENDPROC 
� forcerelease ��

PROCESS initiaterelease�OSAP�
x � AI� � NOEXIT ��

OSAP �x �p� � OSP	


�not
IsDisableReq
p���� �� initiaterelease�OSAP�
x�
��
�IsDisableReq
p��� �� releasing�OSAP�
x�
�

WHERE

PROCESS releasing�Osap�
y � AI� � NOEXIT ��

OSAP �y �p� � OSP �IsConf
p�� or IsDisableInd
p���	
releasing�Osap�
y�

ENDPROC 
� releasing ��

ENDPROC 
� initiaterelease ��

ENDSPEC 
� OM�Protocol ��

���



Appendix C

The Testcases

The testcases speci�ed in this Section run parallel to the service speci�cation� with a restricted set of all associations	 only
two associations are modelled� Each testcase speci�es a unique aspect the service speci�cation must exhibit� Note that
these testcases are in fact may�testcases�

C�
�� Testcase No� �
This testcase deals with the setup of an association� which does not succeed� i�e� the manager requests an association but
receives a negative con�rmation� After that� another attempt is made� Note that� after the enable request� a choice can
be made to either receive an enable indication �which would not be according to the testcase� or an enable con�rmation�
This testcase is described as follows	

PROCESS test��OSAP� � EXIT �


�	 first attempt 	�

OSAP 
offset 
enablereq�aid�offset�neighbour�offset������

OSAP 
offset �p � OSP�IsEnableConf�p� and not�getsuccess�p����

�	 second attempt 	�

OSAP 
offset 
enablereq�aid�offset�neighbour�offset���succ�����

OSAP 
offset �p � OSP�IsEnableConf�p� and not�getsuccess�p����

EXIT

ENDPROC �	 test� 	�

Note that the agent does not seem to play a part in this test� however� the decision not to allow the association to be set
up could have been made by the agent�s service provider�

C�
�� Testcase No� �

This testcase deals with the setup of an association� which does succeed� i�e� the manager requests an association and

receives a positive con�rmation� The next step is to terminate the association� which in this case is invoked by the manager�

No data is transmitted in this testcase� This testcase is described as follows	

PROCESS test��OSAP� � EXIT �


OSAP


offset


enablereq�aid�offset�neighbour�offset������

OSAP


offset

�p� � OSP�IsEnableConf�p�� and GetSuccess�p����

OSAP


offset


disablereq�aid�offset�neighbour�offset���succ�����

OSAP


offset

���



�p� � OSP�IsDisableConf�p����

EXIT

���

OSAP


neighbour�offset�

�p� � OSP�IsEnableInd�p����

OSAP


neighbour�offset�

�prim � OSP�IsDisableInd�prim���

EXIT

ENDPROC �	 test� 	�

C�
�� Testcase No� �

This testcase is similar to the second testcase� however� now instead of the manager� the agent terminates the association�

This test is described as follows	

PROCESS test��OSAP� � EXIT �


OSAP


offset


enablereq�aid�offset�neighbour�offset������

OSAP


offset

�p� � OSP�IsEnableConf�p�� and GetSuccess�p����

OSAP


offset

�prim � OSP�IsDisableInd�prim���

EXIT

���

OSAP


neighbour�offset�

�p� � OSP�IsEnableInd�p����

OSAP


neighbour�offset�


disablereq�aid�offset�neighbour�offset���succ�����

OSAP


neighbour�offset�

�p� � OSP�IsDisableConf�p����

EXIT

ENDPROC �	 test� 	�

C�
�� Testcase No� �

This testcase deals with the setup of the association� and some messages that use the association� The manager then issues

a disable request� which causes some of the con�rmations on the messages not to be received� This testcase is described

as follows	

PROCESS test��OSAP� � EXIT �


�OSAP


offset


enablereq�aid�offset�neighbour�offset������

OSAP


offset

�p� � OSP�IsEnableConf�p�� and GetSuccess�p����

� OSAP


offset

���




getreq�aid�offset�neighbour�offset���succ�����

OSAP


offset

�p� � OSP�IsGetConf�p����

EXIT

���

OSAP


offset


csetreq�aid�offset�neighbour�offset���succ�succ������

EXIT

� ��

OSAP


offset


disablereq�aid�offset�neighbour�offset���succ�succ�succ�������

OSAP


offset

�p� � OSP�IsDisableConf�p����

EXIT �

���

OSAP


neighbour�offset�

�p� � OSP�IsEnableInd�p����

OSAP


neighbour�offset�

�p� � OSP�IsGetInd�p����

OSAP


neighbour�offset�

�p� � OSP�IsCsetInd�p����

OSAP


neighbour�offset�


csetres�aid�offset�neighbour�offset���succ�succ������

OSAP


neighbour�offset�


getres�aid�offset�neighbour�offset���succ�����

OSAP


neighbour�offset�

�prim � OSP�IsDisableInd�prim���

EXIT

ENDPROC �	 test� 	�

C�
�� Testcase No� �

This testcase is used to check that if a usercon�rmed message is sent� a corresponding con�rmation is received� A disable

request will be issued after all con�rmations have been received�

PROCESS test��OSAP� � EXIT �


�OSAP


offset


enablereq�aid�offset�neighbour�offset������

OSAP


offset

�p� � OSP�IsEnableConf�p�� and GetSuccess�p����

� OSAP


offset


getreq�aid�offset�neighbour�offset���succ�����

EXIT

���

���



OSAP


offset


csetreq�aid�offset�neighbour�offset���succ�succ������

EXIT

� ��

OSAP


offset


disablereq�aid�offset�neighbour�offset���succ�succ�succ�������

OSAP


offset

�p� � OSP�IsCsetConf�p����

OSAP


offset

�p� � OSP�IsGetConf�p����

OSAP


offset

�p� � OSP�IsDisableConf�p����

EXIT �

���

OSAP


neighbour�offset�

�p� � OSP�IsEnableInd�p����

OSAP


neighbour�offset�

�p� � OSP�IsGetInd�p����

OSAP


neighbour�offset�

�p� � OSP�IsCsetInd�p����

OSAP


neighbour�offset�


getres�aid�offset�neighbour�offset���succ�����

OSAP


neighbour�offset�


csetres�aid�offset�neighbour�offset���succ�succ������

OSAP


neighbour�offset�

�prim � OSP�IsDisableInd�prim���

EXIT

ENDPROC �	 test� 	�

C�
�� Testcase No� �
This testcase is introduced to test the provider initiated disable of the association� First the association is set�up� then
some data is exchanged and after that� the Agent decides to terminate the association� However� the Manager receives a
provider initiated disable� and so does the Agent� thereby terminating the association�

PROCESS test��OSAP� � EXIT �


M�OSAP� ��� A�OSAP�

WHERE

PROCESS M�OSAP� � EXIT �


OSAP


offset


enablereq�aid�offset�neighbour�offset������

OSAP


offset

���



�p� � OSP�IsEnableConf�p�� and GetSuccess�p����

� OSAP


offset


getreq�aid�offset�neighbour�offset���succ�����

EXIT

���

OSAP


offset


csetreq�aid�offset�neighbour�offset���succ�succ������

EXIT

� ��

OSAP


offset

�p� � OSP�IsCsetConf�p����

OSAP


offset

�p� � OSP�IsGetConf�p����

�	 receive a provider initiated disable 	�

�	 �the id does not relate to the Agent�s request� 	�

OSAP


offset


disableind�aid�offset�neighbour�offset���succ�succ�succ�succ�succ���������

EXIT

ENDPROC �	 M 	�

PROCESS A�OSAP� � EXIT �


OSAP


neighbour�offset�

�p� � OSP�IsEnableInd�p����

OSAP


neighbour�offset�

�p� � OSP�IsGetInd�p����

OSAP


neighbour�offset�

�p� � OSP�IsCsetInd�p����

OSAP


neighbour�offset�


getres�aid�offset�neighbour�offset���succ�����

OSAP


neighbour�offset�


csetres�aid�offset�neighbour�offset���succ�succ������

OSAP


neighbour�offset�


disablereq�aid�offset�neighbour�offset���succ�succ�succ�������

�	 receive a provider initiated disable 	�

OSAP


neighbour�offset�

�prim � OSP�IsDisableInd�prim���

EXIT

ENDPROC �	 A 	�

ENDPROC �	 test� 	�

���



Bibliography

�AVV��� AVV� OM�RR and Association Management Speci
cations� July �����

�BB		� T� Bolognesi and E� Brinksma� Introduction to the ISO Speci
cation Language LOTOS�
Computer Networks and ISDN Systems� ��		�

�BFG���� A� Bouajjani� J�C� Fernandez� S� Graf� C� Rodriguez� and J�Sifakis� Safety for Branch�
ing Time Semantics� In ��th ICALP� Springer�Verlag� �����

�BW��� J�C�M� Baeten and W�P� Weijland� Process Algebra� Cambridge Tracts in Theoretical
Computer Science� Cambridge University Press� �����

�Eer��� H� Eertink� Executing LOTOS speci�cations� The SMILE tool� In T� Bolognesi�
J� van de Lagemaat� and C� Vissers� editors� LOTOSphere� Software Development
with LOTOS� pages ��� ���� Kluwer Academic Publishers� �����

�Gar��� Hubert Garavel� An Overview of the Eucalyptus Toolbox� Editors Z� Brezo!cnik and
T� Kapus� Proceedings of the COST ��� International Workshop on Applied Formal
Methods in System Design �Maribor� Slovenia
� University of Maribor� pages ���		�
�����

�ISO		� ISO�IEC� Lotos � A Formal Description Technique Based on the Temporal Ordering
of Observational Behaviour� ISO� ��		�

�ISO��a� ISO�IEC� Common Management Information Protocol Speci
cation� ISO� �����

�ISO��b� ISO�IEC� Common Management Information Service De
nition� ISO� �����

�ISO��c� ISO�IEC� Remote Operations� ISO� �����

�ISO��d� ISO�IEC� Systems Management� ISO� �����

�Kap��� Kimberly W� Kappel� OSI Management Model and Its Impact on Network Manage�
ment� Network Management Solutions� Inc� �����

�SPKV��� G� Scollo� L� Ferreira Pires� H� Kremer� and C�A� Visser� Protocol Design� Twente
University� �����

�VL	�� C�A� Vissers and L� Logrippo� The Importance of the Service Concept in the Design of
Data Communications Protocols� Elsevier Science Publishers B�V� �North�Holland	�
��	��

�VSvSB��� C�A� Vissers� G� Scollo� M� van Sinderen� and E� Brinksma� Speci�cation styles in
distributed systems design and veri�cation� Theoretical Computer Science ��� Elsevier�
pages ��� ���� �����

���


