A Case Study in Formal Methods:
Specification and Validation of the
OM/RR Protocol

Tim Willemse!, Jan Tretmans?, and Arjen Klomp?®

! Eindhoven University of Technology, Formal Methods Group,
Department of Mathematics and Computing Science, P.O.Box 513, 5600 MB Eindhoven,
The Netherlands, timw@win.tue.nl
2 University of Twente, Formal Methods and Tools group, Faculty of Computing Science, P.O.Box 217,
7500 AE Enschede, The Netherlands, tretmans@cs.utwente.nl
3 CMG Den Haag B.V. Division Advanced Technology, P.O.Box 187, 2501 CD The Hague,
The Netherlands, arjen.klomp@cmg.nl t

Abstract. This paper reports on the results of the application of formal methods in the
development of an industrial, mission-critical system, called the Operator Support System.
A critical communication protocol of this system, the OM/RR Protocol, and its correspond-
ing service were formalised using the formal specification language LOTOS. The resulting
specifications have been validated using the tool set LITE and models of the specifications,
obtained by making abstractions, have been verified using the tool EUCALYPTUS. Whereas
the use of formal methods is usually motivated by their ability to allow for unambiguous and
precise system descriptions amenable to mathematical reasoning, it turned out that in this
project most benefits were obtained by the sheer process of formalising the informal pro-
tocol description, revealing many omissions and ambiguities. The results and experiences
obtained during formalisation, validation, abstraction and verification are discussed on a
non-formal basis in this paper.

Keywords & Phrases: application of formal methods, industrial case study, LOTOS, commu-
nication protocol.

1 Introduction

Formal methods have always been envisioned to be applied to systems that require unambiguous,
mathematically precise descriptions for their correctness. The use of formal methods in the industry
has been prophesied since their very dawn, however, reality learns that their acceptance is still
not very wide-spread. One way of increasing the acceptance is by applying formal methods in case
studies of real industrial systems. This paper reports on such a case study: the OM/RR protocol.
The project was conducted between 1997 and 1998.

The OM/RR protocol, which is a short-hand for Object Management/Request Response protocol,
is a communication protocol used in the Operator Support System (OSS). OSS is a complex,
mission-critical system which is being developed to integrate different Motor-way Management
Systems (MMSs). CMG Den Haag B.V. takes part in this development which is commissioned by
the Traffic and Transportation Department of the Dutch Ministry of Transport, Public Works and
Water Management.

In the past years, various MMSs have been developed, such as fog detection systems, congestion
detection systems and variable message signs for controlling traffic. For historical reasons, many
MMSs have their own specification and implementation and they cannot interact. The control of
an MMS takes place at an Operating Centre. The current situation in The Netherlands is that

 Current affiliation: CMG Eindhoven B.V. Sector Trade, Transport & Industry
Luchthavenweg 57, P.O.Box 7089, 5605 JB Eindhoven, The Netherlands

there are several Operating Centres throughout the country. Each Operating Centre has its own
domain, consisting of several MMSs. Since these domains are piecewise disjoint, this severely limits
the — nowadays much needed — cooperation between different Operating Centres.

In recent years this awareness has grown, leading to the description of the OSS. This system
is intended to integrate the independent Operating Centres and MMSs, and thereby to increase
the power of the system regarded as a whole. The idea is to enable one Operating Centre to take
over duties from another Operating Centre, or to perform tasks that at some point go beyond
the Operating Centre’s own domain, thus offering maximal flexibility in regulating and controlling
traffic.

The cooperation between the Operating Centres is supported by communication and authori-
sation protocols. The communications protocol is intended to allow both communication between
Operating Centres and between an Operating Centre on the one hand and an MMS on the other
hand. The authorisation protocol is intended to restrict all possible communications allowed by
the communications protocol, avoiding possibly chaotic situations, in which control over MMSs
can be lost. Both protocols display complex behaviour and are critical to the well-functioning of
0SS, so they are sources of potential hazards to the functioning of the OSS.

The main motivation for CMG to incorporate formal methods in the development of the OSS
was the mission critical aspect of the OSS. Moreover, CMG had positive experiences with the use
of formal methods in another mission critical system: the BOS system, the decision support system
which controls and operates the storm surge barrier in the Nieuwe Waterweg near Rotterdam — a
movable dam which should protect Rotterdam from being flooded [10, 20].

The main goals of applying formal methods to the OM/RR protocol were to check its feasibility
and suitability for OSS, and to judge the completeness, preciseness and consistency of its (informal)
specification. It was acknowledged that, based on the documentation available for the OSS, no firm
conclusions about these facts could be drawn. It was expected that formal methods could help in
giving an answer to these questions. A secondary goal for CMG was to increase their knowledge
of and their experience with formal methods and associated tools.

In this paper, we describe the successful application of formal methods to the analysis of the
OM/RR protocol — successful at least from the formal methods point of view, not from the OM/RR
protocol point of view, as will be seen. By carefully translating the informal documentation for
this protocol, taking into account the generally believed functionality of this protocol, a formal
specification is constructed. This process allows one to determine omissions, as well as ambiguities
in the informal documentation. Simulation of the formal specification is used to validate the formal
specification against informal specifications and design requirements. Confidence in the correctness
of the formal specification is increased by showing proper, formal relations between models of the
formal service specification and models of the protocol specifications.

The concepts of service and protocol, used in this project, are defined in [21] and stem from
the context of the OSI Reference Model [16]. It is illustrated in Fig. 1. A communication service is
provided by a service provider, which is considered as a blackbox. The service users communicate
with the service provider via shared interaction points, so-called Service Access Points (SAPs). The
layer-n service specification defines the possible communications between the layer-n service users
by using the layer-n service provider. The layer-n protocol specification describes how the layer
n-protocol entities should communicate via the n — 1 service provider to establish the n-service.

The rest of this paper is structured as follows. Section 2 discusses the communications protocol:
its basic, informal documentation, its ambiguities, its omissions and its characteristics, and the
choices that have been made in the process of formalising specifications are sketched. The validation
and verification aspects of the formal specifications are the topic of Section 3, and concluding
remarks and an evaluation of the use of formal methods in this project are discussed in Section 4.
Full technical details of this project can be found in [23].

n Service User n Service User

- O —
\n protocol entity | n Service Provider \n protocol entity |
:n—1 Service User : :n-l Service User :

Fig. 1. The Concept of Service

2 The OM/RR Protocol

This Section describes the informal and formal OM/RR protocol: the documentation for the
OM/RR protocol is discussed in Section 2.1. Subsequently, Section 2.2 discusses some of the prob-
lems and omissions of this document. Then Section 2.3 describes briefly the process of formalising
the documentation for the OM/RR protocol.

2.1 The OM/RR Documentation

The starting point for the formalisation was the description of the OM/RR protocol in [7], which
was developed outside the current project. According to this document, the OM/RR protocol is
loosely modelled after the OSI CMIS [5], the OSI CMIP [6], some parts of Systems Management
[1] and the OSI Remote Operations [4] standards.

The document [7] is, including appendices, a little over 75 pages, describing the OM/RR pro-
tocol and Association Management. Several appendices are added to explain short-hand notations
and conventions, taking up 15 pages of the document. A few pages are dedicated to a more global,
informal, description of the OM/RR protocol and its relation with the OSS, creating a context for
the OM/RR. protocol.

The contents of [7] consists mainly of information about data, described in the notation ASN.1
[19, 3]. Using this notation, the service primitives (i.e. primitives for communication between ser-
vice users and a service provider) and the protocol data units (i.e. units of data, handled by a
protocol entity) of the OM protocol entities and the RR protocol entities are specified. Although
ASN.1 allows one to write data in a concise and platform independent way, it does not allow for
specifying dynamic behaviour. The OSI standards CMIS and CMIP also do not encompass any
dynamic behaviour, as they leave this part up to the users of these standards. Other issues, dis-
cussed in [7] deal with the decomposition of the OM/RR protocol in layers in an OSI/RM manner
(see Fig. 2).

2.2 Omissions

During careful, thorough analysis and study of the informal OM/RR document with the intent of
developing a formal description a lot of incompleteness, impreciseness, ambiguity and inconsistency
was discovered.

Although OSI/RM-like layering of Fig. 2 is visually very compelling, additional information
is required to understand the interaction mechanisms between the different protocol entities and
layers. However, the functionalities of each layer are discussed only informally, ambiguously, or
not revealing the inter-dependencies between the protocol entities. This lack of information about
the entanglement of these protocol entities is regarded as a major omission.

Another major omission is the absence of descriptions for the dynamic behaviour (e.g. a service
specification), except for a transition diagram described in one appendix and a scenario describing

oM AM layer 7b oM layer 7b
RR layer 7a RR layer 7a
Presentation layer 6 Presentation layer 6
Session layer 5 Session layer 5
TCP/IP layer 1.4 TCP/IP layer 1.4

Fig.3. The alternative protocol

Fig. 2. The protocol stack
stack

aspects of communication for association management. The status of this diagram and the scenario,
however, is not explained. Service specifications are vital for users of a protocol, since the service
specification accurately describes the behaviour to be expected by a service user. The (formal or
informal) protocol specifications are necessary for guiding a programmer to a correct program.
Absence of both means that the documentation is not complete.

The dynamic behaviour is always described based on certain design requirements. Using these
requirements, it should be possible to design a service specification and protocol specifications.
Most design requirements, however, are not described in [7]. The design requirements that are
documented in [7] are mostly concerned with performance aspects instead of functionality. As
such, the documentation for the OM/RR protocol fails to meet its purpose.

Conversations with the developers revealed that they regarded the specifications of the service
primitives and the protocol data units as a sufficient basis for implementing the OM/RR protocol.
Specifying dynamic behaviour was regarded to be a non-issue, since it was, as they believed,
“trivial”. Within CMG, though, the opposite was believed. This feeling was confirmed, since the
trajectory of formalisation revealed that various issues proved more complex than the developers
had expected.

At this point in the project, one of the goals of the formalisation process had, in fact, already
been achieved: the OM/RR protocol document [7] was not stable, complete and precise enough to
form an unambiguous basis for further development of conforming implementations.

2.3 Formalisation of the OM/RR Protocol

Analysis of the informal OM/RR protocol document [7] revealed that this document is not suitable
to be considered a basis for formalising the protocol, see Section 2.2. Despite this fact, we decided
to continue the formalisation process to see to what extent the other goal — checking the feasibility
and suitability of the design of the OM/RR protocol for OSS — could be met. An attempt has been
made to design formal specifications for the OM/RR protocol. Using the few design requirements,
documented in [7], information obtained in conversations with the developers of [7] and information
within CMG from people working on the OSS project, design requirements have been formulated.
These design requirements then served as the basis for formalising the OM/RR protocol. The focus
in the formalisation process has been on the dynamic behaviour, since the data was already fully
specified using ASN.1. It should be noted that now we not only formalised the existing protocol,
but also were actually designing parts of it.

Subsequently, in the process of formalisation, a choice for a suitable formalism for describing
the specifications had to be made. This choice was made by considering two criteria to which the
formalism should adhere:

1. The formalism should allow for a concise and unambiguous specification of dynamic behaviour;

2. The formalism should be supported by tools able to analyse, validate and verify descriptions
in this formalism.

Even though a number of formalisms adhere to these requirements, a slight preference for a
process algebraic formalism led to LoToOs [8,2]. The tool support used in this project for LoTOs
consists of the tool-sets LITE [12] and EUCALYPTUS [14, 13] (various 1998-beta-versions of CADP
97b “Liege”).

Managed Object Managed Object
_____ Q I OM_SAP—>______<_)_____H
| ' OM/RR Service | o
1 OM protocol entity Provider 1 OM protocol entity
! I ! I

Fig. 4. The Relation between the OM/RR Service, the OM Protocol and the RR Service

The service specification of the OM/RR system — actually the OM service — is based on the
design requirements formulated for OM/RR. Subsequent decomposition of this service specification
leads to a lower-level service specification and a protocol specification. Visually, the decomposition
is expressed in Fig. 4. This decomposition also has its impact on the OM/RR protocol stack
(see Fig. 3 on page 4). The connection between the generic service/protocol structure in Fig. 1
and Fig. 4 is easily made. The service the OM/RR protocol, i.e. the OM/RR Service Provider,
provides to its service users, i.e. Managed Objects, is described in LoT0S. The decomposition
of the OM/RR Service Provider leads to specifications for the OM Protocol Entities and the
RR Service Provider. These are also described in LoT0S. The correctness of this decomposition
step can now easily be expressed in LOTOS as follows, where OM_RR_Service Provider [OM_SAP],
OM_Protocol Entity [OM_SAP,RR_SAP], RR_Service Provider [RR_SAP] are LOTOS processes for
the OM/RR Service Provider, OM Protocol Entity and RR Service Provider, respectively; OM_SAP
and RR_SAP are the Service Access Points of the OM layer and RR layer, respectively; and =~ is a
suitable semantic relation between processes.

OM_RR_Service Provider [OM_SAP] =~ (2.1)
HIDE RR_SAP IN (C OM_Protocol _Entity[OM_SAP,RR_SAP]
|1l OM_Protocol Entity[OM_SAP,RR_SAP])
| [RR_.SAP]| RR_Service_Provider[RR_SAP])

Basically, the service specification of the OM/RR protocol describes communications between
the service users of the OM/RR protocol, which are according to [7] Managed Objects. The service
users impose, by definition, no restrictions on the OM/RR protocol. Managed Objects communi-
cate with one another via associations, which are considered to be binary relations. Two Managed
Objects connected with each other via an association are assigned roles based on the initiative in
establishing the association. One takes the role of a Manager and one takes the role of an Agent.
These roles have their impact on the set of service primitives a Managed Object is allowed to use
in an association with another Managed Object. The order in which service primitives are used to
establish, communicate and release an association, is described in LoTO0S. The view a Managed
Object has on an association is described by means of a state-transition diagram (see Fig. 5). This
state-transition diagram served as a framework for writing the LOTOS specifications.

The specification of the OM protocol entities describes formally how the OM/RR service
specification can be met, using the service specification of the RR protocol. The service specification
of the RR protocol describes a connection-less service, offering reliable data transmissions between
two service users. It is not clear to us yet, and in [7] it is also not explained, why the developers
used a TCP/IP network below the RR layer (see Fig. 2 and 3).

association
not established

Initial

association
established

Communicating

provider/peer user o
initiated disable user initiated

disable

Aborting
provider initiated/

peer confirmed
disable

Fig.5. A Managed Object’s view on an Association

Specification Lines of LoTOS code
OM/RR service specification 1000
OM/RR protocol specification 1600

Table 1. Lines of LoT0OSs Code

To give an indication into the complexity of the final specifications, an approximation of the
number of lines of LOTOS code are mentioned in Table 1. In these specifications data not affecting
the dynamic behaviour (e.g. data for the service users), is abstracted from. Clearly, the OM/RR
service specification is specified more easily than the OM/RR protocol specification, which is an
argument in favour of using the concept of service as a step in protocol development.

3 Validation, Verification and Analysis

A part of the objectives in our project has been to reveal the (lack of) information contained
in documents concerning the OM/RR communications protocol. This part has been discussed
in Section 2. Another objective has been to show how formal methods can be applied to write
unambiguous specifications in an industrial project. Obtaining confidence in such specifications
is also assisted by formal methods. The formal specifications written for the OM/RR protocol
have been validated and verified using the tool-sets LITE [12] and EucALyPTUS [14,13]. These
validation and verification efforts are discussed in the subsequent sections.

3.1 Validation and Analysis using LITE

The validation and analysis of the formal specifications of the communication protocol has been
tackled in different stages. The first stage consisted of checking the syntax and static semantics
of the LoTos-specifications. For this, the syntax and static-semantic analyser of LITE were used.
Although necessary for performing subsequent analysis, fixing the problems discovered in this stage
only provided more insight into the description language rather than in the specification itself.
Given the amount of errors that were reported in this stage, one may consider the FDT LoTOS
either unnatural or hard to learn. The main problems encountered in this stage were of the nature
of functionality of a process (i.e. exit versus. noexit), which at first seem very counter-intuitive.

The second stage involved checking the dynamic behaviour of the specifications. The design
requirements and the state transition diagram (see Fig. 5) have been used as a guideline in this
stage. The LoTos simulator (animator) SMILE, which is part of the tool-set LITE, has been used
for this. At first, a simulation based approach was taken, using SMILE to perform single stepping
through the specifications. Single stepping is a simulation in which actions are presented that can
occur immediately after choosing an action that has to occur. This analysis, however, is troubled by
the fact that the overall behaviour of the system is “contaminated” with internal actions that are
present in the specification. To overcome this problem, one can look at the action prefiz to make
an educated guess about which action leads to the desired observable action. Although in theory
this can be used to perform some thorough simulations, it is also a very cumbersome method to
use.

Another option that has subsequently been taken is by making use of test cases, in which
certain behaviour of the system is expressed, i.e. so called may test cases [11]. In contrast to must
test cases, in which the test case must specify behaviour which is always possible, may test cases
specify only behaviour which in some cases is possible. Test cases control the behaviour of the
specification into the direction expressed in the test cases. In this way (un)expected behaviour can
be checked. The construction of the test cases that have been used, was guided by the structure of
the state-transition diagram of Fig. 5. All test cases tested traces that started in the Initial state,
and specified different routes back to the Initial state again.

Although the execution of test cases usually leads to a more restricted dynamic behaviour, in
our case much of the behaviour was still blurred by the internal actions. Yet, many cases of faulty
behaviour were revealed using the test cases. Several rounds of improvement and re-testing were
necessary to mend the errors discovered at this stage. Note that in many cases, the translation
of the ideas expressed in the natural language to the formal LoToOs-descriptions was incorrect,
instead of the basic intuition behind these ideas.

By using the static analysers and the simulator SMILE from the tool-set LITE the confidence
in the correctness of the LOTOS specifications was increased. However, the possibilities for further
validation and analysis using tools from LITE are limited. This means that, in order to perform,
for instance, checks for absence of deadlock, or establish the relation expressed by equation (2.1)
formally, other tool-sets have to be used. The subsequent sections will go into more detail about
the additional analysis and validation.

3.2 Validation, Verification and Analysis using EUCALYPTUS

The tool-set EucALYPTUS [14, 13] is a collection of several tools for analysing and verifying LOTOS
descriptions. However, the tools that come with this tool-set all have a major drawback in that they
pose restrictions on the LOTOS grammar: not the full set of LOTOS operators is supported. The
positive side is that these restrictions allow for more powerful tools, such as checking for deadlock,
livelock, (bi)similarity and preorder relations. These problems are in general not computable for
the full grammar of LoTOS. The use of this tool-set on the complete LOTOS specification as it is,
however, is not possible due to this lack of support for the complete LOTOS grammar. In order
to use the tools, simplifications and abstractions have to be made: models have to be constructed
from the specifications. These models should then focus on some part of the vital behaviour of the

communication protocol. A second reason for developing models from the complete specifications is
complexity. Although, with the restrictions on the LOTOS grammar the above mentioned checking
problems are in principle computable, the size of the models, e.g. the number of system states,
may prevent their effective computation by EUCALYPTUS. Also for this reason simplifications and
abstractions are needed.

Although the use of models in the industry is fully accepted, various implications must be kept
in mind. A model is a simplification of a real system, and as such it is often impossible to fully
analyse a system. Also, the construction of a model can, on the one hand, introduce errors not
present in the original specification, while, on the other hand, it may hide errors that are present
in the original specification.

Models for the OM/RR protocol were developed from the formal specifications by abstraction
and simplification. These models, and not the complete formal specifications, were the subject
of verification with EUCALYPTUS. The justification for their development is given in Section 3.3,
while Section 3.4 gives a brief documentation of the results obtained in the validation, verification
and analysis of the models.

3.3 From Specifications to Models

The LOTOS constructs that are not supported by tools of the tool-set EUCALYPTUS are the follow-
ing: no process recursion is allowed on the left and right hand part of the parallel-operator | [..]1,
nor on the left hand part of the enable-operator >> and the disable operator [>. Furthermore, data
type definitions are restricted to define only finite and enumerable sorts, instead of possibly infinite
sorts. Most of these problems can be overcome by considering only a subset of the behaviour of
the specifications. Design requirements in the case of the OM/RR protocol that led to a LoTos
description using unsupported LOTOS constructs are the following:

— An unbounded number of concurrent associations should be supported.

— An unbounded number of messages can be in transit in the communicating state at any moment
in time.

— Each association can have infinitely many sessions, where a session is the period between and
including the successful establishment and release of an association.

In the LoTOS specification, each association is described as an independent entity, not affecting
(and aware of) the other associations. The unbounded number of associations is specified using pro-
cess recursion combined with an interleaving operator (see Equation 3.2). Process associations
represents the dynamic behaviour of all associations. Each particular association, specified by
process association, is identified by an element of the (possibly infinite) set AIdSet.

PROCESS associations[OM_SAP] (A : AIdSet) = (3.2)
CHOICE aa : AId [aa isin A] ->
(association[0M_SAP] (aa)
|1l associations [OM_SAP] (remove (aa,A)))

ENCPROC (* associations *)

The use of the interleaving operator means there is no synchronisation on service access
points between different associations, hence they are specified as being truly independent enti-
ties; therefore, it is fair to assume that considering only one association does not affect the valid-
ity of results for an unbounded number of associations. Thus, the model considers only process
association(aa) for some aa € AIdSet. The same reasoning holds for the number of messages
in the communicating state that can be in transit at any moment in time. In order to obtain some
of the effects of the message reordering that has to be allowed by the OM/RR protocol, only a
few messages need to be considered. Since a distinction has been made between user confirmed
and unconfirmed service elements, which represent classes of service elements with equal numbers
and types of service primitives, it is only fair to consider at least one message of each of these two

classes to represent all messages in transit. As far as the first two problem areas in the specifi-
cation are concerned a reasonable solution exists. The third point of attention, i.e. the infinitely
many sessions an association can have, is a more profound problem. The OM-service layer requires
that sessions cannot be distinguished from one-another, and it is up to the OM-protocol entities
and the RR-service layer to take care that this is actually the case. Yet, within an OM-protocol
entity, a distinction has to be made towards different sessions, in order to eliminate the influence
past sessions might have on a current session. Here, no real solution can be provided. Although
considering only one or two sessions does not satisfactorily abstract from the infinite number of
sessions, due to complexity reasons, no other options exist.

Concrete choices that have been made in writing down the dynamic behaviour of the models
are listed below.

Both the OM-service and the OM-protocol entities are restricted to one association only.
Both the OM-service and the OM-protocol entities support at most three communication
messages that can be in transit during the communicating state (see Fig. 5) at any point in
time.

— The OM-protocol entities are restricted to at most two sessions.

— For the RR-service, the number of messages that can be in transit is reduced to five.

Further simplifications that have been made concerned the data types, written as ACT-ONE
abstract data types in LOTOS. In general, the number of service elements was reduced by consid-
ering only the different classes of service elements instead of every single service element. The tool
CESAR.ADT was used to compile the abstract data types. In compiling the data types, an anomaly
in this tool was discovered. Instead of being able to enumerate the following (enumerable) sort
0SP:

SORTS OSP

OPNS enablereq (*! constructor *) : AID, ID -> OSP
enableind (*! constructor *) : AID, ID -> OSP
enableconf (*! constructor #*) : AID, ID, BOOL -> OSP

CAESAR.ADT reports a warning about a theoretical limitation stating that no enumeration of this
type definition can be made. This is against the intuition since in our case the sorts AID, ID and
BOOL are all enumerable and finite. Indeed, an enumeration of the sort 0SP does exist!

3.4 Verification and Analysis of the Models

The models that were obtained by applying the restrictions in Section 3.3 were analysed with
tools from the tool-set EUCALYPTUS, in particular, with C&SAR, CAESAR.ADT and ALDEBARAN.
CESAR.ADT compiles the data types into a processable form, C/ESAR generates a labelled transition
system (LTS) from a LoTOS model, which can then be analysed with ALDEBARAN. The goal was
in this case two-fold:

— show absence of deadlock in both the OM-service and in the decomposition consisting of the
OM-protocol entities and the RR-service;

— find a formal relation (if one exists!) between the OM-service and its decomposition consist-
ing of the OM-protocol entities and the RR-service, that is as strong as possible, i.e. verify
equation (2.1).

The model for the OM-service does not distinguish between different sessions, whereas the
model for the OM-protocol does. Essentially, the model for the OM-service describes an unbounded
number of sessions and the model for the OM-protocol describes a bounded number of sessions.
Hence, only a preorder relation between the two models can be expected.

The first activity was to validate the models against the original LOTOS specifications, using the
simulation tool XSIMULATOR, which is comparable to SMILE. Alongside, each time changes were

made to one of the models, absence of deadlock was checked. The final versions of the OM-service
model and the OM-protocol model — with, due to complexity reasons, the additional restriction of
considering only one session — could be proved to have absence of deadlock using ALDEBARAN. At
that point, simulations of the OM-service and the OM-protocol did no longer reveal any strange
behaviour. The restriction of the RR-service model to model five messages in transfer proved to
be minimal: allowing only four messages in transfer introduced a deadlock in the OM-protocol.

The second objective was achieved by showing that a safety preorder [9] exists between the
OM-service and the OM-protocol decomposition (again, due to complexity reasons, restricted to
only one session). This was proved using the tool ALDEBARAN. This also is the strongest relation
that can be shown to exist with ALDEBARAN between the OM-service and the OM-protocol, as
ALDEBARAN produced counter-examples for stronger relations. Basically, the safety preorder says
that the protocol shows only behaviour that is allowed by the service.

A few comments and statistics for the generation of the LTSs are in order. Basically, two
methods for generating an LTS from a LOTOS-source are possible: the compositional and the non-
compositional method. The non-compositional method is easiest to use, since it requires no insight
in the LoTos-source. However, the drawback may be that the LTSs generated this way are too
big to be calculated on most machines. The compositional method on the other hand, allows one
to generate LTSs of orthogonal parts of the LoTOs-source and combine these LTSs (or the LTSs
that have been reduced to their strong bisimulation normal form) in a later stage. This yields
smaller LTSs in usually less time. Decomposing the LoT0OS-source into these orthogonal parts,
however, can be very difficult and may not always be the most efficient way. In generating LTSs
for our models, we used both strategies. The results (obtained on a Linux based Intel Pentium
I1-300 Mhz, 64 Mb with 128 Mb swap) are listed in Table 2.

States|# Transitions|# 7-Transitions|Reduction
OM-service 420,611 (2,404,442 n.a. none
non-compositional|n.a. n.a. n.a. strong
OM-service 97,528 (492,714 150,948 none
compositional 52,538 |283, 512 80,720 strong
OM-protocol; n.a. n.a. n.a. none
non-compositional|n.a. n.a. n.a. strong
OM-protocol; 47,525 {209,190 25,238 none
compositional 5,180 21,272 14,942 strong
OM-protocols n.a. n.a. n.a. none
non-compositional|n.a. n.a. n.a. strong
OM-protocols n.a. n.a. n.a. none
compositional n.a. n.a. n.a. strong

Table 2. Statistics for the generation of the LTSs for the LOTOS-sources. The subscripts 1 and 2 indicate
the number of considered sessions.

In Table 2, n.a. stands for not available. This means that the results of these operations could
not be computed due to the limitations on either the hardware, or the available time to do the
calculation. For instance, the time spent on calculating the LTS for OM-protocols — the LTS for the
combination of RR-service and two OM-protocol entities with two sessions — using a compositional
method, was aborted after running for more than five days, since CESAR reported that still only
approximately 65% of the total state space was generated and this figure had been stable for four
days. An attempt was made to calculate the LTS for OM-protocoly on a more powerful machine,
however, no significant improvement over the Linux machine was noted.

To illustrate the gain in time that can be achieved using the compositional method over the
non-compositional method, consider that the results for the OM-service in a non-compositional

strategy took more than three hours, whereas the compositional strategy took less than 30 minutes
on the same machine.

3.5 Specifications and Models

During formalisation, verification and analysis of the OM/RR protocol we made a distinction
between a formal specification and a formal model. They turn out to be related, but different uses
of formal methods, which are both useful.

Specifications are meant to prescribe the behaviour of a system. They serve as the basis for
implementation, coding and testing. Consequently, specifications should be as complete as possible,
taking into account all possibilities of behaviour. On the other hand, models are meant to focus
on one particular aspect of a system while abstracting from other aspects.

Specifications also abstract from many details, but these details concern properties which are
not considered at all. For a given level of abstraction, or for a given family of properties under con-
sideration, specifications should be complete. Models, however, also abstract from properties which
are, in principle, under consideration. Consider, for instance, real-time properties of the OM/RR
protocol: they are not considered at all in our analysis and they appear neither in our specifications
nor in our models. On the other hand, in principle, we are interested in the behaviour of protocol
entities in the presence of 5 other protocol entities and communicating via 9 associations. This
behaviour is described in the formal specification, but for the models we made simplifications and
restricted them to one other protocol entity communicating via only one association.

A specification is often too complex and contains too much detail for checking of properties, e.g.
model checking. This is especially true if property checking is performed using a tool; state of the
art tools, like EUCALYPTUS, cannot deal with large and complex formal descriptions; restrictions
and simplifications are necessary. Hence, for checking of properties a formal model is developed.
A model is a simplification of the system in which a lot of detail has been removed and only
those aspects which are deemed important for the property at hand, are formally expressed. But,
because of this, a model cannot be used, e.g. as the basis for testing of implementations: since
some allowed behaviours may have been removed for simplification it cannot be decided for actions
executed by an implementation whether they are allowed or not.

Making models is an intricate process in which the right level of abstraction must be chosen
to achieve a good compromise between simplicity and completeness. As a consequence, verifying
a property for a model does not give certainty about the system: any verification is only as good
as the validity of the model on which it is based. Validity of the model is usually assumed or
informally, using hand waving arguments, reasoned upon.

For the OM/RR protocol we first developed complete specifications (with respect to the prop-
erties under consideration), see Section 2.3. These specifications were analysed using tools from
LITE. These tools have low functionality but do not impose restrictions on the formal specifi-
cations. Based on the specifications, simplifications were made such as restricting the number of
associations, sessions, protocol entities, different kinds of messages, etc., see Section 3.3. This led to
models which were amenable for the EUCALYPTUS tools. Properties were checked on these models
but no certainty is obtained that any checked property, e.g. deadlock freedom, also holds for the
complete specification. Only informal and hand waving arguments were given in Section 3.3.

When constructing specifications and models, different approaches are possible. On the one
hand, one can start by first constructing the complete specification and then try to validate this
specification. This validation may involve constructing models from the specification and verify
these against desired properties. Another possibility is to consider models of the vital behaviour
first and prove them correct by means of verification, and gradually extending these models to
become a specification. Finally, a mixture of both approaches can be used, by constructing models
and a specification hand in hand. The first approach is the one used in this project. Although very
suitable, it is felt that the third approach would have been more convenient in the end.

4 Conclusions

The results described in this paper deal with a case-study of an industrial mission critical system,
called the Operator Support System (OSS). Various inherently complex communication protocols,
part of the OSS, are potential hazards for the correct functioning of the OSS. Because of the
mission critical aspects of the OSS, CMG Den Haag B.V. decided to include formal methods in
the development of the OSS. This paper describes the formalisation, analysis and verification of one
of these protocols, the OM/RR protocol, using the Formal Description Technique (FDT) LoTOS.
The number of hours spent on this project roughly equals 9 man months. This time includes the
learning time of the FDT LoTos and familiarising with the OSS project and the tool-sets.

As we showed, the trajectory of formalising an informal document itself already reveals many
omissions, ambiguities and errors; as such, formalising informal documents is beneficial, even with-
out doing anything with the resulting formal specification. Due to the ambiguities and omissions,
the real functionality of the OM/RR protocol is shrouded in mist. This makes it hard to judge
the quality of the protocol itself. Since the OM/RR protocol serves as one of the backbones of the
0SS, it forms a severe risk for the reliability of the OSS.

Despite the severe omissions and ambiguities in the informal document we tried to develop a
formal specification of the OM/RR protocol. Some of the ambiguities could be eliminated by taking
the design requirements into account. However, the general lack of documentation concerning the
design requirements did not allow for such solutions in general. Instead, conversations with the
developers of the protocol served to find out about the assumptions and design requirements that
were made during the trajectory of writing the formal specifications. These conversations revealed
that the developers considered the dynamic behaviour to be trivial. As such, it had not been
included in official documents. Formalising the behaviour of the protocol, however, raised many
questions. This implies the dynamic behaviour cannot be considered trivial.

The conversations with the developers can be characterised as conversations not so much about
design and specification, as about implementation. Our level of abstraction of talking about the
protocol differed from the level of the developers. Our interest mainly focussed on the service
of the protocol, yet, the developers mainly focussed on how to overcome various problems when
implementing the protocol in real-life. Retrieving information and getting to the essence of the
matter proved harder than was expected.

Although some of the questions that were found in the trajectory of formalising the OM/RR
protocol have been answered, many questions remained open. As a result, the formal specification
of the OM/RR protocol can only be considered as a first attempt. There is no guarantee at all
that our formal description corresponds with the intentions of the developers. Consequently, the
greatest benefit that is obtained in this project is not in the formal specifications, but in the
number of questions that have been raised in the process of formalising, and that can be a basis
for a next version of the protocol. With respect to the OM/RR protocol, the conclusion of the
formalisation project is that the current document as it is [7], is not a good basis for implementing
the crucial OM/RR protocol; it must certainly be improved.

The FDT LoTos turned out not to be of great help in clarifying various questions posed to
the developers of [7]. The reason was that the LOTOS descriptions were not really understood by
them. An explanation for this can be found in the style that was used to specify the system, i.e. a
constraint-oriented specification style [22], and their inexperience with the FDT LoTos. This style
is very useful in specifying a system, however, reading a specification in this style puts an extra
burden on the reader, since it requires a reader to combine various constraints found throughout
the specification.

Another issue can be that a process algebraic approach might not be the most suited for use
in an industrial environment when confronted with people with no clear background in formal
methods. Case studies are required, in which various formal methods are used to tackle a problem,
in order to determine the most suited method (both in apprehension and application) for various
problems. It is expected that visual formal methods, e.g. SDL [17] or MSC [18], might be more
suited when explaining ambiguities and omissions to people with less experience in formal methods.

It can also be very beneficial to present the results of validations in a visual formalism. For instance,
the traces of LOTOS simulations could be presented as MSC. This was used successfully in the BOS
project (cf. SPIN [15] and [10]). Complete specifications in visually oriented languages, however,
are thought to be hampered by the same problem of complexity. An interesting exercise would be
to investigate the time it takes for people to read and fully understand various specifications in
various formalisms. While LOTOS was not easily understandable by the developers of the protocol,
the people doing the formalisation were reasonably satisfied. There are some anomalies in the
language, e.g. see Section 3.1, but as a whole LOTOS is useful.

Although a full-fledged specification is inevitable when designing protocols, a fully formal
specification of dynamic behaviour might not be most useful. On the one hand, writing a very
detailed formal specification is a very cumbersome task, taking a lot of time, and on the other hand,
vital parts of a specification are less likely to be recognised within a very detailed specification.
As such, formal models or partial formal specifications may be more suited.

The tool-sets used in our project, EUCALYPTUS and LITE, are useful for this kind of projects.
Confidence in a specification is only achieved by validation and verification. For any realisti-
cally sized formal description this cannot be done manually; tools are indispensable. The simu-
lator SMILE contained in LITE turned out to be useful, mainly in the initial phases of develop-
ment, for analysing specifications, but its usage was rather cumbersome and laborious. CESAR
and ALDEBARAN contained in EUCALYPTUS were mainly used for checking properties on mod-
els. EUCALYPTUS was found to have an omission concerning the abstract data types in the tool
CZESAR.ADT, see Section 3.3. Moreover, a thorough investigation concerning the efficiency of this
tool-set with respect to memory usage is needed. Memory overflow, caused by state-space explo-
sion, is one of the best known and most studied problems restricting industrial usage of this kind
of tools. It would be interesting to investigate the use of the compositional approach in order to be
able to give some general guidelines for optimal usage of this approach, and ultimately automate
this approach. Last but not least, feedback from tools is an important issue, e.g. a deadlock found
in a labelled transition system, is hard to locate in the corresponding LOTOS model. A tool helping
to bridge the gap between these two representations would have saved much time.

Acknowledgements

The first author would like to thank Jos Baeten of the Eindhoven University of Technology for
the supervision during this project. We thank the members of the SIG-MCS/FM group of CMG,
especially Michel Chaudron and Bart Botma for the numerous discussions on any topic and Jan
Friso Groote for proof-reading early versions of this paper. CMG Den Haag B.V. is thanked for
the pleasant working atmosphere and the financial support during this project.

References

1. ISO/IEC 10164. Systems Management. Geneva, 1990.

2. ISO/IEC 8807. Information Processing Systems, Open Systems Interconnection, LOTOS — A Formal
Description Technique Based on the Temporal Ordering of Observational Behaviour. Geneva, 1989.

3. ISO/IEC 8824. Information Processing Systems - Open Systems Interconnection, Specification of
Abstract Syntax Notation One (ASN.1). Geneva, March 1988.

4. ISO/IEC 9072. Remote Operations. Geneva, 1990.

5. ISO/IEC 9595. Common Management Information Service Definition. Geneva, 1991.

6. ISO/IEC 9596. Common Management Information Protocol Specification. Geneva, 1991.

7. Adviesdienst voor Verkeer en Vervoer. OM/RR and Association Management Specifications,
version 1.2, July 18th 1997.

8. T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language LoTOS. In Computer
Networks and ISDN Systems, volume 14, pages 25—59, 1987.

9. A. Bouajjani, J. C. Fernandez, S. Graf, C. Rodriguez, and J. Sifakis. Safety for Branching Time
Semantics. In 18th ICALP. Springer-Verlag, 1991.

10.

11.
12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

M. Chaudron, J. Tretmans, and K. Wijbrans. Lessons from the Application of Formal Methods to the
Design of a Storm Surge Barrier Control System. In J.M. Wing, J. Woodcock, and J. Davies, editors,
FM’99 — World Congress on Formal Methods in the Development of Computing Systems II, volume
1709 of Lecture Notes in Computer Science, pages 1511-1526. Springer-Verlag, 1999.

R. De Nicola. Extensional equivalences for transition systems. Acta Informatica, 24:211-237, 1987.
H. Eertink. Executing LOTOS specifications: The SMILE tool. In T. Bolognesi, J. van de Lagemaat,
and C. Vissers, editors, LOTOSphere: Software Development with LOTOS, pages 221-234. Kluwer
Academic Publishers, 1995.

H. Garavel. OPEN/CAESAR: An Open Software Architecture for Verification, Simulation, and Test-
ing. In B. Steffen, editor, Proceedings of the Fourth International Conference on Tools and Algorithms
for the Construction and Analysis of Systems TACAS’98, volume 1384 of Lecture Notes in Computer
Science, pages 68—84. Springer-Verlag, March 1998.

Hubert Garavel. An overview of the EUCALYPTUS toolbox. In Z. Brezocénik and T. Kapus, editors,
Proceedings of the COST 247 International Workshop on Applied Formal Methods in System Design
(Maribor, Slovenia), pages 76-88. University of Maribor, 1996.

G.J. Holzmann. The Model Checker SPIN. IEEE Transactions on Software Engineering, 23(5):279—
295, 1997.

ISO. Information Processing Systems, Open Systems Interconnection, Basic Reference Model. Inter-
national Standard IS-7498. ISO, Geneve, 1984.

ITU-T. ITU-T Recommendation Z.100: Specification and Description Language (SDL). ITU-T,
Geneva, 1992.

ITU-T. ITU-T Recommendation Z.120: Message Sequence Chart (MSC). ITU-T, Geneva, 1996.

D. Steedman. Abstract Syntaz Notation One (ASN.1) - The Tutorial and Reference.
Isleworth: Technology Appraisals, 1990.

J. Tretmans, K. Wijbrans, and M. Chaudron. Software Engineering with Formal Methods: The
Development of a Storm Surge Barrier Control System — Seven Myths of Formal Methods Revisited.
In S. Gnesi and D. Latella, editors, Fourth Int. ERCIM Workshop on Formal Methods for Industrial
Critical Systems (FMICS’99) — Proceedings of the FLoC Workshop, volume II, pages 225-237, Pisa,
Italy, July 11-12 1999. Servizio Tecnografico Area di Ricerca del CNR.

C. A. Visser and L. Logrippo. The Importance of the Service Concept in the Design of Data Com-
munications Protocols. In M. Diaz, editor, Protocol Specification, Testing, and Verification V, pages
3-17. Elsevier Science Publishers B.V. (North-Holland), 1986.

C.A. Vissers, G. Scollo, M. van Sinderen, and E. Brinksma. Specification styles in distributed systems
design and verification. Theoretical Computer Science, 89:179-206, 1991.

T.A.C. Willemse. The Specification and Validation of the OM/RR-Protocol. Master’s thesis, Eind-
hoven University of Technology, July 1998.

