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Abstract—Linearizability and progress properties are key cor-
rectness notions for concurrent objects. This paper presents novel
verification techniques for both property classes. The key of our
techniques is based on the branching bisimulation equivalence.
We first show that it suffices to check linearizability on the
quotient object program under branching bisimulation. This is
appealing, as it does not rely on linearization points. Further,
by exploiting divergence-sensitive branching bisimilarity, our
approach proves progress properties (e.g., lock-, wait-freedom) by
comparing the concurrent to-be-verified object program against
an abstract program consisting of atomic blocks. Our work
thus enables the usage of well-known proof techniques for
branching bisimulation to check the correctness of concurrent
objects. The potential of our approach is illustrated by verifying
linearizability and lock-freedom of 14 benchmark algorithms
from the literature. Our experiments confirm one known bug
and reveals one new bug.

Index Terms—concurrent data structure, verification, branch-
ing bisimulation, lock-free, linearizability

I. INTRODUCTION

a) Context: Concurrent data structures such as stacks,
queues, hash tables and so forth, are ubiquitous. They are part
of packages that come with many programming languages,
such as java.util.concurrent. Reasoning about scalable
concurrent data structures is inherently complex. Threads
executing concurrently may interleave yielding different and
potentially unexpected outcomes. Advanced synchronization
mechanisms such as non-blocking and fine-grained synchro-
nization – pivotal to ensure scalability – further complicate es-
tablishing correctness. Commonly accepted aspects of correct-
ness for concurrent data structures include linearizability [18]
and progress. In addition to Lamport’s notion of sequential
consistency [19], linearizability requires that the total ordering
which makes it sequentially consistent to respect the “real-
time” ordering among the operations in the execution. That
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is, if an operation e1 finishes execution before e2 begins, then
e1 must be ordered before e2. Linearizability is the key safety
property of non-blocking data structures, progress properties
such as lock-, wait-freedom [17] address liveness. Lock-free
data structures guarantee the progress of at least one thread
in each execution. Wait-free data structures ensure that any
thread can complete its operation in a finite number of steps.

b) This paper: Establishing linearizability and progress
properties of scalable concurrent data structures is a highly
challenging task. By exploiting the state equivalence relation
of object programs, this paper presents a novel and efficient
approach to automatically verify both linearizability and lock-
free property. The key to our approach is to exploit the branch-
ing bisimulation equivalence [32], an elementary equivalence
notion in concurrency theory to prove the correctness of an
implementation with respect to a (more abstract) specification.
We first reveal that the linear-time equivalence relation is too
coarse to capture the computation effect of a step for non-
blocking executions, and branching potentials play a vital role
to determine the object state equivalence. This phenomenon is
confirmed by the MS lock-free queue [25], a real data structure
used in java.util.concurrent. We exploit this by (only)
viewing method invocations and method returns as visible
actions, while considering all other actions to be internal (and
invisible). This finding lets us analyze and verify the complex
non-blocking algorithms readily, since a lot of inert steps that
have no influence on system evolution are abstracted away by
branching bisimilarity. The crux of our verification methods
is to establish (divergence-sensitive) branching bisimilarity
between concurrent data structure implementations and simple
abstract data structure descriptions.

c) Checking linearizability.: Before going into more de-
tail about our approach, let us briefly describe the state-of-
the-art for checking linearizability. Inspired by the original
linear-time notion of linearizability by Herlihy and Wing [18],
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Fig. 1. Verifying linearizability and progress using branching bisimulation.

most existing approaches for verifying linearizability are based
on establishing some form of refinement between an abstract
specification and a concrete object [3], [9], [20], [23]. These
approaches to checking linearizability suffer from two main
drawbacks: (1) a complex treatment of linearization points,
and (2) the lack of support for proving progress properties. For
overlapping method calls, linearizability requires to identify
distinct points in their execution intervals – the linearization
points (LPs) [17], [20] – such that the happens-before order
of concurrent method calls coincides with the order of their
LPs. Finding LPs is however complex (the definition is still
informal). Verifying non-blocking algorithms with non-fixed
LPs such as Heller et al.’s lazy set [16] is a hard problem.
Techniques exploiting potential LPs require dedicated mecha-
nisms, e.g., [20]. In addition, the refinement approach is not
suitable for progress properties; e.g., the refinement technique
of [23] of finite-state systems specified as concurrent processes
with shared variables, does not preserve progress properties.

d) Verification methods based on branching bisimilarity:
Whereas almost all approaches for checking linearizability
take a linear-time perspective, we propose to make a paradigm
shift, and use a branching-time relation instead. We show
that branching bisimulation precisely defines the state equiv-
alence for non-blocking object implementation, so it is a
natural equivalence relation between a single effective step
(e.g., an LP) and a sequence of internal transitions that have
the same effect. Based on branching bisimilarity, the paper
describes two techniques for verifying correctness properties
of concurrent data structures, with several advantages: (1) We
can use existing bisimulation checking tools (there are many)
to prove linearizability; (2) We can check linearizability on
branching bisimulation quotients, resulting in huge state space
reductions; (3) Our approach not only does not rely on prior
identification of LPs, but can readily analyze the intricate in-
terleavings (based on the internal steps in the quotient system);
(4) We can automatically verify lock-freedom in the same
framework, using divergence-sensitive branching bisimulation.

Our approaches are summarized in Fig. 1.
To test the efficiency and effectiveness of our approaches,

we have conducted a series of experiments on 14 modern
highly-optimized concurrent data structures, using the existing
proof toolbox CADP [11], originally developed for concurrent
systems. A new bug violating lock-freedom was found and

a known bug on linearizability was confirmed. Details about
verification times, state space sizes are provided in Section
6. To the best of our knowledge, this is the first work which
exploits bisimulation techniques to verify linearizability and
progress properties on complex concurrent objects and applies
state-of-the-art model-checking techniques on such objects.

e) Organization of this paper: Section II briefly reviews
abstract and concrete object systems, linearizable specifica-
tions, and trace refinements. Section III gives a detailed
analysis of the MS lock-free queue and defines state equiv-
alence. Section IV shows the coincidence between max-trace
equivalence and branching bisimulation. Section V presents
our approaches towards checking linearizability and progress
properties. Section VI presents the experiments on the various
benchmarks. Section VII analyzes weak bisimulation. Section
VIII discusses related work. Section IX concludes.

II. PRELIMINARIES

A. Abstract and concrete objects
A shared object can be a simple variable, or more advanced

data structures like stack, linked list etc. There are two kinds of
descriptions for concurrent objects: abstract and concrete. Ab-
stract objects can be regarded as a coarse-grained concurrent
implementation, where each method body of object methods is
described by one or more atomic blocks. Concrete objects are
implemented by using synchronization primitives to refine an
atomic operation of abstract objects. Fig. 2 shows the primitive
CAS (Compare and Swap) that is widely used in non-blocking
objects: it compares the value of a memory address addr with
the expected value exp and, if they are the same, updates addr
with new and returns true, otherwise returns false.

Bool CAS(Int& addr, Int exp, Int new) {

Bool b; Int v;

atomic{ v:=*addr;

if (v != exp) {b:=false;}

else {*addr:=new; b:=true;}

}

return b;

}

Fig. 2. The primitive Compare and Swap (CAS).

As an example of abstract and concrete objects, let’s con-
sider a register with a unique method NewCompareAndSet

(NewCAS) that reads and modifies the register. The abstract
implementation of NewCompareAndSet is given in Fig. 3.



Instead of a boolean value indicating whether it succeeds,
the method returns the register’s prior value. A concrete non-
blocking implementation based on CAS is shown in Fig. 4,
where the method body takes several internal steps to realize
a single atomic step of Fig. 3.

Int NewCompareAndSet(Int& r, Int exp, Int new){

Int prior;

atomic{ prior:=r.get();

if (prior == exp) *r:=new; }

return prior;

}

Fig. 3. The abstract register method NewCompareAndSet.

Int NewCompareAndSet(Int& r, Int exp, Int new){

Int prior; Bool b:=false;

while(b == false) {

prior:=r.get();

if(prior != exp) return prior;

else b:=CAS(r, exp, new);

}

return exp;

}

Fig. 4. A concrete implementation of NewCompareAndSet.

B. Object systems
The behaviors of a concurrent object can be adequately

presented as a labeled transition system. For object methods,
we assume there is a programming language equipped with an
operational semantics to describe concurrent algorithms and
generate the transition system. When analysing and verifying
the correctness of a concurrent object, e.g., linearizability [18]
and sequential consistency [19], we are only interested in the
interactions (i.e., call and return) between the object and its
clients, while the internal instructions of the object method are
considered invisible, denoted by the silence action ⌧ . Visible
actions of an object program have the following two forms:

(t, call,m(n)), (t, ret(n0),m)

where t is a thread identifier and m is a method name,
action (t, call,m(n)) is a call action invoking method m by
thread t with parameter n, and (t, ret(n0),m) is a return action
of method m by t associated with the return value n

0. To
generate an object’s behaviour, we use the most general clients
[12], [23], which only repeatedly invoke object’s methods in
any order and with all possible parameters. We will use the
term “object systems” to refer to either the labeled transition
systems or the program texts.

Definition 2.1: A labeled transition system (LTS) � for a
concurrent object is a quadruple (S,��!,A, s0) where
• S is the set of states,
• A = {(t, call,m(n)), (t, ret(n0),m), (t, ⌧) | t 2 {1 . . . k},

where k is the number of threads} is the set of actions,
• �! ✓ S ⇥A⇥ S is the transition relation,
• s0 2 S is the initial state. ut

We write s
a�! s

0 to abbreviate (s, a, s0) 2�!, and s
⌧�! s

0 to
mean s

(t,⌧)���! s
0 for some thread t.

A path starting at a state s of an object system is a finite
or infinite sequence s

a1��! s1
a2��! s2

a3��! · · · . An execution

is a path starting from the initial state, which represents an
entire computation of the object system. A trace of state s is
a sequence of visible actions obtained from a path of s by
omitting states and invisible actions. A history is a finite trace
starting from the initial state, which models the interactions
of a client program with an object.

C. Linearizable specification
Given an object system �, we define its corresponding lin-

earizable specification [20], [23], denoted by ⇥sp, by turning
the body of each method in � into a single atomic block. A
method execution in a linearizable specification ⇥sp includes
three atomic steps: the call action (t, call,m(n)), the internal
action ⌧ (atomic block), and the return action (t, ret(n0),m).
The internal action corresponds to the computation based on
the sequential specification of the object. For example, Fig. 3
is a linearizable specification for the implementation of Fig. 4.

D. Trace refinement

Linearizability [18] is a basic safety criterion for concurrent
objects, which is defined on histories. Checking linearizability
amounts to verifying the trace refinement [9], [20], [23]. Trace
refinement is a subset relationship between traces of two
object systems, a concrete implementation and the linearizable
specification. Let trace(�) denote the set of all traces in �.

Definition 2.2 (Refinement): Let �1 and �2 be two object
systems. �1 refines �2, written as �1 vtr �2, if and only if
trace(�1) ✓ trace(�2). ut

The following theorem shows that trace refinement exactly
captures linearizability. A proof of the result is given in [23].

Theorem 2.3: Let � be an object system and ⇥sp the
corresponding linearizable specification. All histories of � are
linearizable if and only if � vtr ⇥sp. ut

III. CHARACTERIZING STATE EQUIVALENCE BY
MAX-TRACE EQUIVALENCE

The key to effective algorithm analysis and verification is
to understand when two states are semantically equivalent.
Since trace refinement, which is defined using traces, exactly
captures linearizability, it is tempting to say that two states of
an object system are equivalent if they have the same set of
traces. We take Michael-Scott lock-free queue [25] that is used
in java.util.concurrent, as a real example, to show that
an internal ⌧ -step that takes effect for concurrent method calls,
cannot be perceived by means of the linear-time equivalence,
but by a branching-time equivalence.

A. State equivalence of MS lock-free queue

The concrete algorithm of the queue is shown in Fig. 5. The
queue’s representation is a linked list, where Head points to
the first node (a sentinel), and Tail points to the last or the
penultimate last node. The sentinel node marks a position in
the queue, which is never added or removed. The usual way
to prove the linearizability of concurrent object is to identify
for each method a linearization point (LP) where the method
takes effect [17]. For the MS queue, the successful CAS at



Line 8 and Line 28 are LPs for the successful enqueue and
dequeue, and Line 20 is the LP for the empty queue case, but
it is non-fixed, which depends on the future executions (c.f.
[20]). The intuition is that, if we read null from h.next at
Line 20, but interleavings with other threads before Line

21 yield a change of Head such that the condition on Head

at Line 21 fails, then the method has to restart the loop, and
the Line 20 may not be the LP in the new iteration.

01enq(v) {

02 local x,t,s,b;

03 x:=new_node(v);

04 while(true) {

05 t:=Tail; s:=t.next;

06 if (t=Tail) {

07 if (s=null) {

08 b:=cas(&(t.next),s,x);

09 if (b) {

10 cas(&Tail,t,x);

11 return true; }

12 }else cas(&Tail,t,s);

13 }

14 }

15}

16deq() {

17 local h,t,s,v,b;

18 while(true) {

19 h:=Head; t:=Tail;

20 s:=h.next;

21 if (h=Head)

22 if (h=t) {

23 if (s=null)

24 return EMPTY;

25 cas(&Tail,t,s);

26 }else {

27 v :=s.val;

28 b:=cas(&Head,h,s);

29 if(b) return v;}

30 }

31}

Fig. 5. MS lock-free queue: enqueue and dequeue

The intricate interleavings between Lines 20,21 make
trace equivalence no longer adequate to recognize the effect
of an essential internal step. This phenomenon is validated by
the following instance. Consider an object system involving 2
threads and each invokes the methods enqueue and dequeue
for 5 times. A part of the transition graph generated from
the system is depicted in Fig. 6, where s0 is the initial state,
and the invocation events of Enq and Deq (i.e., statements at
Lines 1,16) of a thread t are denoted by (t.call.Enq(v))
and (t.call.Deq), respectively. All internal computation steps
of a method are regarded as invisible, that is, the ⌧ -transitions.
For the sake of readability, each transition is also marked with
the corresponding line number (e.g., L20) in the program text.
The states marked with � have some additional transitions that
are irrelevant to the discussion below and hence omitted.

The interleaved executions of threads t1 and t2 from s0

to s1 are briefly described as follows: the execution trace is
given in the right hand side of Fig. 6, where t2 has invoked
methods Enq and Deq five times and t1 twice. In the last
invocation (t2.call.Deq) of t2, the queue state is empty, and
t2 first reads Tail and Head at Line 19, then t1 starts to
invoke Enq(10) and completes it sequentially to reach state
s. At state s, t2 executes Line 20 and then t1 starts a new
invocation (t1.call.Deq), but has not taken effect. Thus at
state s1, the queue contains item 10, and ⌧ -transitions of t1

and t2 at state s1 are s1
⌧��! s3 labeled with t1.L28(true),

and s1
⌧��! s2 labeled with t2.L21(true). The remaining call

actions after s1 are (t1.call.Enq(20)), (t1.call.Enq(30))
and (t1.call.Deq) by t1. The subtle interleavings let t2

response different return values in its last invocation. The left
hand side of Fig. 6 shows the subsequent executions of s1

(some intermediate steps are denoted by ellipsis), where
• at s2, it is easy to see t2 always returns t2.RET(EMPTY).
• in s1 ==) s5, since step s1

t1.L28����! s3 changes the queue
state to empty, the later check by t2 at Line 21 fails and

t2 restarts a new iteration. So after s5, t2 always returns
t2.RET(EMPTY), regardless of the invocations of t1.

• in s3 ==) q1, t1 dequeues 10 and enqueues 20 in order.
So the later check by t2 at Line 21 fails and t2 restarts.
In the new iteration, t2 returns t2.RET(20).

• in s4 ==) r1, since before s4, t2 has restarted a new itera-
tion and executed Line 20, after completing Enq(20) by
t1, t2 checks Lines 21,22,23 successfully. Therefore,
t2 returns t2.RET(EMPTY).

• in s4 ==) r2, t1 completes Enq(20) and Enq(30) and Deq

in order. Since t1 dequeues 20 successfully, t2 restart the
iteration and return t2.RET(30).

We use T
1(s) to denote the trace set of s. From the above

executions, it is not difficult to see that T 1(s1) = T
1(s3). First,

all the traces of s3 are the traces of s1. Obviously s2 and s5

have the same traces, so the trace of s1 is also the trace of
s3. Thus, s1 and s3 are trace equivalent. However, the step
s1

t1.L28����! s3 is an LP that takes effect to change the queue
state (i.e., the value of Head). Therefore, trace equivalence is
not a precise notion to capture the computation effect of the
fine-grained executions.

The effect of s1 ��! s3 is essentially captured by the branch-
ing potentials, i.e., the traces of s3, s4 and s5. For the paths
s1 ��! s2 and s3 ��! s4 ��! s5, we have T

1(s1) = T
1(s3)

and T
1(s2) = T

1(s5), but T 1(s3) 6= T
1(s4) 6= T

1(s5). So the
traces of intermediate state s4 on s3 ��! s4 ��! s5 is over-
looked by the path s1 ��! s2. Such a branching potential is
not taken into account in trace equivalence, but is vital to the
computation effect in object systems.

B. K-trace sets

From the above discussions, in order to arrive at an adequate
notion of state equivalence, we need to consider not only the
traces of s1 and s3, but also the traces of the intermediate
states which lie on their paths. Thus such a notion naturally
involves a hierarchy of equivalence relations, each constructed
on top of the hierarchies below it. This motivates the following
definition that coincides with the k-trace set in [32], where
N1 = N [ {1} and N is the set of natural numbers.

Definition 3.1: For each k 2 N1 and each state s, let T k(s)
denote the k-trace set of s. The notions of k-traces and k-trace
sets are defined inductively as follows:

1) T
k(s) is the set of all k0-traces of s, for k0 < k.

2) A k-trace of a state s0 is obtained from a sequence
(T k(s0), a1, T

k(s1), a2, · · · , an, T
k(sn)), such that

s0
a1��! s1

a2��! · · · an��! sn is a path, by replac-
ing all subsequences (T k(si), ai+1, T

k(si+1), ai+2, · · · ,
ai+j+1, T

k(si+j+1)) such that ai+1 = ai+2 = · · · =
ai+j+1 = ⌧ and T

k(si) = T
k(si+1) = · · · =

T
k(si+j+1) with T

k(si).
Two states r and s are k-trace equivalent, written r ⌘k s, if
T

k(r) = T
k(s); They are max-trace equivalent, written r ⌘ s,

if r ⌘k s for all k. ut
It is straightforward to see that ⌘k and ⌘ are equivalence

relations. By definition, T 0(s) = ; for every state s, and T
1(s)
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Fig. 6. A part of the transition system of MS lock-free queue: the intricate interleavings in method Deq.

is simply the set of ordinary traces of s. Also if k
0
< k then

T
k0
(s) ✓ T

k(s). Note that r ⌘k s implies r ⌘k0 s for any
k
0
< k. From this it follows that, for any object system, there

exists a k such that r ⌘k s iff r ⌘k+1 s. The smallest such a
k is called the cap of the system.

In an object system, if two states are max-trace equivalent,
then they have not only the same ordinary traces (1-traces),
but also the same higher traces (k-traces with k > 1). Higher
traces capture the branching potentials of the states that are
passed through in lower traces. This means, as far as visible
actions are concerned, there is no way to distinguish the two
states in the object system.

Definition 3.2: In an object system, states s and r are
equivalent if and only if s ⌘ r. ut

Theorem 3.3: Let �1 and �2 be two object systems such
that �1 vtr �2. If s 6⌘ r in �1, then s 6⌘ r in �2. ut

Example 1: We show that s1 and s3 in Fig. 6 are not state
equivalent according to Definition 3.2. The 2-trace sets of s1

and s3 are as follows:
T 2(s1) = {(T 1(s1), ⌧, T 1(s2), · · · ), (T 1(s1), ⌧, T 1(s3), · · · ), · · · }
T 2(s3) = {(T 1(s3), ⌧, T 1(s4), ⌧, T 1(s5), · · · ), · · · }

Since T 1(s4) 6= T
1(s3) 6= T

1(s5) and T
1(s2) = T

1(s5) and
T

1(s1) = T
1(s3), it follows T

2(s1) 6✓ T
2(s3). So s1 6⌘2 s3.

C. K-trace equivalence of various algorithms
K-trace equivalence not only captures the state equivalence,

but also provides a guide to know about the intricacy of non-
blocking algorithms. It is normal that in concurrent programs
states are not 1-trace equivalent. But systems have states that
are 1-trace equivalent but k-trace inequivalent (k > 1) imply
more intricate executions, like Fig. 6.

We have implemented a tool1 to check k-trace equivalence

1http://lcs.ios.ac.cn/⇠xxyang/tools/ktrace-checking.pdf

between states in a finite system for a given k. The k-trace
equivalence of various concurrent algorithms are shown in
Table I, where (⌘1 and 6⌘2) in the third column means that
there exists ⌧ -transition s

⌧��! r in the system such that s ⌘1 r

and s 6⌘2 r, and 6⌘1 in the fourth column means that there
exists ⌧ -transition s

⌧��! r such that s 6⌘1 r.
These results indicate that the simple algorithms like Treiber

stack and NewCAS, which have fixed LPs, only generate 1-trace
inequivalence, but the complicated algorithms (with non-fixed
LPs [20]) often involve the “higher” trace inequivalence.

TABLE I
K-TRACE EQUIVALENCE IN VARIOUS CONCURRENT ALGORITHMS.

Object Non-fixed LPs ⌘1 and 6⌘2 6⌘1

HW queue [18] X X X
MS queue [25] X X X

DGLM queue [7] X X X
Treiber stack [28] X

NewCompareAndSet X
CCAS [29] X X X

RDCSS [15] X X X

IV. BRANCHING BISIMULATION FOR CONCURRENT
OBJECTS

In concurrency theory, there are various equivalence rela-
tions to represent a branching-time equivalence. Branching
bisimulation [32] refines Milner’s weak bisimulation [34] by
requiring two related states should preserve not only their own
branching structure but also the branching potentials of all
(invisibly reached) intermediate states that are passed through.
It turns out that branching bisimulation exactly captures max-
trace equivalence [32], in the sense that two state are branch-
ing bisimilar if and only if they are max-trace equivalent.

Let ==) denote a sequence of zero or more ⌧ -steps. Branch-
ing bisimulation for concurrent objects is given as follows.



Definition 4.1: Let � = (S,��!,A, s0) be an object system.
A symmetric relation R on S is a branching bisimulation if
for all (s1, s2) 2 R, the following holds:

1) if s1
a��! s

0
1 where a is a visible action, then there exists

s
0
2 such that s2

a��! s
0
2 and (s01, s

0
2) 2 R.

2) if s1
⌧��! s

0
1, then either (s01, s2) 2 R, or there exist l

and s
0
2 such that s2 ==) l

⌧��! s
0
2 and (s1, l) 2 R and

(s01, s
0
2) 2 R. ut

Let ⇡def
=

S
{R | R is a branching bisimulation}. Then ⇡ is

the largest branching bisimulation and an equivalence relation.
States s1 and s2 are branching bisimilar, if s1 ⇡ s2. Two
systems are branching bisimilar, if and only if their initial
states are branching bisimilar.

In the second clause of the above definition, for s2 ==) l we
only require (s1, l) 2 R, without mentioning the states that are
visited in s2 ==) l. The following Lemma, quoted from [32]
guarantees the stuttering property of these intermediate states.

Lemma 4.2: If r ⌧��! r1
⌧��! · · · ⌧��! rm

⌧��! r
0 is a path such

that r ⇡ s and r
0 ⇡ s, then ri ⇡ s for all i, 1  i  m. ut

Thus, the second clause in Definition 4.1 can be alternatively
given as:

2. if s1
⌧��! s

0
1, then either (s01, s2) 2 R, or there ex-

ist l1, · · · , li, i � 0, and s
0
2 such that s2

⌧��! l1
⌧��! · · · ⌧��! li

⌧��! s
0
2 and (s1, l1) 2 R, · · · , (s1, li) 2 R,

(s01, s
0
2) 2 R.

A discussion on weak bisimulation is given in Section VII.
Theorem 4.3: For any states s and r in an object system,

s ⌘ r if and only if s ⇡ r. ut
It has been shown that max-trace equivalence (⌘) is an

adequate notion to capture state equivalence and recognize
the essential computation step that takes effect on method
calls. However computing max-trace equivalence for a large
system is hard. Its equivalent characterization – branching
bisimulation (⇡) – provides us an efficient way to verify
and analyze object systems. For finite-state systems, branch-
ing bisimulation equivalence can be checked in polynomial
time: the algorithm proposed in [13] has time complexity
O(|A|+ |S|⇥ | ! |). This result has been recently improved
to O(|!|⇥ log|A|+ log|S|) in [14].

V. VERIFYING LINEARIZABILITY AND LOCK-FREEDOM
VIA BRANCHING BISIMULATION

In this section, we develop verification methods for proving
linearizability and progress properties (e.g., lock-freedom) of
concurrent objects based on the (divergence-sensitive) branch-
ing bisimulation. In practice, the proposed methods are effi-
cient and convenient for automatically verifying linearizability
and lock-free property of finite-state object systems.

A. Verifying linearizability
Given an object system � = (S,��!,A, s0), for any s 2 S,

let [s]⇡ be the equivalence class of s under ⇡, and S/⇡=
{[s]⇡|s2S} the set of equivalence classes under ⇡.

Definition 5.1 (Quotient transition system): For an object
system � = (S,��!,A, s0), the quotient transition system

�/⇡ is defined as: �/⇡ = (S/⇡,��!⇡,A, [s0]⇡), where the
transition relation ��!⇡ satisfies the following rules:

(1) s
↵��! s0

[s]⇡
↵��!⇡ [s0]⇡

(↵ 6= ⌧) (2) s
⌧��! s0

[s]⇡
⌧��!⇡ [s0]⇡

((s, s0) 62⇡)

Theorem 5.2: �/⇡ preserves linearizability. That is, � is
linearizable if and only if �/⇡ is linearizable.
Proof: Let ⇥sp be the corresponding specification of �.
Then it is also the corresponding specification of �/⇡.
From Definition 4.1, it is easy to see that trace(�) =
trace(�/⇡). Thus, we have trace(�) ✓ trace(⇥sp) iff
trace(�/⇡) ✓ trace(⇥sp). By Definition 2.2, � vtr ⇥sp iff
�/⇡ vtr ⇥sp. Further, by Theorem 2.3, it follows that � is
linearizable w.r.t. ⇥sp iff �/⇡ is linearizable w.r.t. ⇥sp. ut

Theorem 5.3: An object system � with the corresponding
specification ⇥sp is linearizable if and only if �/⇡ vtr

⇥sp/⇡. ut
It is well-known that deciding trace inclusion is PSPACE-

complete, and non-blocking synchronization usually generates
a large number of interleavings. Hence verifying linearizability
in an automated manner by directly resorting to Theorem 2.3
is infeasible in practice. However, the branching bisimulation
quotient is usually much smaller than the object system since it
only involves a few steps that are responsible for taking effect
for the system. Further, branching bisimulation quotients can
be computed efficiently. Thus Theorem 5.3 provides us with
a practical solution to the linearizability verification problem:

Given an object system � and a specification ⇥sp,
first compute their branching bisimulation quotients
�/⇡ and ⇥sp/⇡, then check �/⇡ vtr ⇥sp/⇡.

In practice, this approach results in huge reductions of state
spaces. Our experimental results also validate the advantage
(c.f. Section VI). Another merit of this method is that verifying
linearizability does not rely on prior identifying LPs.

B. Verifying lock-freedom

We exploit divergence-sensitive branching bisimulation be-
tween a concrete and an abstract object to verify progress
properties of concurrent objects. The main result that we will
establish is that for divergence-sensitive branching bisimilar
abstract and concrete object programs, it suffices to check
progress properties on the abstract object program.

Lock-freedom and wait-freedom are the most commonly
used progress properties in non-blocking concurrency. Infor-
mally, an object implementation is wait-free if it guarantees
that every thread can finish its started execution in a finite
number of steps, while an object implementation is lock-free
if it guarantees that some thread will complete its execution in
a finite number of steps [22]. Their formal definitions specified
using next-free LTL are given in [8], [26]. To obtain wait-free
object systems, we need to enforce some fairness assumption
on object systems to guarantee the fair scheduling of processes.
The most common fairness properties (e.g., strong and weak
fairness) can all be expressed in next-free LTL. In this section,
we focus on the verification method of the lock-free property.



A lock-free object program implies that the entire system
always makes progress without infinite ⌧ -paths. An infinite ⌧ -
path that does not perform any return action is called divergent.
To distinguish infinite sequences of internal transitions from
finite ones, we treat divergence-sensitive branching bisimu-
lation [1], [35]. Similar definitions are also called branching
bisimulation with explicit divergence (e.g., [32]).

Definition 5.4 ( [1]): Let � = (S,��!,A, s0) be an object
system and R an equivalence relation on S.

• A state s 2 S is R-divergent if there exists an infinite path
s

a1��! s1
a2��! · · · such that (s, sj) 2 R for all j > 0.

• R is divergence-sensitive if for all (s1, s2) 2 R: s1 is
divergent iff s2 is divergent. ut

Definition 5.5: States s1 and s2 in object system � are
divergent-sensitive branching bisimilar, denoted s1 ⇡div s2, if
there exists a divergence-sensitive branching bisimulation R
on � such that (s1, s2) 2 R. ut

This notion is lifted to object systems in the standard
manner, i.e., object systems �1 and �2 are divergent-sensitive
branching bisimilar whenever their initial states are related by
⇡div in the disjoint union of �1 and �2.

Lemma 5.6: For an infinite ⌧ -path ⇢ = s1
⌧��! s2

⌧��! · · ·
⌧��! sn

⌧��! s1, we have si ⇡ sj for any states si and sj on ⇢.
Proof: We prove si ⇡ si+1 for (1  i < n) on ⇢ by showing
si ⌘ si+1, i.e., for 8k, si ⌘k si+1. The proof proceeds by
induction on k. The base case of k = 1 is straightforward.
Now suppose si ⌘k si+1 for (1  i < n). We prove that si

and si+1 are (k + 1)-trace equivalent. Since si
⌧��! si+1, it

follows that any k-trace of si+1 is a k-trace of si. Therefore,
T

k+1(si+1) ✓ T
k+1(si). Since ⇢ is a ⌧ -loop, where si+1 can

reach si with only ⌧ -steps and si ⌘k si+1 for (1  i < n),
we have any k-trace of si is also a k-trace of si+1, that is,
T

k+1(si) ✓ T
k+1(si+1). Hence si ⌘ si+1. By Theorem 4.3,

si ⇡ si+1. ut
Lemma 5.7: Let � be a finite-state system. There is no

infinite ⌧ -path in the quotient �/⇡. ut
Divergence-sensitive branching bisimulation implies (next-

free) LTL and CTL⇤-equivalence [1]. This also holds for
countably infinite transition systems that are finitely branching.
Thus, O ⇡div ⇥ implies the preservation of all next-free
LTL and CTL⇤-formulas. Since the lock-freedom (and other
progress properties [8]) can be formulated in next-free LTL,
for abstract object ⇥ and concrete object O, it can be preserved
by the relation O ⇡div ⇥.

Theorem 5.8: For the abstract object ⇥ and concrete object
O, if O ⇡div ⇥, then ⇥ is lock-free iff O is lock-free. ut

For a concrete object, its abstract object is a coarser-grained
concurrent implementation. The simplest abstract object pro-
gram is the concurrent specification specified by one atomic
block. For the complicated algorithms such as listed in Table
I, the abstract program often needs more than one atomic
block. The advantage of this method is that, if an appropriate
abstract program for a concrete algorithm can be provided,
one can verify the progress on the abstract program, which
has a simpler program structure than the concrete algorithm.

However, constructing abstract programs is a manual pro-
cess. We give another method, which is based on the quotient,
to automatically check the lock-freedom of finite systems.

Theorem 5.9: Let � be a finite-state object system. If
� ⇡div (�/⇡), then � is lock-free iff (�/⇡) is lock-free.

ut
Theorem 5.9 can automatically check divergence. For the

finite-state system, if � 6⇡div (�/⇡), then by Lemma 5.7, the
original system � must have a ⌧ -loop, which is a violation of
the lock-freedom. For the smaller quotient systems, off-the-
shelf model checking tools can be readily applied to check
properties such as lock-freedom. Particularly, the single atomic
block in the specification ⇥sp corresponds to the computation
of the sequential specification, which is always assumed to be
terminating. It is easy to see that ⇥sp is lock-free. Hence, if
(�/⇡) and ⇥sp are trace equivalent, then (�/⇡) is lock-free.

VI. EXPERIMENTS

A. Overview
To illustrate the effectiveness and efficiency of our meth-

ods based on branching bisimulation, we have conducted
experiments on 14 well-known concurrent data structures
using the Construction and Analysis of Distributed Processes
(CADP) [11] toolbox 2, including 3 lock-free queues, 4
lists (1 lock-free, 3 lock-based), 4 (lock-free) stacks and
3 extended CAS operations, some of which are used in
the java.util.concurrent package (e.g., Michael-Scott
lock-free queue [25], Harris-Michael lock-free list [17]). The
experimental results are summarized in Table II. We found the
new bug violating lock-free property in the revised version
of the Treiber stack in [10] and validated a known bug of
HM lock-free list in [17]. To our knowledge, this is the first
work which provides a novel and convenient way to check
the linearizability and lock-freedom of concurrent objects and
applies branching bisimulation techniques on such objects.
One important benefit here is the fully automated verification
procedure to check the correctness of a concrete object. All
experiments run on a server with a 4⇥12-core AMD CPU @
2.1 GHz and 192 GB memory under 64-bit Debian 7.6.

TABLE II
VERIFIED ALGORITHMS USING BRANCHING BISIMULATION.

Non-blocking concurrent data structures

Case study Linearizability
& Lock-freedom Non-fixed LPs div.branch.bisim./

trace refine.
1. Treiber stack [28] X X
2. Treiber stack+ HP [24] X X
3. Treiber stack+ HP [10] ⇥⇥⇥ Lock-freedom ⇥⇥⇥
4. MS lock-free queue [25] X X X
5. DGLM queue [7] X X X
6. CCAS [29] X X X
7. RDCSS [15] X X X
8. NewCompareAndSet X X
9-1. HM lock-free list [17] ⇥⇥⇥ Linearizability X ⇥⇥⇥
9-2. HM lock-free list (revised) X X X
10. HW queue [18] ⇥⇥⇥ Lock-freedom X ⇥⇥⇥
11. HSY stack [37] X X X

Fine-grained concurrent lists

Case study Linearizability Non-fixed LPs branch.bisim./
trace refine.

12. Heller et al. lazy list [16] X X X
13. Optimistic list [17] X X
14. Fine-grained syn. list [17] X X

2http://cadp.inria.fr/



B. Experimental Setup

To start off, we modeled all concurrent data structures using
the LNT modeling language3, which allows for modeling the
object behavior as a set of threads governed by interleaving
semantics. CADP provides automated support for generating
transition systems of LNT models, obtaining their branching
bisimulation quotients, and the verification of temporal logic
formulas. When CADP reveals that two transition systems
are incomparable (w.r.t. trace refinement or bisimulation), it
provides a counterexample. These counterexamples turned out
to be very helpful in diagnosing the reason of violation. As
the analysis is restricted to finite transition systems, we can
bound the state space by either: (1) bounding the size of the
object (e.g., the size of the stack), or by (2) restricting the
number of operations a thread can perform. In the former case,
threads can perform operations such as pop and push infinitely
many times. We take the latter approach since the original
algorithms typically do not handle the case of bounded stacks
or queues, and imposing such bounds would require amend-
ments of original algorithms for treating overflow situations.
Based on these verified models, we conducted the performance
analysis of concurrent data structures [40], where a description
of the CADP toolsets and the LNT language is given.

C. Verification Results

The experimental results of 14 concurrent objects are sum-
marized in Table II. We discuss the results as follows.

• To verify linearizability, we apply our first approach in
Figure 1 (a) (cf. Theorem 5.3) and successfully verify
14 concurrent data structures. In contrast to [3], [20],
[36], which rely on linearization points and give different
mechanism treating different types of linearization points,
our method does not need linearization points, and can
support automatic verification.

• To verify progress, our second approach in Figure 1 (b)
(cf. Theorems 5.8, 5.9) is applied, and successfully verify
11 algorithms to be lock-free. There are two ways. One
way is to manually construct abstract programs and verify
their lock-freedom by Theorem 5.8. We construct the
abstract programs for MS queue, DGLM queue, CCAS
and RDCSS. For static linearization points, the abstract
program coincides with the specification. The second way
is using the quotient as the abstract system, and auto-
matically verify lock-free property of finite-state systems
by Theorem 5.9. Compared to [21], their method proves
the lock-free property for 3 non-blocking algorithms, i.e.,
Treiber stack, MS queue and DGLM queue. They do not
discuss more complex algorithms like CCAS, RDCSS
and the stacks with Hazard Pointers (HP) [10], [24] as
our work.

• Our method is fully-automated for finite systems. Auto-
matic verification allows to find bugs easily if an error
diagnostic path reported successfully.

3An extension of the ISO standard language LOTOS (ISO:8807:1989)

• Verification based on branching bisimulation equivalence
checking for finite state systems (or quotients) is more
efficient than trace refinement checking on the origi-
nal systems, due to the polynomial-time algorithm for
checking branching bisimulation. The reduction factor
(cf. Figure 10) ranges from at least 5 up to more than
1000 and has an increasing trend if the number of threads
and operations per thread is increasing. The verification
time for objects can be found in Tables VI, III, IV.

D. A concrete example: the MS lock-free queue
We present the MS lock-free queue as a representative, and

show the abstract object and detailed experimental results. The
implementation of MS queue can be found in Fig.5.

1) Analyzing algorithms by branching bisimilar: Since the
branching bisimulation equivalence captures state equivalence,
by computing the quotient, we can easily obtain the essential
transitions of concurrent programs. For the MS queue example
in Fig. 6, all internal steps in the quotient are labeled with
Lines 8,20,21,28 (Fig. 5). These key statements acquired
from the quotient coincide with the manual analysis [20]. Fur-
ther, we check whether the specification and concrete object
are branching bisimilar. If they are not, a path is generated.
Fig. 7 is the diagnostic paths involving Lines 20,28, which
are generated by checking the branching bisimilarity between
the quotients of the queue specification and MS queue. This
path shows a complicated interleaving of non-fixed LPs, which
the specification does not have. From the path, we can refine
the specification into finer atomic blocks.

deq1 Ü1

<enq2,a>

<ret1,EMPTY>

<enq3,b> deq2 Ü1Ü2

(t2:line 28)

(t1:line 20)

(t1:line 28)

ret2,a ret1,b

(t1:line 20) is an LP 

(t1:line 20) is not an LP 

Fig. 7. The non-fixed linearization point in method Deq.

2) The specification and abstract object of MS queue:
The specification and abstract queue are shown in Fig. 8. The
enqueue method Enq abs(v) is the same as the specification
Enq spec(v), which has one atomic block. But for dequeue
method Deq abs, we need two atomic blocks. The first atomic
block Line 42 matches Line 20 and the second atomic
block Line 44 matches Line 28. In details, atomic block
Line 42 is the linearization point for empty queue such that
dequeue returns EMPTY, and atomic block Line 44 is the
linearization point for successfully removing the first node
from the list. Further, between Line 42 and Line 44, ab-
stract method Deq abs allows interleavings with other threads
that may change the value of Head. When atomic block Line

42 reads Head again, of which the value is changed, it will
restart the while-loop such that atomic block Line 42 may
not be the linearization point (due to the non-empty queue).
Thus, the interleavings of atomic blocks are consistent with
the interleavings of Lines 8,20,21,28 of MS queue.

The DGLM queue [7] that improves the MS queue can be
analyzed similarly. By rewriting the concrete program to an



equivalent abstract queue, we can verify the much simpler
abstract queue instead of the original object program.

32 Enq_spec(v){

33 atomic {
x:=new_node(v);

t:=Tail;

t.next:=x;Tail:=x;

34 }

}

35 Deq_spec() {

36 atomic {
h:=Head;t:=Tail;

if(h=t) b:=0

else

b:=1;

s:=h.next;

Head:=s;

v:=s.val;

37 }

if (b==1) return v

else return EMPTY;

}

38 Enq_abs(v){

39 atomic {
x:=new_node(v);

t:=Tail;

t.next:=x;Tail:=x;

40 }

}

41 Deq_abs() {

while(true) {

42 atomic {
h:=Head;t:=Tail;

43 };

44 atomic {
if(h=Head)

if(h=t)

return EMPTY;

else {

s:=h.next;

Head:=s;

v:=s.val;

return v;}

else skip;

45 } } }

Fig. 8. Specification Enq/Deq spec(v) and abstract queue Enq/Deq abs(v).

3) Experimental results: The verification results for the MS
queue as well as the DGLM queue are given in Table VI,
where the verification time (in seconds) together with the
state spaces of these objects and their quotients are recorded
respectively. The MS lock-free and DGLM queues have the
same specification (⇥SP) and abstract object (�Abs). The
DGLM queue has a smaller state-space since it is an optimized
version of MS lock-free queue. From Table VI, we can see
that the abstract queue and MS/DGLM queues are branching
bisimilar, which correspond to the same quotient (�⇤/⇡).
These results show that our verification methods are rather
efficient to check linearizability and lock-freedom. Although
the trace refinement checking in Theorem 5.3 is PSPACE-
complete, the quotient system reduces the state space by a
factor of 100 times or more, such that verifying linearizablity,
which is impossible directly on the original system, becomes
possible. For example, for 3 threads with 3 operations, the
verification time of about 76 million states takes around only
50 seconds.

E. Automatically verifying lock-freedom
We also provide a full automatic verification method using

Theorem 5.9 to check the lock-free property (for finite sys-
tems), without constructing abstract objects. The experimental
results on checking the lock-free property of the MS queue are
presented in Table III, where �MS and �MS/⇡ are the state
spaces of the original system and the quotient, respectively.
From Table III, all the instances of the queue satisfy the lock-
free property. Because the quotient is usually much smaller
than the abstract object program (c.f. Table VI), the verification
method using Theorem 5.9 is more efficient than Theorem 5.8.

Let us see the HM lock-free list that involves the operations
add and remove. The experimental results in Table IV indicate
that these finite instances of the HM list satisfy the lock-free
property. Other algorithms in Table II can be verified similarly.

TABLE III
AUTOMATICALLY CHECKING LOCK-FREEDOM OF THE MS QUEUE [25].

#Th.-#Op. �MS �MS/⇡ lock-free (Thm.5.9) time (s)
2-3 49038 863 Yes 0.68
2-4 304049 2648 Yes 1.90
2-5 1554292 6765 Yes 8.44
2-6 7092627 15820 Yes 40.21
3-1 10845 220 Yes 0.52
3-2 1496486 7337 Yes 9.41
3-3 76157266 74551 Yes 516.79

TABLE IV
AUTOMATICALLY CHECKING LOCK-FREEDOM OF THE HM LIST [17].

#Th.-#Op. �HM �HM/⇡ lock-free (Thm.5.9) time (s)
2-2 8602 414 Yes 0.44
2-3 55732 1949 Yes 1.01
2-4 227989 5314 Yes 1.96
2-5 670482 10368 Yes 4.29
3-1 16216 445 Yes 0.88

The method dequeue of the HW queue [18] is not lock-free.
By comparing the divergence-sensitive branching bisimilarity
between the system and its quotient in Table V, we obtain
�HW 6⇡div (�HW/⇡). The equivalence checking using Theo-
rem 5.9 automatically generates a divergence, shown in Fig. 9.
The divergence is found in the Deq method.

TABLE V
CHECKING LOCK-FREEDOM OF THE HW QUEUE [18].

#Th.-#Op. �HW �HW/⇡ lock-free (Thm.5.9) time (s)
3-1 1324 156 No 0.37

*** diagnostic sequence found at depth 2  

<initial state>  

"CALL !DEQ !1" 

"Absent in HW_queue_hide_red .bcg: i - loop (divergence)" 

Fig. 9. A divergence of the HW queue generated by CADP.

F. Automatic bug hunting

As indicated in Table II, we found two violations of lin-
earizability and lock-freedom. All the found counterexamples
are generated in case of just two or three threads. This shows
the potential of our approach as bug-hunting technique.

1) We encounter an violation of lock-freedom in the revised
Treiber stack of [10]. This revised version prevents the
ABA problem from the original Treiber stack but at the
expense of violating the wait-freedom of hazard pointers
in the original algorithm [24]. We found this bug by an
automatically generated counterexample of divergence-
sensitive branching bisimulation checking by CADP with
just two concurrent threads. The error-path ends in a self-
loop in which one thread keeps reading the same hazard
pointer value of another thread yielding this thread does
not make progress (The detail can be found in [33]).



TABLE VI
VERIFYING LINEARIZABILITY AND LOCK-FREEDOM OF CONCURRENT QUEUES.

#Th. #Op. �MS �DGLM ⇥SP �Abs ⇥SP/⇡ �⇤/⇡ Theorem 5.8 (lock-free) time (s) Theorem 5.3 (linearizablity) time (s)
MS DGLM Result MS DGLM Result

2 1 326 291 72 106 28 28 0.27 0.26 Yes 0.22 0.24 Yes
2 2 5477 4951 855 1325 209 209 0.46 0.43 Yes 0.75 0.70 Yes
2 3 49038 43221 5810 9426 817 863 0.70 0.88 Yes 1.15 1.36 Yes
2 4 304049 261671 30165 50797 2471 2648 2.12 2.17 Yes 2.32 2.31 Yes
2 5 1554292 1310133 136334 237044 6347 6765 9.41 9.05 Yes 4.75 5.02 Yes
2 6 7092627 5881529 571501 1019763 15041 15820 45.23 39.88 Yes 10.79 10.54 Yes
2 7 30265728 24789593 2300270 4187822 33739 35021 210.9 188.27 Yes 27.44 27.16 Yes
3 1 10845 9488 876 1577 220 220 0.49 0.41 Yes 0.76 0.65 Yes
3 2 1496486 1210014 51986 114815 6152 7337 9.35 7.98 Yes 5.20 5.07 Yes
3 3 76157266 55936348 1600195 4110621 62808 74551 613.34 410.91 Yes 54.61 54.79 Yes
4 1 485872 415329 10842 25276 2040 2476 3.32 3.22 Yes 2.18 2.16 Yes

2) Our experiments confirm the (known) bug in the HM
lock-free list [17] which was amended in the online errata
of [17]. The counterexample is generated by the trace
refinement checking of the quotients of concrete object
and the specification. It consecutively removes the same
item twice, which violates the specification of the list.

G. Efficiency and state-space savings

Fig. 10 shows the overview of the generated state spaces of
11 concurrent data structures and their branching bisimulation
quotient systems, where the state-space (x and y-axis) is on
logarithmic scale. For the algorithms, we fix the number of
threads to 2 and vary the number of operations a thread
can perform from 1 to 10. The results show that verifying
linearizability based on branching bisimulation quotient is very
efficient. For most cases, we obtain a quotient system which
is 2 to 3 orders of magnitude (i.e., 100 to 1000 times) smaller
than the concrete objects. And in general, for the non-blocking
algorithms, the larger the system the higher the state space
reduction factor. The largest reductions are obtained for the
Treiber stack with hazard pointers (Treiber stack+HP) and the
MS lock-free queue yielding a quotient with 0.01% and 0.02%
of the size of the concrete objects, respectively.

VII. DISCUSSION ON WEAK BISIMULATION

We give a discussion about weak bisimulation [34]. Weak
bisimulation, denoted by ⇠w, is obtained by replacing the
second clause of Definition 4.1 with:

2. if s1
⌧��! s

0
1, then either (s01, s2) 2 R, or there exists s

0
2

such that s2 ==) ⌧��! s
0
2 and (s01, s

0
2) 2 R.

Compared with branching bisimulation, weak bisimulation
does not require the intermediate states passed through to be
matched. Back to the MS queue example in Fig. 6, checking by
the CADP tool, it returns s1 ⇠w s3, along with it s2 6⇠w s4 and
s2 ⇠w s5. For branching bisimulation, the tool reports s1 6⇡ s3,
along with it s2 6⇡ s4 and s2 ⇡ s5.

To explain the difference, consider, for instance, the tran-
sition s1 ��! s2. In weak bisimulation, it can be matched by

s3 ��! s4 ��! s5, despite that s2 6⇠w s4. However, this is not
allowed in branching bisimulation because of s2 6⇡ s4.

Therefore, branching bisimulation better takes into account
the intermediate state that two equivalent states pass through,
while weak bisimulation lacks the feature and fails to perceive
the effect of linearization point s1 ��! s3, which is an essential
internal transition for the entire system evolution. So the weak
bisimilar is not suitable for analyzing complicated executions.

Another feature of bisimulation is the equivalence checking.
For various concurrent data structures, we have checked the
equivalence relation ⇡ and ⇠w between the object system �
and the corresponding concurrent specification ⇥sp respec-
tively. Experimental results in Table VII clearly indicate that,
for complex algorithms (e.g., the HSY stack [37]), there does
not exist the weak bisimulation equivalence (and also weak
bisimulation with explicit divergence) between the system �
and the specification ⇥sp that is specified by one atomic block.

TABLE VII
CHECKING � ⇡ ⇥SP AND � ⇠W ⇥SP FOR VARIOUS ALGORITHMS.

Object � �/⇡ ⇥sp ⇥sp/⇡ ⇠w ⇡
2-5 MS 155492 6765 136334 6347 No No
2-5 DGLM 1310133 6765 136334 6347 No No
3-2 HW 89483 4018 51986 6152 No No
3-2 HM 472664 12422 15357 11567 No No
3-2 Lazy 1311915 15368 15357 11567 No No
4-1 CCAS 1688 195 822 166 No No
2-2 Treiber 823 234 487 234 Yes Yes
3-2 HSY 246761798 11496 12341 5932 No No

VIII. RELATED WORK

Concurrent object verification including verifying lineariz-
ability and lock-freedom has been intensively investigated in
the literature. We only discuss the most relevant work.

A plethora of proof-based techniques has been developed
for verifying linearizability. Most are based on rely-guarantee
reasoning [20], [30], [31], [41], or establishing simulation rela-
tions [4], [5], [27]. These techniques often involve identifying
linearization points which is a manual non-trivial task. For
example, Liang et al. [20] propose a program logic tailored to
rely-guarantee reasoning to verify complex algorithms. This
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Fig. 10. State-space reduction using ⇡-quotienting.

method is applicable to a wide range of popular non-blocking
algorithms but is restricted to certain types of linearization
points. Challenging algorithms such as [6], [18] fall outside
this method. Our techniques do not require identifying lin-
earization points, and take the first step to exploit divergence
stuttering/branching bisimulation equivalences [32], [38] from
concurrency theory to verify concurrent objects (The idea was
first proposed in 2014 [39]). As we have shown, for finite-state
systems, off-the-shelf model checkers can be readily exploited.
This also provides a mechanism for finding concurrency bugs,
i.e., violations of linearizability and lock-freedom. Although
automated verification is not complete, concurrency bugs can
be found by treating two to four threads.

Model checking methods to verify linearizability have been
proposed in e.g., [2], [3], [23], [36]. Liu et al. [23] formalize
linearizability as trace refinement and use partial-order and

symmetry reduction techniques to alleviate the state explosion
problem. Their experiments are limited to simple concurrent
data structures such as counters and registers, and the relation
they proposed is not applicable to checking divergence. Our
work has modeled and verified various practical algorithms,
and can verify both the linearizability and lock-freedom effi-
ciently. Cerny et al. [3] propose method automata to verify lin-
earizability of concurrent linked-list implementations, which
is restricted to two concurrent threads. An experience report
with the model checker SPIN [36] introduces an automated
procedure for verifying linearizability, but the method relies
on manually annotated linearization points. Some other work
(e.g., [2], [42]) employs the stateless model checking method
to verify concurrent programs. In particular, [2] presents the
automated linearizability checker Line-Up based on the model
checker CHESS. Our work uses the branching bisimulation
techniques and can capture the effect of certain intricate exe-
cutions (e.g., LP) of fine-grained concurrent programs (where
the linear-time is not sufficient). To the best of our knowledge,
all existing algorithms (e.g., [14]) need the entire state space
in order to carry out branching bisimulation minimization.

For the verification of progress properties, work [12], [21],
[22] recently propose refinement techniques with termination
preservation, which can well distinguish divergence from finite
traces. However, since refinement notions concern the prefix-
closed set of traces, for systems that involve neither divergence
nor return actions, refinement-based notions are hard to pre-
cisely preserve progress properties. In contrast, the theoretical
result of using the notion of divergence-sensitive branching
bisimulation can check a large class of progress properties
that are expressible in CTL⇤ (containing LTL) without next. In
practice, our experiments can treat 11 non-blocking algorithms
(finite instances) and found a lock-freedom violation in the
revised stack [10]. Some formulations of progress properties
using next-free LTL are discussed in [26], [8].

IX. CONCLUSION

In this paper, we exploit branching bisimulation, denoted
by (⇡) — a well-established notion in the field of con-
currency theory — for proving linearizability and progress
properties of concurrent data structures. A concurrent object
� is linearizable w.r.t. a linearizable specification ⇥sp iff their
quotients under ⇡ are in a trace refinement relation. Unlike
competitive techniques, this result is independent of the type
of linearization points. If the abstract and concrete object are
divergence-sensitive branching bisimilar, then progress prop-
erties of the — typically much smaller and simpler — abstract
object carry over to the concrete object. This entails that lock-
freedom (in fact all progress properties that can be expressed
in the next-free fragment of CTL⇤) can be checked on the
abstract program. Our approaches can be fully automated for
finite-state systems. We have conducted experiments on 14
popular concurrent data structures yielding promising results.
In particular, the fact that counterexamples can be obtained
in an automated manner is believed to be a useful asset.



Our experiments confirmed a known linearizability bug and
revealed a new lock-free property violation.

In addition, due to the precision of branching bisimulation
in characterizing state equivalence of object systems, it has
the potential to analyze complex non-blocking executions. We
have shown that MS lock-free queue can be easily analyzed by
this equivalence notion. In the future, we will investigate the
further results on analysis of concurrent data structures using
branching bisimulation.
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