
Paper: [Yoe2001], Feb.2001

Title of Paper: Examples of LOTOS−Based Verification of Asynchronous Circuits

Author: Michael Yoeli, Prof. Emeritus
Dept. Computer Science
Technion, Haifa 32000, Israel
e−mail: myoeli@csa.technion.ac.il

Abstract: This paper illustrates the application of LOTOS/CADP to the
verification of modular asynchronous circuits

1: Introduction
===============
In this Report we illustrate the application of the high−level specification
language LOTOS and its associated toolbox CADP to the verification of asyn−
chronous circuits.
In [YG2001] we formulate the concept of realization (i.e., an implementation
realizes a specification) using both automata theory as well as LOTOS/CADP
and establish the relationship between the two approaches. There we also
provide a brief introduction to Basic LOTOS (Control−oriented LOTOS; no data)
using CADP.
Here we assume familiarity with Basic LOTOS and CADP.

2: Definition of Realization
============================
Let IMPL and SPEC denote (LOTOS−)processes, representing edge−based descrip−
tions of the implementation and the specification of an asynchronous circuit.
We assume that the two processes share the same alphabet (i.e., set of obser−
vable events/actions), and that this alphabet is partitioned into inputs and
outputs.
We say that IMPL realizes SPEC (notation: IMPL |= SPEC) iff the following
conditions are satisfied.

Cond1: SPEC||IMPL is obs.equivalent to SPEC.
Cond2: IMPL is live−lock free.
Cond3: No "undesirable" outputs (see below). One way to verify this condition

is as follows.
Let iIMPL be the process obtained from IMPL by replacing each output,
say z, by i;z. Then SPEC||iIMPL is deadlock−free. Frequently this con−
dition can be verified by preferable ad−hoc methods.

3: Informal Motivation
======================
Cond1 ensures that IMPL is at least as powerful as SPEC. Any behaviour speci−
fied by SPEC can be performed by IMPL, disregarding i−transitions occurring
between observable events.
Cond2 assures that IMPL does not enter a cycle of i−transitions.
Cond3 prevents "undesirable" outputs to occur in IMPL. Let w1 be an action
sequence of IMPL, followed by an output z. Assume that w1 is obs.equivalent
to an action sequence of SPEC. Then there exists such an action sequence w2
in SPEC, obs.equiv. to w1, such that w2 is followed by z in SPEC.

4: Verifying Conditions 1−3
===========================
Cond1:
Method (1). Generate SIMPL:= SPEC||IMPL. Then convert the LOTOS−program

SIMPL.lotos into the LTS SIMPL.aut, using the command
caesar −aldebaran SIMPL.lotos

Similarly convert SPEC.lotos into SPEC.aut.
Then apply the command

aldebaran −oequ SIMPL.aut SPEC.aut
expecting the output "TRUE".

Method (2). Generate SPEC.aut and IMPL.aut. Then obtain SIMPL.aut=

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

C
S-

20
01

-0
8

-
20

01

SPEC.aut||IMPL.aut, using *.exp and −exp2aut (see ALDEBARAN
manual!). Check obs.equivalence as above.

Cond2:
This condition can be checked by means of the following command

aldebaran −live filename.aut

Cond3:
Generate iIMPL.lotos, or alternatively iIMPL.aut directly. Then check
whether iIMPL||SPEC is deadlock−free, using the command

aldebaran −dead filename.aut
Other methods will be illustrated later on.

5: Module Descriptions
======================
We are concerned with the verification of modular asynchronous circuits.
Here we present a list of the modules (in LOTOS−style) we are interested
in. Related representations, and information about their decompositions,
can be found in [EDIS].
Note that we use bidirectional−edge based descriptions. We use A,B,C,D to
denote inputs, and X,Y,Z to denote outputs.

XORk Gates (=k−MERGE), k>1.
==========================
XOR2[A,B,Z]=A;Z;XOR2[A,B,Z] [] B;Z;XOR2[A,B,Z]
XORk, k>2, is defined similarly.

CELk Gates (=k−JOIN), k>1
=========================
CEL2[A,B,Z]=A;B;Z;CEL2[A,B,Z] [] B;A;Z;CEL2[A,B,Z]
CEL3[A,B,C,Z]=(A;exit ||| B;exit ||| C;exit)>> Z;CEL3[A,B,C,Z]
CELk, k>3, is defined similarly.
iCEL[A,B,Z]=B;Z;CEL2[A,B,Z]
CEL=CEL2

kTOGGLE, k>1
============
2TOGGLE=TOGGLE
TOGGLE[A,Y,Z]=A;Y;A;Z;TOGGLE[A,Y,Z]
3TOGGLE[A,X,Y,Z]=A;X;A;Y;A;Z;3TOGGLE[A,X,Y,Z]

6: Introductory Verification Examples
=====================================
The following two verification examples will illustrate some of
the concepts introduced in Section 4.

Example X1
==========
Let cy3[A,B,Z]= A;B;Z;cy3[A,B,Z].
We want to prove: IMPL |= SPEC, where IMPL=CEL[A,B,Z] and SPEC=cy3[A,B,Z].
Verifying Cond1:
We use a combination of methods (1) and (2).

File SIMPL.lotos
================
specification SIMPL[A,B,Z]: noexit behaviour
 SIMPL[A,B,Z]
where
process SIMPL[A,B,Z]:noexit:=
 cy3[A,B,Z] || CEL[A,B,Z]
endproc
process cy3[A,B,Z]:noexit:=
 A;B;Z;cy3[A,B,Z]
endproc
process CEL[A,B,Z]:noexit:=
A;B;Z;CEL[A,B,Z]

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

C
S-

20
01

-0
8

-
20

01

[]
B;A;Z;CEL[A,B,Z]
endproc
endspec

From the above lotos−file we derive the SIMPL.aut file (see Section 4).
The file SPEC.aut can be derived directly from SPEC=cy3[A,B,Z]:
File SPEC.aut
=============
des (0,3,3)
(0,A,1)
(1,B,2)
(2,Z,0)

We now issue the command: aldebaran −oequ SIMPL.aut SPEC.aut
and get: TRUE .

Verifying Cond2:
From the CEL.lotos file (cf. the above process CEL) we derive
the file CEL.aut.
We then issue the command: aldebaran −live CEL.aut
and get: no livelock.

Verifying Cond3:
In the CEL−part (only!) of SIMPL.lotos we replace Z by i;Z. We call the new
file iSIMPL.lotos. Then we get iSIMPL.aut. To check for deadlock, we issue
the command: aldebaran −dead iSIMPL.aut and get:
no deadlock states.

Example X2
==========
Let SPEC=cy3.aut and IMP=cy3i.aut
where
File cy3.aut
============
des (0,3,3)
(0,A,1)
(1,B,2)
(2,Z,0)

File cy3i.aut
=============
des (0,4,3)
(0,A,1)
(1,B,2)
(2,Z,0)
(1,Z,0)

Proceeding as before, we get cy3.aut || cy3i.aut obs.equiv. cy3.aut.
Similarly, Cond2 is immediately verified.

To check Cond3, we generate iIMPL.aut = icy3i.aut.

File icy3i.aut
==============
des (0,6,5)
(0,A,1)
(1,B,2)
(2,i,4)
(1,i,3)
(3,Z,0)
(4,Z,0)

Next, we generate file iX2.aut = cy3.aut || icy3i.aut

File iX2.aut

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

C
S-

20
01

-0
8

-
20

01

============
des (0, 5, 5)
(1,i,2)
(3,i,4)
(0,A,3)
(3,B,1)
(2,Z,0)

Checking this file for deadlocks, we find that state 4 is indeed
a deadlock. Thus Cond3 is not satisfied.

7: Module Decompositions
========================
XORk−gates can easily be decomposed into XORj−gates, where j<k.
A similar statement applies to CELk−gates. For details see [EDIS].
To illustrate our approach, we show how the decomposition of CEL3
into CEL2 modules can be described and verified.

Below is a lotos−file describing the above decomposition (i.e.,
realization).

File cel3impl.lotos
===================
specification cel3impl[A,B,C,Z]:noexit behaviour

c3i[A,B,C,Z]
where
 process c3i[A,B,C,Z]:noexit:=
 hide R in
 cel[A,B,R]|[R]|cel[R,C,Z]
 endproc
 process cel[A,B,Z]:noexit:=
 A;B;Z;cel[A,B,Z]
 []
 B;A;Z;cel[A,B,Z]
 endproc
endspec

We wish to prove that cel3impl |= cel3.
To verify Cond1 we generate cel3impl || cel3.
This is done in the following file.

File cel3simpl.lotos
====================
specification cel3simpl[A,B,C,Z]:noexit behaviour
 c3i[A,B,C,Z]||c3sp[A,B,C,Z]
process c3i[A,B,C,Z]:noexit:=

{see previous file}
endproc
process c3sp[A,B,C,Z]:noexit:=
 (A;exit ||| B;exit ||| C;exit)>>Z;c3sp[A,B,C,Z]
endproc
endspec

We then proceed as discussed in Section 4, Cond1/Method (1).
Cond2 is similarly verified (see Section 4).
To verify Cond3, we replace in file cel3simpl.lotos the two ;Z
entries by ;i;Z . We convert this extended file into its aut−file,
and verify the no−deadlock condition.

Decompositions of XORk,k>2 and CELk,k>3 can be specified and verified
similarly.

8: Transition Counters
======================
In this section we introduce the concept of "Modulo−N Transition
Counter", and indicate methods of synthesis, using the modules

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

C
S-

20
01

-0
8

-
20

01

XOR and TOGGLE. This section is mainly based on [EP92].
The synthesis methods referred to in this section, will be used in
the sequel, to illustrate our verification method, outlined above.
We write w* to denote "repeat w forever".

8.1 Specification
=================
A modulo−N (transition) counter can be specified as follows:
Inputs: A
Output: Y,Z
Behaviour: cnt.N[a,y,z]:= ((a;y;)**(N−1)a;z)*
 where w**N denotes the sequential repetition of w, N times.
For example, cnt.3[a,y,z]=(a;y;a;y;a;z)*
Note that the module TOGGLE coincides with the modulo−2 transition
counter.

8.2 − Decompositions
====================
In accordance with [EP92], the modulo−N counter, for even N>2, can be
decomposed into a modulo−N/2 counter, a TOGGLE, and a XOR−gate, as
shown below.

Proposition 8.2.1
=================
cnt.N[a,y,z] = ((cnt.N/2[a,p,q] |[q]| TOG[q,x,z])

|[p,x]|XOR[p,x,y])\{p,q,x}
Here, \{p,q,x} indicates the "hiding" of p,q,x, i.e., their
replacement by ’i’.

For odd N>2, the decomposition is as follows.

Proposition 8.2.2
=================
cnt.N[a,y,z]=((cnt.(N+1)/2[r,y,q] |[q]| TOG[q,s,z])

|[r,s]|XOR[a,s,r])\{r,q,s}

Furthermore, the following decomposition rule is rather evident.

Proposition 8.2.3
=================
Let N=N1xN2, where N1>2, N2>2.
Then cnt.N[a,y,z] = (cnt.N1[a,y,q]|[q]|cnt.N2[q,y,z])\{q}

Although the above decomposition rules can easily be proven correct, we
wish to use them for the purpose of illustrating our approaches to the
formal verification of modular, asynchronous circuits.

8.3 − Verification of Modulo−3 Transition Counter
===
The specification of this counter is provided in the following file.

File mod3cntsp.lotos
====================
specification mod3count_sp[A,Y,Z]:noexit behaviour

Q[A,Y,Z]
 where
process Q[A,Y,Z]:noexit:=

A;Y;A;Y;A;Z;Q[A,Y,Z]
endproc
endspec

Its implementation is shown below.

File mod3count.lotos
====================
specification mod3count[A,Y,Z]:noexit behaviour

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

C
S-

20
01

-0
8

-
20

01

mod3count[A,Y,Z]
where
process mod3count[A,Y,Z]:noexit:=

hide R,Q,S in
XOR[A,S,R] |[R,S]| (toggle[R,Y,Q] |[Q]| toggle[Q,S,Z])

endproc
process XOR[A,B,Z] : noexit :=

A;Z;XOR[A,B,Z]
[]
B;Z;XOR[A,B,Z]

endproc
process toggle[A,Y,Z]:noexit:=

A;Y;A;Z;toggle[A,Y,Z]
endproc
endspec

We now proceed to prove IMPL|= SPEC, where IMPL and SPEC denote
the above implementation and specification. Thus, we have to show
that Conditions C1,C2,C3 are satisfied.
Conditions C1,C2
================
C1 is easily checked, using either Method (1) or Method (2) of
Section 4. Also C2 can be checked as explained in Section 4.
Condition C3
============
In this example the application of the method discussed in Section 4
is not convenient. A reasonable alternative is to generate mod3count.
omin. Following the (unique) sequence A;Y;A;Y;A;Z, leading from state
0 back to state 0, one immediately verifies that no undesirable out−
put is produced.

Using the above propositions, mod−N transition counters for N>3 are
easily designed. Such counters can then be verified, following the
above example.

9: Pipeline Controllers
========================
In this section we consider the control part of asynchronous pipe−
lines, serving as FIFO (First−In First−Out) queues. In particular,
we draw your attention to the well−known Turing−award paper [Sut89].
A pipeline latch control unit [CT97] has IN−connections RIN?, AIN!
and OUT−connections ROUT!,AOUT? (’?’ denotes input, ’!’ denotes out−
put). The IN−connections (also known as LEFT− or PUT−connections)
control the data input from the preceding cell, and the OUT−connect−
ions (also: RIGHT− or GET−connections) control the data output to
the following cell. The above connections refer to bidirectional
transitions (edges) and not to levels ("two−phase protocol").
The IN−connections always alternate, and so do the OUT−connections.
Following [Sut89] we assume that the two sides are connected by the
alternation of AIN! and ROUT!. In summary we get the following speci−
fication of the latch control unit (LCU).

File LCUspec.lotos
==================
specification LCUspec[RIN,AIN,ROUT,AOUT]: noexit behaviour

LCUspec[RIN,AIN,ROUT,AOUT]
where
 process LCUspec[RIN,AIN,ROUT,AOUT]:noexit:=

(CY2[RIN,AIN]|||CY2[ROUT,AOUT]) |[AIN,ROUT]| CY2[AIN,ROUT]
 endproc
 process CY2[A,B]:noexit:=
 A;B;CY2[A,B]
 endproc
endspec
==

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

C
S-

20
01

-0
8

-
20

01

Here CY2[A,B] evidently means that A and B alternate.

The corresponding implementation (see [Sut89]) is represented by:

File LCUimp.lotos
====================
specification LCUimp[RIN,AOUT,AIN,ROUT]:noexit behaviour

LCUimp[RIN,AOUT,AIN,ROUT]
where
 process LCUimp[A,B,Y,Z]:noexit:=

ICEL[Z,A,Y]|[Y,Z]|ICEL[B,Y,Z]
 endproc
 process ICEL[A,B,Z]:noexit:=
 B;Z;CEL[A,B,Z]
 endproc
 process CEL[A,B,Z]:noexit:=
 A;B;Z;CEL[A,B,Z]

[]
 B;A;Z;CEL[A,B,Z]
 endproc
endspec

It is easy to prove that LCUimp |= LCUspec.

9.1 Up−Down Counters
====================
There exists an interesting connection between LCUspec and an up−down
counter with the range 0−3. To see this connection, we reformulate
LCUspec, hiding the signals AIN and ROUT. The relevant LOTOS−specifi−
cation is shown in the file below.

File udc4.lotos
===============
specification UDC4[RIN,AOUT]: noexit behaviour

UDC4[RIN,AOUT]
where
 process UDC4[RIN,AOUT]:noexit:=

hide AIN,ROUT in
(CY2[RIN,AIN]|||CY2[ROUT,AOUT]) |[AIN,ROUT]| CY2[AIN,ROUT]

 endproc
 process CY2[A,B]:noexit:=
 A;B;CY2[A,B]
 endproc
endspec

To relate the above lotos−file to an up−down counter, we define the
following aut−file.

File udcnt4.aut
===============
des (0,6,4)
(0,RIN,1)
(1,AOUT,0)
(1,RIN,2)
(2,AOUT,1)
(2,RIN,3)
(3,AOUT,2)

The above file evidently defines an up−down counter with range 0−3.
Let udc4.aut be the LTS corresponding to udc4.lotos, defined above.
Using aldebaran, we may establish obs. equivalence between udcnt.aut
and udc4.aut.

The preceding considerations can be extended to a cascade of LCUs.
An interesting alternative approach to micropipeline control circuits

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

C
S-

20
01

-0
8

-
20

01

and the related up−down counters is presented in [VERD]/examples/
micropipelines. Most of this material is easily reformulated using
LOTOS/CADP. The relevant propositions can then be proven within our
framework.

between such control circuits and UP−DOWN counters is also elaborated.
Most of this material is easily formulated using LOTOS/CADP, and the
relevant propositions can then be proven within our framework.

10: References
===============
[EDIS] http://edis.win.tue.nl/

[EP92] J.C.Ebergen and A.M.G.Peters, Modulo−N Counters:
Design and Analysis of Delay−Insensitive Circuits,
in: J.Staunstrup and R.Sharp (Editors), Designing Correct Circuits,
Elsevier Science Publ., 1992, pp. 27−46.

[Sut89] I.E.Sutherland, Micropipelines, (Turing Lecture), Comm. ACM, 32(6),
pp.720−738, 1989.

[YG2001] M.Yoeli and A.Ginzburg, LOTOS−based Verification of
Asynchronous Circuits, Technical Report , Dept. of Computer
Science, Technion, Haifa.
http://www.cs.technion.ac.il/Reports/

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t

C
S-

20
01

-0
8

-
20

01

