Paper: [Yoe2001], Feb. 2001
Title of Paper: Examples of LOTOS-Based Verification of Asynchronous Circuits
Author: Michael Yoeli, Prof. Emeritus
Dept. Computer Science
Technion, Haifa 32000, Israel
e-mail: myoeli@csa.technion.ac.il
Abstract: This paper illustrates the application of LOTOS/CADP to the verification of modular asynchronous circuits

1: Introduction
In this Report we illustrate the application of the high-level specification language LOTOS and its associated toolbox CADP to the verification of asyn@chronous circuits.
-In [YG2001] we formulate the concept of realization (i.e., an implementation Jrealizes a specification) using both automata theory as well as LOTOS/CADP Fand establish the relationship between the two approaches. There we also Foprovide a brief introduction to Basic LOTOS (Control-oriented LOTOS; no data) Uusing CADP.
Here we assume familiarity with Basic LOTOS and CADP.
'2: Definition of Realization
F============================
OLet IMPL and SPEC denote (LOTOS-) processes, representing edge-based descripEtions of the implementation and the specification of an asynchronous circuit. Ne assume that the two processes share the same alphabet (i.e., set of observable events/actions), and that this alphabet is partitioned into inputs and 00 utputs.
Ne say that IMPL realizes SPEC (notation: IMPL |= SPEC) iff the following conditions are satisfied.
U
Cond1: SPEC||IMPL is obs.equivalent to SPEC.
Cond2: IMPL is live-lock free.
Cond3: No "undesirable" outputs (see below). One way to verify this condition is as follows.
Let iIMPL be the process obtained from IMPL by replacing each output, say z, by i;z. Then SPEC||iIMPL is deadlock-free. Frequently this condition can be verified by preferable ad-hoc methods.
: Informal Motivation
ICondl ensures that IMPL is at least as powerful as SPEC. Any behaviour speciFfied by SPEC can be performed by IMPL, disregarding i-transitions occurring Qotween observable events.
Fond2 assures that IMPL does not enter a cycle of i-transitions.
Cond3 prevents "undesirable" outputs to occur in IMPL. Let w1 be an action (1) ${ }^{2}$ quence of IMPL, followed by an output z. Assume that w1 is obs.equivalent [to an action sequence of SPEC. Then there exists such an action sequence w2 in SPEC, obs.equiv. to w1, such that w2 is followed by z in SPEC.

4: Verifying Conditions 1-3
===========================
Cond1:
Method (1). Generate SIMPL:= SPEC||IMPL. Then convert the LOTOS-program
SIMPL.lotos into the LTS SIMPL.aut, using the command caesar -aldebaran SIMPL.lotos Similarly convert SPEC.lotos into SPEC.aut. Then apply the command aldebaran -oequ SIMPL.aut SPEC.aut expecting the output "TRUE".
Method (2). Generate SPEC.aut and IMPL.aut. Then obtain SIMPL.aut=

SPEC.aut||IMPL.aut, using *.exp and -exp2aut (see ALDEBARAN manual!). Check obs.equivalence as above.
Cond2:
This condition can be checked by means of the following command aldebaran -live filename.aut
'Generate iIMPL.lotos, or alternatively iIMPL.aut directly. Then check
Whether iIMPL||SPEC is deadlock-free, using the command aldebaran -dead filename.aut
, bther methods will be illustrated later on.

$$
i
$$

〕: Module Descriptions
======================
We are concerned with the verification of modular asynchronous circuits. Here we present a list of the modules (in LOTOS-style) we are interested ©in. Related representations, and information about their decompositions, Ccan be found in [EDIS].
Note that we use bidirectional-edge based descriptions. We use A, B, C,D to Zdenote inputs, and $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ to denote outputs.

XORk Gates ($=\mathrm{k}-\mathrm{MERGE}$), $\mathrm{k}>1$.
XOR2 [A, B, Z] =A; Z; XOR2 [A, B, Z] [] B; Z; XOR2 [A, B, Z]
XORk, $\mathrm{k}>2$, is defined similarly.
FELk Gates (=k-JOIN), k>1
$0=======================$
CEL2 [A, B, Z] =A; B; Z;CEL2 [A, B, Z] [] B; A; Z;CEL2 [A, B, Z]
_CEL3[A, B, C, Z] $=(A$; exit $| | \mid$ B;exit $| | \mid C ; e x i t) \gg Z ; C E L 3[A, B, C, Z]$
CELk, $\mathrm{k}>3$, is defined similarly.
©iCEL[A, B, Z] $=\mathrm{B} ; \mathrm{Z}$; CEL2[A, B, Z]
CEL=CEL2
0
UkTOGGLE, $\mathrm{k}>1$
(1)===========

- 2 TOGGLE=TOGGLE

TOGGLE [A, Y, Z] =A; Y; A; Z; TOGGLE [A, Y, Z]
3TOGGLE [A, X,Y,Z]=A;X;A;Y;A;Z;3TOGGLE[A,X,Y,Z]
(1)

6: Introductory Verification Examples
R======================================
EThe following two verification examples will illustrate some of
Cthe concepts introduced in Section 4.
IExample X1

```
F==========
```

- Let $\mathrm{Cy} 3[\mathrm{~A}, \mathrm{~B}, \mathrm{Z}]=\mathrm{A} ; \mathrm{B} ; \mathrm{Z} ; \mathrm{cy} 3[\mathrm{~A}, \mathrm{~B}, \mathrm{Z}]$.
FiNe want to prove: IMPL | = SPEC, where IMPL=CEL[A,B,Z] and SPEC=cy3[A,B,Z].
GVerifying Cond1:
We use a combination of methods (1) and (2).
File SIMPL.lotos
================
specification SIMPL[A,B,Z]: noexit behaviour
SIMPL[A, B, Z]
where
process SIMPL[A,B,Z]:noexit:=
cy3[A,B,Z] || CEL[A,B,Z]
endproc
process cy3[A,B,Z]:noexit:=
$A ; B ; Z ; C y 3[A, B, Z]$
endproc
process CEL[A,B,Z]:noexit:=
A;B;Z;CEL[A,B,Z]

```
    []
    B;A;Z;CEL[A,B,Z]
endproc
Sendspec
    From the above lotos-file we derive the SIMPL.aut file (see Section 4).
The file SPEC.aut can be derived directly from SPEC=cy3[A,B,Z]:
File SPEC.aut
|==============
des (0,3,3)
(0,A,1)
(1,B,2)
~}(2,Z,0
    We now issue the command: aldebaran -oequ SIMPL.aut SPEC.aut
and get: TRUE .
Verifying Cond2:
NFrom the CEL.lotos file (cf. the above process CEL) we derive
the file CEL.aut.
We then issue the command: aldebaran -live CEL.aut
-Fand get: no livelock.
\circlearrowleftVerifying Cond3:
In the CEL-part (only!) of SIMPL.lotos we replace Z by i;Z. We call the new
file iSIMPL.lotos. Then we get iSIMPL.aut. To check for deadlock, we issue
'the command: aldebaran -dead iSIMPL.aut and get:
#no deadlock states.
(1)
Example X2
L==========
Let SPEC=cy3.aut and IMP=cy3i.aut
Ovhere
File cy3.aut
O============
Udes (0,3,3)
[0. (0,A,1)
-(1,B,2)
~}(2,z,0
CEile cy3i.aut
=============
Cdes (0,4,3)
E(0,A,1)
O(1,B,2)
(2,z,0)
    I (1, Z, 0)
O
Proceeding as before, we get cy3.aut || cy3i.aut obs.equiv. cy3.aut.
Similarly, Cond2 is immediately verified.
O
To check Cond3, we generate iIMPL.aut = icy3i.aut.
    File icy3i.aut
    ==============
    des (0,6,5)
    (0,A,1)
    (1,B,2)
    (2,i,4)
    (1,i,3)
    (3,z,0)
    (4, Z, 0)
    Next, we generate file iX2.aut = cy3.aut || icy3i.aut
    File iX2.aut
```

```
    ============
    des (0, 5, 5)
-(1,i, 2)
O(3,i,4)
N(0,A,3)
    (3,B,1)
\infty}(2,Z,0
    'Checking this file for deadlocks, we find that state 4 is indeed
    a deadlock. Thus Cond3 is not satisfied.
    N: Module Decompositions
M========================
XORk-gates can easily be decomposed into XORj-gates, where j<k.
    A similar statement applies to CELk-gates. For details see [EDIS].
    To illustrate our approach, we show how the decomposition of CEL3
    into CEL2 modules can be described and verified.
@Below is a lotos-file describing the above decomposition (i.e.,
realization).
\sigma
    File cel3impl.lotos
F====================
Uspecification cel3impl[A,B,C,Z]:noexit behaviour
C3i[A,B,C,Z]
where
' process c3i[A,B,C,Z]:noexit:=
                hide R in
            cel[A,B,R]|[R]| cel[R,C,Z]
            endproc
            process cel[A,B,Z]:noexit:=
                A;B;Z;cel[A,B,Z]
                []
                B;A;Z;Cel[A,B,Z]
            endproc
    endspec
    We wish to prove that cel3impl |= cel3.
To verify Condl we generate cel3impl || cel3.
    This is done in the following file.
    (0)
    File cel3simpl.lotos
    C====================
    Especification cel3simpl[A, B, C, Z]:noexit behaviour
        c3i[A,B,C,Z]||c3sp[A,B,C,Z]
    process c3i[A,B,C,Z]:noexit:=
                {see previous file}
    Cendproc
. Qorocess c3sp[A,B,C,Z]:noexit:=
                (A;exit || B;exit || C;exit)>>Z;c3sp[A,B,C,z]
Jendproc
    Mendspec
    We then proceed as discussed in Section 4, Cond1/Method (1).
        Cond2 is similarly verified (see Section 4).
        To verify Cond3, we replace in file cel3simpl.lotos the two ;Z
        entries by ;i;Z . We convert this extended file into its aut-file,
        and verify the no-deadlock condition.
        Decompositions of XORk,k>2 and CELk,k>3 can be specified and verified
        similarly.
    8: Transition Counters
    ======================
    In this section we introduce the concept of "Modulo-N Transition
    Counter", and indicate methods of synthesis, using the modules
```

XOR and TOGGLE. This section is mainly based on [EP92].
The synthesis methods referred to in this section, will be used in the sequel, to illustrate our verification method, outlined above. We write w* to denote "repeat w forever".
8.1 Specification

A modulo-N (transition) counter can be specified as follows:
'Inputs: A
Output: Y,Z
Behaviour: cnt.N[a,y,z]:= ((a;y;)**(N-1)a;z)*
I_{1} where $\mathrm{w}^{* * N}$ denotes the sequential repetition of w, N times.
UFor example, cnt.3[a,y,z]=(a;y;a;y;a;z)*
Note that the module TOGGLE coincides with the modulo-2 transition counter.

```
8.2 - Decompositions
```

C====================

CIn accordance with [EP92], the modulo-N counter, for even $N>2$, can be decomposed into a modulo-N/2 counter, a TOGGLE, and a XOR-gate, as Shown below.

Eroposition 8.2.1
U=================
Cnt. $\mathrm{N}[\mathrm{a}, \mathrm{y}, \mathrm{z}]=(($ cnt. $\mathrm{N} / 2[\mathrm{a}, \mathrm{p}, \mathrm{q}]|[\mathrm{q}]| \mathrm{TOG}[\mathrm{q}, \mathrm{x}, \mathrm{z}])$
$|[p, x]| X O R[p, x, y]) \backslash\{p, q, x\}$
'Here, $\backslash\{p, q, x\}$ indicates the "hiding" of $p, q, x, i . e .$, their Ereplacement by 'i'.

For odd $\mathrm{N}>2$, the decomposition is as follows.
Proposition 8.2.2
(1)================
cnt.N[a,y,z]=((cnt. (N+1)/2[r,y,q]|[q]|TOG[q,s,z])
$|[r, s]| \operatorname{XOR}[a, s, r]) \backslash\{r, q, s\}$
Furthermore, the
Proposition 8.2 .3
$================$
CLet $N=N 1 x N 2$, where $N 1>2$, $N 2>2$.
FThen cnt. $\mathrm{N}[\mathrm{a}, \mathrm{y}, \mathrm{z}]=(\mathrm{cnt} . \mathrm{N} 1[\mathrm{a}, \mathrm{y}, \mathrm{q}]|[\mathrm{q}]|$ cnt. $\mathrm{N} 2[\mathrm{q}, \mathrm{y}, \mathrm{z}]) \backslash\{\mathrm{q}\}$
FAlthough the above decomposition rules can easily be proven correct, we Cwish to use them for the purpose of illustrating our approaches to the formal verification of modular, asynchronous circuits.
specification mod3count_sp[A, Y, Z]: noexit behaviour
Q [A, Y, Z]
where
process $Q[A, Y, Z]:$ noexit: $=$
A; Y;A;Y;A;Z;Q[A,Y,Z]
endproc
endspec
Its implementation is shown below.
File mod3count.lotos
====================
specification mod3count[A, Y, Z]: noexit behaviour
mod3count [A, Y, Z]
where
Fprocess mod3count[A, Y, Z]:noexit:=
hide R,Q,S in
XOR[A,S,R] |[R,S]| (toggle[R,Y,Q] |[Q]| toggle[Q,S,Z])
endproc
process XOR[A,B,Z] : noexit :=
A; Z; XOR [A, B, Z]
[]
B; Z; XOR [A, B, Z]
endproc
process toggle[A,Y,Z]:noexit:=
A; Y; A; Z;toggle[A, Y, Z]
endproc
endspec
We now proceed to prove IMPL|= SPEC, where IMPL and SPEC denote
©the above implementation and specification. Thus, we have to show Othat Conditions C1,C2,C3 are satisfied.
Conditions C1, C2
$\sigma_{=============}^{c}$

- C1 is easily checked, using either Method (1) or Method (2) of Section 4. Also C2 can be checked as explained in Section 4. Condition C3
$\mathrm{O}_{2}===========$
FIn this example the application of the method discussed in Section 4
'is not convenient. A reasonable alternative is to generate mod3count. Fomin. Following the (unique) sequence $A ; Y ; A ; Y ; A ; Z$, leading from state 0 back to state 0 , one immediately verifies that no undesirable outGut is produced.

Using the above propositions, mod-N transition counters for $N>3$ are Oeasily designed. Such counters can then be verified, following the above example.

9: Pipeline Controllers

In this section we consider the control part of asynchronous pipelines, serving as FIFO (First-In First-Out) queues. In particular, Cwe draw your attention to the well-known Turing-award paper [Sut89]. FA pipeline latch control unit [CT97] has IN-connections RIN?, AIN!马and OUT-connections ROUT!,AOUT? ('?' denotes input, '!' denotes outEout). The IN-connections (also known as LEFT- or PUT-connections) Control the data input from the preceding cell, and the OUT-connections (also: RIGHT- or GET-connections) control the data output to the following cell. The above connections refer to bidirectional Ctransitions (edges) and not to levels ("two-phase protocol").
OThe IN-connections always alternate, and so do the OUT-connections. Following [Sut89] we assume that the two sides are connected by the falternation of AIN! and ROUT!. In summary we get the following speciofication of the latch control unit (LCU).

File LCUspec.lotos
==================
specification LCUspec[RIN,AIN,ROUT,AOUT]: noexit behaviour LCUspec [RIN, AIN, ROUT, AOUT]
where
process LCUspec[RIN,AIN,ROUT,AOUT]: noexit:=
(CY2[RIN, AIN]|||CY2[ROUT, AOUT]) |[AIN, ROUT]| CY2[AIN, ROUT]
endproc
process CY2[A,B]:noexit: =
A; B; CY2 [A, B]
endproc
endspec

Here CY2[A,B] evidently means that A and B alternate.

```
FThe corresponding implementation (see [Sut89]) is represented by:
8
Nile LCUimp.lotos
    ====================
ospecification LCUimp[RIN,AOUT,AIN,ROUT]:noexit behaviour
                    LCUimp[RIN, AOUT,AIN, ROUT]
    Iwhere
        process LCUimp[A,B,Y,Z]:noexit:=
            ICEL[Z,A,Y]|[Y,Z]|ICEL[B,Y,Z]
        endproc
        process ICEL[A,B,Z]:noexit:=
        B;Z;CEL[A,B,Z]
        endproc
        process CEL[A,B,Z]:noexit:=
        A;B;Z;CEL[A,B,Z]
            []
        B;A;Z;CEL[A,B,Z]
        endproc
        endspec
        t is easy to prove that LCUimp |= LCUspec.
        9.1 Up-Down Counters
    =====================
    'There exists an interesting connection between LCUspec and an up-down
Fcounter with the range 0-3. To see this connection, we reformulate
QCUspec, hiding the signals AIN and ROUT. The relevant LOTOS-specifi-
    Ecation is shown in the file below.
        File udc4.lotos
        ===============
    ospecification UDC4[RIN,AOUT]: noexit behaviour
    U UDC4[RIN,AOUT]
    #where
        process UDC4[RIN,AOUT]:noexit:=
            hide AIN,ROUT in
            (CY2[RIN,AIN]|||CY2[ROUT,AOUT]) |[AIN,ROUT]| CY2[AIN,ROUT]
        endproc
        process CY2[A,B]:noexit:=
            A;B;CY2[A,B]
        endproc
    endspec
    ITo relate the above lotos-file to an up-down counter, we define the
ffollowing aut-file.
*
    File udcnt4.aut
T}===============
    Odes (0,6,4)
[-(0,RIN,1)
    (1,AOUT, 0)
    (1,RIN,2)
    (2,AOUT, 1)
    (2,RIN, 3)
    (3,AOUT, 2)
```

The above file evidently defines an up-down counter with range 0-3. Let udc4.aut be the LTS corresponding to udc4.lotos, defined above. Using aldebaran, we may establish obs. equivalence between udcnt.aut and udc4.aut.

The preceding considerations can be extended to a cascade of LCUs. An interesting alternative approach to micropipeline control circuits
and the related up-down counters is presented in [VERD]/examples/
micropipelines. Most of this material is easily reformulated using LOTOS/CADP. The relevant propositions can then be proven within our framework.
between such control circuits and UP-DOWN counters is also elaborated. Most of this material is easily formulated using LOTOS/CADP, and the relevant propositions can then be proven within our framework.

10: References
[EDIS] http://edis.win.tue.nl/
[EP92] J.C.Ebergen and A.M.G.Peters, Modulo-N Counters: Design and Analysis of Delay-Insensitive Circuits, in: J.Staunstrup and R.Sharp (Editors), Designing Correct Circuits, Elsevier Science Publ., 1992, pp. 27-46.
[Sut89] I.E.Sutherland, Micropipelines, (Turing Lecture), Comm. ACM, 32(6), pp. 720-738, 1989.
[YG2001] M.Yoeli and A.Ginzburg, LOTOS-based Verification of Asynchronous Circuits, Technical Report , Dept. of Computer Science, Technion, Haifa. http://www.cs.technion.ac.il/Reports/

