
VERIFICATION METHODOLOGIES FOR

FAULT-TOLERANT NETWORK-ON-CHIP

SYSTEMS

by

Zhen Zhang

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Electrical and Computer Engineering

The University of Utah

May 2016

Copyright c© Zhen Zhang 2016

All Rights Reserved

The University of Utah Graduate School

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Zhen Zhang

has been approved by the following supervisory committee members:

Chris J. Myers , Chair October 26, 2015
Date Approved

Wendelin Serwe , Member October 26, 2015
Date Approved

Hao Zheng , Member October 26, 2015
Date Approved

Kenneth S. Stevens , Member October 26, 2015
Date Approved

Priyank Kalla , Member October 26, 2015
Date Approved

and by Gianluca Lazzi , Chair of

the Department of Electrical and Computer Engineering

and by David B. Kieda, Dean of The Graduate School.

ABSTRACT

Over the last decade, cyber-physical systems (Cpss) have seen significant applications in

many safety-critical areas, such as autonomous automotive systems, automatic pilot avionics,

wireless sensor networks, etc. A Cps uses networked embedded computers to monitor and

control physical processes. The motivating example for this dissertation is the use of fault-

tolerant routing protocol for a Network-on-Chip (NoC) architecture that connects electronic

control units (Ecus) to regulate sensors and actuators in a vehicle. With a network allowing

Ecus to communicate with each other, it is possible for them to share processing power to

improve performance. In addition, networked Ecus enable flexible mapping to physical

processes (e.g., sensors, actuators), which increases resilience to Ecu failures by reassigning

physical processes to spare Ecus. For the on-chip routing protocol, the ability to tolerate

network faults is important for hardware reconfiguration to maintain the normal operation

of a system. Adding a fault-tolerance feature in a routing protocol, however, increases

its design complexity, making it prone to many functional problems. Formal verification

techniques are therefore needed to verify its correctness.

This dissertation proposes a link-fault-tolerant, multiflit wormhole routing algorithm,

and its formal modeling and verification using two different methodologies. An improvement

upon the previously published fault-tolerant routing algorithm, a link-fault routing algo-

rithm is proposed to relax the unrealistic node-fault assumptions of these algorithms, while

avoiding deadlock conservatively by appropriately dropping network packets. This routing

algorithm, together with its routing architecture, is then modeled in a process-algebra

language Lnt, and compositional verification techniques are used to verify its key functional

properties. As a comparison, it is modeled using channel-level Vhdl which is compiled to

labeled Petri-nets (Lpns). Algorithms for a partial order reduction method on Lpns are

given. An optimal result is obtained from heuristics that trace back on Lpns to find causally

related enabled predecessor transitions. Key observations are made from the comparison

between these two verification methodologies.

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . vi

LIST OF TABLES . ix

LIST OF ALGORITHMS . x

ACKNOWLEDGMENTS . xi

CHAPTERS

1. INTRODUCTION . 1
1.1 Model Checking . 1
1.2 Contributions . 3
1.3 Dissertation Outline . 4

2. MODELS OF CONCURRENT SYSTEMS . 6
2.1 A Brief Introduction to Process Algebra . 6
2.2 Behavioral Modeling and Verification in Cadp . 9

2.2.1 Lnt Module . 11
2.2.2 Lnt Process . 12
2.2.3 Channel-Level Communication in Lnt . 13
2.2.4 Nondeterministic Choice in Lnt . 15
2.2.5 Conditional Behaviors and Repetition in Lnt . 18

2.3 Behavioral Modeling and Verification in Lema . 21
2.3.1 Channel-Level Communication in Vhdl . 22
2.3.2 Probe and Parallel Communication . 26
2.3.3 Vhdl Control Structures . 30
2.3.4 Lpn Syntax and Semantics . 32

2.4 Conclusion and Discussion . 38

3. NOC ARCHITECTURE AND ROUTING ALGORITHM 40
3.1 NoC and Fault-tolerant Routing . 40
3.2 The Glass/Ni Routing Algorithm . 42
3.3 A Link-Fault-Tolerant Routing Algorithm . 46
3.4 Evaluating Packet Loss Rate for Single-Fault Tolerance 50
3.5 NoC Architecture for Multiflit Wormhole Routing . 53
3.6 Conclusion and Discussion . 56

4. FORMAL ANALYSIS USING CADP . 58
4.1 Background and Related Work . 58
4.2 Evolution of Formal NoC Models . 63

4.2.1 One Direction Routing . 64
4.2.2 Removing Arbiter’s Buffering Ability . 67
4.2.3 Finding Data Abstractions . 68

4.3 Removing Livelock to Improve Routing . 70
4.3.1 Potential Livelock Problem . 71
4.3.2 Eliminating Livelock . 75

4.4 Verification Results . 79
4.4.1 Deadlock Freedom and Single-link-fault Tolerance 81
4.4.2 Packet Delivery . 83
4.4.3 Livelock Freedom . 83

4.5 Conclusion and Discussion . 85

5. FORMAL ANALYSIS USING LEMA . 87
5.1 Background and Related Work on Por . 88
5.2 Por with Lpns . 89

5.2.1 Preparations . 90
5.2.2 Dependent Set . 92
5.2.3 Necessary Set . 93
5.2.4 Correctness and Time Complexity . 96
5.2.5 Evaluation of Trace-Back . 99
5.2.6 Comparisons Between Por-Tb with Compositional Minimization 103

5.3 Vhdl Model for the Two-by-Two NoC . 105
5.3.1 Modeling Nondeterministic Choice in Arbiters . 105
5.3.2 Router Models . 108

5.4 Verification Observations . 109
5.5 Conclusion and Discussion . 111

6. CONCLUSION . 112
6.1 Summary . 112
6.2 Future Work . 113

6.2.1 Large-scale NoC Verification Using Cadp . 114
6.2.2 Combining Static Analysis with Dynamic Analysis 115
6.2.3 Improving Partial Order Reduction on Lpns . 116
6.2.4 Stochastic Analysis . 117

REFERENCES . 118

v

LIST OF FIGURES

2.1 Cadp tool flow. 10

2.2 Block diagram for the producer-consumer example. 14

2.3 Top-level Lnt process for the producer-consumer example. 16

2.4 Producer, buffer, and consumer Lnt processes for the producer-consumer
example. 16

2.5 Block diagram for the modified producer-consumer example. 17

2.6 Producer Lnt process with nondeterministic choice. 17

2.7 Consumer Lnt process with nondeterministic choice. 18

2.8 Top-level Lnt process with nondeterministic choice for the modified producer-
consumer example. 18

2.9 Producer Lnt process with internal nondeterministic choice. 19

2.10 Producer Lnt process with the case behavior. 20

2.11 Producer Lnt process with repetition behaviors. 21

2.12 Lema tool flow. 22

2.13 Top-level Vhdl entity for the producer-consume example. 23

2.14 Producer Vhdl entity for the producer-consume example. 24

2.15 Buffer Vhdl entity for the producer-consume example. 25

2.16 Consumer Vhdl entity for the producer-consume example. 25

2.17 Producer Vhdl entity for the producer-consumer example with nondetermin-
istic choice. 27

2.18 Consumer Vhdl entity for the producer-consumer example with nondetermin-
istic choice. 28

2.19 Top-level Vhdl entity for the producer-consumer example with nondetermin-
istic choice. 29

2.20 Producer Vhdl entity for the producer-consumer example with internal non-
deterministic choice. 30

2.21 Producer Vhdl entity with a case statement. 31

2.22 Producer Vhdl entity with a breakable infinite loop statement. 32

2.23 Producer Vhdl entity with a while-loop statement. 33

2.24 Lpn for a simple producer-consumer model. 37

2.25 Lpn examples with failure and disabling failure transitions. 38

3.1 A 4-by-4 2D mesh network with 16 nodes. 43

3.2 A special case for negative edges in the Glass/Ni algorithm. 44

3.3 Deadlock caused by a link fault. 45

3.4 A fault lookahead mechanism. 46

3.5 Packet is dropped by node 21 to break deadlock. 47

3.6 One-away fault handling example. 48

3.7 Link buffer with tunable probability of failure. 49

3.8 A 2-by-2 mesh network with fault probability of pf on each link. 51

3.9 Network throughput vs. packet injection rate. 52

3.10 Packet loss rates for different routing algorithms. 53

3.11 Architecture of the nine routing nodes in a three-by-three mesh. 55

3.12 Illustration of a deadlock caused by a cyclic communication dependency. 56

4.1 Three vending machines. 60

4.2 Weak bisimulation equivalence. 61

4.3 Differences between weak and branching bisimulation. 62

4.4 Architecture of the two-by-two mesh. 64

4.5 A counterclockwise routing model. 65

4.6 The Lnt processes for arb_W_11 and r_S_11. 66

4.7 The Lnt process for the RI2 router. 70

4.8 The Lnt process for the arbiter corresponding to RI2. 71

4.9 Illustration of the problem with the abstract model. 72

4.10 The original and modified Lnt process for abstract r_N_10. 74

4.11 Illustration of the two circular paths and a livelock loop. 76

4.12 The new Lnt process for r_N_10. 77

4.13 Improved two-by-two NoC architecture with livelock removal. 78

4.14 Pseudo-code of the routing protocol. 80

5.1 Examples of refinements. 92

5.2 A simple producer-consumer Lpn model. 96

5.3 Full and reduced state graphs for the producer-consumer Lpn model. 97

5.4 Runtime and state count for the buffer examples with 1 to 20 buffers. 100

5.5 State count comparison between trace-back and behavioral analysis. 102

5.6 State counts and runtimes comparisons of the buffer examples with 1 to 20
buffers. 103

5.7 Memory comparison of the buffer examples with 1 to 20 buffers. 104

5.8 Vhdl entity for the arbiter with two inputs. 106
vii

5.9 Partial Vhdl entity for the two-input arbiter with negative acknowledgement. 107

5.10 Vhdl entity for the NoC PE router of node 10. 108

5.11 Vhdl entity for the west router of node 10. 110

viii

LIST OF TABLES

4.1 Ltss of the two-by-two NoCs generated for the verification of deadlock freedom
and one-fault tolerance. 81

4.2 Labels of the Lts’s corresponding to two-by-two NoCs generated for the
verification of deadlock freedom and one-fault tolerance. 83

5.1 Results for several asynchronous circuits models. 101

LIST OF ALGORITHMS

5.1 Ample set ample(s) computation. 90

5.2 Dependent set dependent(s, t, d) computation. 93

5.3 Necessary set necessary(s, ti, d) computation. 94

ACKNOWLEDGMENTS

I would like to thank my PhD advisor, Chris Myers. Chris introduced me to the world

of formal verification after I joined his research group, and has been patiently guiding me

to explore new knowledge in this field throughout my Ph.D. His guidance has significantly

helped me to acquire necessary skills to become a fine scholar. He taught me many things,

including academic paper writing, research presentation, and conducting paper reviews.

Most importantly, he taught me practical principles of analyzing a given complex engineering

problem: always start with a small and simplified version, and gradually build up the

understanding of the whole problem. I will forever be grateful to him for assisting me in

achieving my PhD.

I would not be the person I am today if it were not for my family. My wonderful parents,

Ling Zhu and Chunning Zhang, have been a great source of unconditional and continuous

love and support throughout my life. I will be forever indebted to their great effort in

providing me the best education opportunities.

I would also like to thank my lab mates, Curtis Madsen, Nicholas Roehner, Andrew

Fisher, Leandro Watanabe, and Tramy Nguyen. They each helped me to really become part

of the group. Curtis and Nic generously invited me to dinner parties on major American

holidays, provided an outlet to discuss frustrations, and hosted many fun board game nights.

Curtis was also a great companion for discussions on my research work. Nic shared many of

his thoughts with me on diverse topics from philosophy, music, and science fiction. Andrew

taught me numerous topics on mathematical foundations related to my own work and helped

me to get my thoughts straight. Leandro and Tramy provided discussions on topics of good

software practice for my Synthetic Biology Open Language Java library project. In addition,

I would like to thank the rest of my lab mates, Dhanashree Kulkarni, Robert Thacker, Satish

Batchu, and Kevin Jones for their help on the Lema tool; and Xiaojun Sun, Jinpeng Lv,

and Tim Pruss for conversations on computer algebra.

I would like to thank my committee, Wendelin Serwe, Hao Zheng, Ken Stevens, and

Priyank Kalla. Wendelin taught me process algebra and has been a source of inspiration on

many intellectually challenging problems. Hao exposed to me many verification techniques

that also inspired my own research work. Ken and Priyank provided valuable feedback on

my thesis and ideas for some future work.

Finally, I would like to thank all the past members of the lab who contributed to Lema.

Without their work, this work would not be possible. In particular, I would like to thank

Satish Batchu, Kevin Jones, Dhanashree Kulkarni, Robert Thacker, Scott Little, and David

Walter for their contributions to Lema.

This material is based upon work supported by the National Science Foundation under

grants CNS-0930510 and CNS-0930225. Any opinions, findings, and conclusions or recom-

mendations expressed in this material are those of the author(s) and do not necessarily reflect

the views of the National Science Foundation. Part of this work was performed during my

visit at the Inria Grenoble-Rhône-Alpes research centre.

xii

CHAPTER 1

INTRODUCTION

A cyber-physical system (Cps) is characterized by the tight interaction between a digital

computing component (the cyber part) and a continuous-time dynamical system (the phys-

ical part). A Cps uses networked embedded computers to monitor the physical processes

through feedback loops and issues adjustment control signals to them accordingly [1]. Cpss

nowadays have ubiquitous applications in many areas, such as avionics, advanced automotive

systems, robust medical devices, etc. One active area of Cps application is in the automotive

industry. Modern vehicles can have up to 80 electronic control units (Ecus) that control and

operate everything from the engine and brakes to door locks and electric windows. Currently,

each Ecu is statically tied to its specific sensors and actuators. This means that processing

power between different Ecus cannot be shared, which may degrade the performance of the

chip due to imbalanced workload on each Ecu. More importantly, this structure is suscepti-

ble to faults as if an Ecu fails, it causes a malfunction in the corresponding sensor/actuator.

With the advances in semiconductor technology, it is now possible to have multiple cores on a

single chip which communicate using a Network-on-Chip (NoC) paradigm. A NoC approach

allows flexible mapping between Ecus and sensors/actuators, which makes it possible for

Ecus to share processing power and tolerate faults by having spare units. Designing a

fully functional NoC system is challenging. Specifically, the routing algorithm implemented

on the NoC structure has to be fault-tolerant and guarantee deadlock freedom. Adding

fault-tolerance adaptivity to a routing algorithm increases its design complexity and makes

it prone to deadlock and other problems if improperly implemented.

1.1 Model Checking
To guarantee functional correctness of a complex NoC routing algorithm, formal ver-

ification techniques are needed to reason about its concurrent behavior. Model checking

is an automated technique for the verification of finite-state systems. It involves three

tasks [2]: modeling, specification, and verification. A mathematical model of the system of

interest is constructed using some formalism, such as labeled transition systems, Petri nets,

2

Büchi automata, etc. Model construction can be automated as a compilation task from a

high-level language to the language specified by the formalism. The next step is to specify

properties that the system must satisfy. Temporal logic has been widely used as a formalism

for this purpose, due to its ability to specify the system behavior over time. The last step

is to automatically build the state space of the system model, which means exhaustively

enumerating all states that are reachable by the model and all transitions in which the

system evolves from one state to another. The properties can be checked during or after

the state space construction of a model. If a violation of a property is identified, the model

checker usually terminates and reports a counterexample to the user. A counterexample is

an error trace consisting of a sequence of states and transitions that start from the initial

state to the state with the property violation. Many model checkers are capable of providing

accurate and shortest error traces to the user for debugging purposes. One advantage of

model checking is that it automates many verification tasks and does not rely much on

user’s special skills. The only places where human assistance is needed are specifying the

properties and analyzing the verification results. Also, many different kinds of properties

can be verified from the constructed state space of the system model [2, 3].

Model checking has been successfully applied to the verification of a variety of hardware

and software systems over the past few decades. It, however, suffers from the fundamental

difficulty of the state explosion problem for large-scale designs. This problem occurs when the

generated states during model checking become too large to fit into the computer memory.

Roughly speaking, the size of a state space grows exponentially with the number of processes

and variables in a system [2]. For example, for a system with n concurrent processes,

each of them having α states, then the state space for that system can be as large as

αn. Many techniques have been developed in recent years to address the state explosion

problem. Symbolic model checking [4, 5] has proven to be a powerful technique to deal with

the state space problem. Specifically, symbolic state representation such as ordered binary

decision diagrams (Obdds) [6] has provided a compact form for Boolean formulas. Efficient

algorithms [7] have been developed based on Obdds to verify designs with extremely large

state spaces. Bounded model checking (Bmc) [8] is another flavor of symbolic model checking

that is based on propositional decision procedures (Sat) [9]. The basic idea of Bmc is to

generate a propositional formula from a counterexample of a bounded length, and check the

propositional formula with a Sat solver. A satisfiable formula reported by the Sat solver

represents a concrete counterexample showing the property violation. Otherwise, the bound

is increased and the process repeats. Complete extensions to Bmc allow one to stop this

3

process at some point, with the conclusion that the property cannot be violated, hopefully

before the available resources are exhausted. Compositional verification techniques address

the state explosion problem from a different perspective. They either avoid generating the

global state space by performing local analysis on each component’s state space, e.g. [10–12],

or iteratively construct and minimize the local state space for a component and compose it

with other components to gradually form the state space for the whole system, e.g. [13, 14].

Abstraction [15, 16] computes an overapproximation of the original model by building a

small set of data values from the actual data values in the system based on a specified

mapping, and the resultant smaller system is used to verify properties at an abstract level

with less complexity [2]. Symmetry reduction [17–19] exploits the symmetry relation to

construct equivalence class representatives in the model, and limits the state search to them

in order to save memory and runtime. Partial order reduction (Por) [20–25], has been

proven to successfully reduce the state space for systems with concurrency, such as most

asynchronous systems. It exploits the commutativity of concurrently executed transitions,

which reach the same state when executed in a different order. Only one such order is

selected and executed, and thus the resultant state space is significantly smaller than that

generated by exploring all possible orders. There has been research work on combining the

said state reduction methods for better reductions. A combination of Por with symmetry

reduction in [26] shows a much smaller reduced state space than that obtained from applying

either method individually. Valmari [27] proposed a similar idea for deadlock detection for

colored Petri-nets. Por techniques have also been applied to symbolic Bdd-based invariant

checking [28]. An approach that combines compositional analysis with Por [29] extracts

dependency information from each component of a system and forms compositional rules for

global dependency information. Offline Por has also been combined with Bmc techniques

to show that threshold-based distributed algorithms have a similar execution of bounded

length [30, 31].

1.2 Contributions
Formal verification techniques are therefore needed to verify its correctness. This disser-

tation proposes a link-fault-tolerant, multiflit wormhole routing algorithm, and its formal

modeling and verification using two different methodologies.

Improving upon Glass and Ni’s routing algorithm [32] that assumes node faults, this

dissertation proposes a routing architecture extending that introduced by Wu et al. [33] to

a multiflit wormhole setting. It loosens Glass and Ni’s impractical assumption to achieve

4

link-fault tolerance, covering a wider range of link fault cases that Glass and Ni’s algorithm

fails to handle. Deadlock avoidance is implemented conservatively with adequate packet

drops to break the cycle of dependencies. Simulation results indicate that this algorithm

provides significant improvements in network reliability with minimal cost.

This link-fault routing algorithm is modeled in the process-algebraic language Lnt [34].

With the help of the Cadp verification tool box, formal analysis exposes design flaws leading

to false behaviors such as a packet leakage path leading to unintended packet drop and

deadlock caused by removing arbiter’s buffering capacity. To combat the notorious state

explosion problem, a data abstraction technique [35] is applied to map the destination coor-

dinates of a packet to a Boolean value representing its diversion status. Mismatch between

the abstract and concrete models leads to the discovery of a potential livelock problem due to

redundant packet diversions. Elimination of these diversions leads to an improved algorithm

that simplifies the routing architecture, enabling successful compositional verification. The

routing algorithm is proven to have several desirable properties, including deadlock and

livelock freedom, and tolerance to a single-link-fault [36].

As a comparison, the derived livelock-free routing protocol is modeled using the channel-

level Vhdl that is automatically compiled to labeled Petri-nets (Lpns) [37, 38] for ver-

ification using the Lema tool. Algorithms are described for an ample set-based partial

order reduction (Por) technique, which analyzes transition dependencies through a recursive

trace-back search on Lpns. A set with the least number of enabled transitions that need

interleaving is selected at each state. Cost and benefit of using trace-back are evaluated on

several nontrivial asynchronous circuit models, and are compared to Lnt models on a series

of buffers that uses asynchronous communication. Although Por achieves significant state

reduction on certain arbiter models, it is still outperformed by composition minimization

of Cadp on the corresponding Lnt models. Root cause of the difference is analyzed by

comparing the Lnt and Lpn specifications.

1.3 Dissertation Outline
This dissertation is organized as follows. Syntax and semantics of the two modeling

formalisms, namely Lnt and Lpn, are presented in Chapter 2. Examples of asynchronous

channel models are presented in Lnt first, and correspondingly, in the channel-level Vhdl,

which is then automatically compiled to Lpns. Common features and differences of these

models are described in this chapter.

Chapter 3 describes Glass and Ni’s fault-tolerant routing algorithm on a two-dimensional

mesh network, and demonstrates, with examples, how this and other similar routing algo-

5

rithms fail to handle link-faults. This chapter then describes the proposed link-fault-tolerant

routing algorithm and its architectural design. The deadlock avoidance mechanism is

explained in detail with some illustrative examples.

The Lnt specification of the link-fault model is presented in Chapter 4. Lessons learned

during the design process are described, followed by a description of the data abstraction

that enables verification of deadlock freedom and single-link-fault tolerance. This chapter

then describes the discovery of a potential livelock problem. In the process of eliminating

this problem, an improved routing architecture is derived. The improvement simplifies the

routing architecture, enabling successful verification using the Cadp verification toolbox.

The routing algorithm is proven to have several desirable properties, including deadlock and

livelock freedom, and tolerance to a single-link-fault.

Chapter 5 describes an alternative way of modeling and verification of the same link-

fault-tolerant NoC routing protocol using the Lema tool. It presents in detail a partial order

reduction method on Lpns with trace-back that optimally reduces unnecessary transition

interleavings for state reachability analysis, avoiding exploring unimportant state-transition

sequences. The cost and benefits of using trace-back are evaluated on a series of asynchronous

circuits examples. Comparisons of state reduction and performances are drawn between Lnt

and Lpn on a series of asynchronous buffer examples. Vhdl models for the representative

routers and arbiters are described for the livelock-free link-fault-tolerant routing protocol

that is presented in the pervious chapter. They are automatically compiled to Lpns which

are used for state exploration by Lema. Although partial order reduction manages to achieve

significant state reduction on certain arbiter models, it is still outperformed by composition

minimization of Cadp on the corresponding Lnt models. Key observations are made on

the comparison of the Lnt and Lpn specifications.

Finally, Chapter 6 concludes this dissertation by giving a summary of the work and by

presenting future research directions.

CHAPTER 2

MODELS OF CONCURRENT SYSTEMS

This chapter introduces the underlying model constructs for the behavioral modeling of

the NoC routing architecture in subsequent chapters. It starts with a brief introduction of

major process algebraic approaches in providing formal syntax and semantics of concurrent

systems. The rest of the chapter focuses on describing key modeling constructs in terms of

two approaches: the process algebraic language Lnt, and the channel-level Vhdl that can

be automatically compiled to the Lpn modeling formalism. Both modeling languages are

introduced first with their respective verification environment, followed by a detailed descrip-

tion of communication channels, nondeterministic choice, parallel composition, and a subset

of the control structures that are relevant to the modeling of NoC routing architectures.

2.1 A Brief Introduction to Process Algebra
Over the last forty years, process algebras have witnessed significant success in provid-

ing formal semantics of concurrent systems towards verification and validation. Process

algebras are mathematical models of processes that are abstractions of components of a

system that continuously interact with each other and with their common environment. A

process algebra often provides process terms that are generated from its abstract syntax

for specifying components of a system, and an operational semantics that associates each

term with a Labeled Transition System (Lts) that consists of a set of states, a transition

relation, and a set of transition labels. The three main approaches in providing semantics of

syntactically correct process terms are operational, denotational, and algebraic semantics,

with the operational semantics playing a central role in all process algebras. Moreover, a

process algebra usually includes mechanisms for observing behavioral equivalences between

two systems or between an abstract and a concrete one.

At its core, the abstract syntax of a process algebra defines operators in that language. It

consists of combinations of elementary terms and operators, both of which are the ingredients

for building basic process terms. Starting with a set of basic processes and actions, one

can build new processes. Common operators in almost all known process algebras include

7

nondeterministic and parallel compositions of processes; the abstraction operation such as

the hiding, restricting, and renaming operators that limit the interface of a process; and

modeling infinite behaviors from finite operations.

An operational semantics provides an abstract machine-based view of computation by

treating a program as a Lts. Based on structural induction offered by the Structural

Operational Semantic (SOS) [39], each process term (or operator) is specified by a set of

inference rules that describe its behavior through the behaviors of its composing components,

each of which has its own process term that is specified by the corresponding set of inference

rules. In fact, each process term can be considered as a component that can interact with

other components or with its environment. Regarding its association with a Lts, process

algebra terms are represented as states in their corresponding Ltss; actions are described

by a transition relation going from a given state to its next possible one; and the visibility of

each action is denoted by its corresponding transition label. With features from structural

induction, the Lts of a complex system can be composed from its component Ltss. A

denotational semantics establishes a mapping from a language to an abstract model so

that the meaning of a program is determined by the meaning of each of its immediate

subcomponents. Ideally, the abstract model should be able to describe the “essence” of

programs in the language that is mapped to it. Semantic clauses for different operators can

then be devised in order to specify semantic properties of a program that consists of these

operators. An algebraic semantics is defined by a set of algebraic laws that are basic axioms

of an equational system.

Behavioral equivalences are useful in proving whether two systems are equivalent or

how one system approximates the other. Specifically, during an incremental process of

constructing a system’s Lts, one can replace a subcomponent by its behaviorally equivalent

abstract counterpart without affecting the overall behavior of the system. Built in the

definitions of different behavioral equivalences are aspects of behaviors that can or cannot

be ignored. It is, therefore, necessary to know the properties that a behavioral equivalence

preserves, as process equivalence is defined in terms of what equalities can be proved using

them. Families of major behavioral equivalences are reviewed in Chapter 4.

The process algebra Calculus of Communicating Systems (Ccs) [40, 41] was introduced

by Robin Milner around 1980. Actions in Ccs model atomic, two-way communications,

i.e., nondivisible communications between exactly two participants, and common operators

such as (binary) parallel composition, nondeterministic selection, restriction, and relabeling

operations, etc. The basic semantics of Ccs is operational where each Ccs process term is

8

associated with a Lts. This allows the development of theories for its behavioral equivalences

to be based on Ltss. A successor of Ccs, π-calculus [42], was developed by Milner et al.

to target the description of concurrent systems with dynamically changing configurations

during the computation.

Another well-known process algebra is the Communicating Sequential Processes (Csp)

invented by C.A.R. Hoare [43, 44]. It was designed with the goal of providing a notation

and theory for the analysis of different components of a system interacting with each other

through communication, and has served as a mechanism for understanding and applying

concurrency theory extensively over the years. Unlike Ccs whose original design was pro-

vided with operational semantics, Csp has been given a number of denotational semantics,

mainly based on sets of behaviors such as traces, failures, and divergences, which are used

for deciding process equivalence. The operational semantics of Csp, heavily influenced by

the work on Ccs, was historically developed to provide an alternative view in addition to

its denotational semantics. Many tools that support Csp both for teaching and industrial

applications have emerged over the years, and have contributed significantly to the formal

description and (automated) analysis of industrial-sized problems. A comprehensive text

on the fundamental theories and applications of Csp can be found in [45]. It is worth

mentioning that the maturity of Csp in modeling communication and concurrency lent

itself to many other domain-specific languages. For instance, the Communicating Hardware

Processes (Chp) by Martin [46], and the Tangram language by van Berkel et al. [47], were

adapted from Csp for modeling and designing asynchronous VLSI systems.

Taking from a more abstract and completely different viewpoint of process algebra, the

Algebra of Communicating Processes (Acp) [48] provides a purely algebraic approach to

concurrency theory. ACP takes process algebra as a mathematical structure, which consists

of a set of processes and a set of operators such as sequential, nondeterministic, or parallel

composition, communication, etc. All operations satisfy conditions governed by a set of

axioms that are usually presented as a set of formal equations. Operational semantics and

behavioral equivalences are possible models over which the algebra can be defined and the

axioms can be applied.

The Language Of Temporal Ordering Specification (Lotos) is yet another process alge-

bra that was developed and standardized within International Standards Organization for

specifying and verifying communication protocols during the years 1981-1988 [49]. The goal

was to provide an unambiguous, precise, and complete formal description language with a

well-defined basis for the verification and validation of the Open Systems Interconnection

9

(OSI) telecommunication standards. Borrowing features from both Csp and Ccs, Lotos

handles process behaviors that are common to both process algebras. It uses gates that

correspond to Csp channels for specifying communication, and extends this feature to do

multiway synchronization that is not in either Ccs or Csp; and the nondeterministic choice

in Lotos follows the Ccs style with an internal event, but its parallel composition follows the

Csp approach [50]. Additionally, it is able to describe data structures and value expressions

using abstract data type technique ACT-ONE [51].

2.2 Behavioral Modeling and Verification in Cadp
The Construction and Analysis of Distributed Processes1 (Cadp) toolbox has been

employed in many industrial projects for the design and analysis of asynchronous concurrent

systems. More than 150 case-studies have been published, covering a wide range of applica-

tions, such as shared-memory mutual exclusion protocols [52], mobile ad hoc networks [53],

dynamic management protocol for cloud applications [54], and logical regulatory modules

for intercellular networks in Biology [55]. The modeling formalism is the Lnt language, a

process algebraic formal specification language that has been developed and implemented in

the Cadp toolbox since 2005. The Lnt language has its roots in the Lotos language. The

Lotos language, however, has limited data types that do not meet the users’ needs and

cannot handle real-time constraints. Extensions with significant improvements to the Lotos

language have been made and included in the Lnt language, such as fully imperative syntax

and semantics, the Rich Term Syntax notations, etc. The Rich Term Syntax notations allow

complicated data types to be expressed naturally in Lnt, compared to the Lotos abstract

data types. One example is the limited range of integers, i.e., integers between 0 and 9,

in the Lotos NATURAL library. To express numbers greater than 9, one has to use Succ.

For instance, the natural number 12 in Lnt is expressed as Succ(Succ(Succ (9))) in

Lotos. The Rich Term Syntax also provides standard notations for literal constants (e.g.,

lists, sets, strings) in Lnt. Combining features from process calculi, and both functional

and imperative languages, the concise and expressive power of the Lnt language gives it

many advantages in formally specifying complex concurrent systems.

Figure 2.1 shows a subset of tools from the Cadp toolbox for model checking of a Lnt

model. The input Lnt model is translated into a Lotos specification in two steps: the

Lpp tool first expands the Rich Term Syntax notations in the Lnt model into lower-level

algebraic terms that are compatible with the Lotos syntax, after which the Lnt2lotos

1http://cadp.inria.fr

10

LPP & LNT2LOTOS

LOTOS

CÆSAR.ADT
 & CÆSAR

LTS

C code

BCG_MIN reduced_LTS

EVALUATOR4

TRUEFALSE

LNT

MCL property

counterexample

Figure 2.1: Cadp tool flow.

tool translates the preprocessed Lnt specification into a complete Lotos specification. It

is then compiled by the abstract data type compiler Cæsar.Adt, which translates the data

part of the Lotos specification into C types and functions. They are used by the Cæsar

tool to compile the behavioral part of the Lotos specification into either a C program or

a Labeled Transition System (Lts). The C program can be executed and simulated, as

well as embedded in real applications to allow rapid prototyping. The Lts can be used for

equivalence checking and/or model checking with temporal logic properties. Stored as the

Binary Coded Graph (Bcg) format, a Lts can be minimized by the Bcg_min tool according

to strong, branching, or divergence-sensitive branching bisimulation relations. To model

check a temporal logic property expressed as Model Checking Language (Mcl) formulas,

the Evaluator4 tool performs on-the-fly verification on the given Lts, and produces the

verification results (true or false). A false result may optionally be accompanied by a

counterexample in the form of a transition sequence or an Lts. Cadp features the Script

Verification Language (Svl) [56], which automates invocations of all aforementioned tools.

11

2.2.1 Lnt Module

A module in the Lnt language is the basic building block for specifying models of a

system. It is formally defined as

lnt_file ::= module M [(M0, . . . , Mm)]

[with predefined_function0, . . . , predefined_functionn] is

module_pragma1 . . . module_pragmap

definition0 . . . definitionq

end module

where (M0, ...,Mm) is a set of imported module identifiers. All definitions in the imported

modules are visible to module M and can be used by definitions in this module. Predefined

functions defined by the LNT_V1.lib library provide data operations over both the six basic

types, i.e., Booleans, natural numbers (Nat), integers (Int), real numbers (Real), characters

(Char), and strings (String), as well as nonbasic types, e.g., list, sorted list, set. Details

of these functions are described in Chapter 5 and Appendix C of [34]. Module pragmas

can modify the default ranges of the three predefined types: natural numbers, integers, and

strings. For example, “!nat_bits 3” limits the number of bits to 3 for all variables of type

Nat, and “!string_card 5” limits the maximal cardinality of String to 5.

Each definition in a module defines one of the four entities: type, function, channel, or

process. The type and function definitions allow specifications of customized data types

and their operations, and the channel definition allows one to specify a set of gate profiles

with custom gate types. These entities are described here informally with examples, and

their grammar and semantics are defined in [34]. The process definition is given detailed

explanations in the following sections.

In the following example, a data type NodeRange is defined as a closed range [0, 4] of

natural numbers, and Coordinates is defined as a pair of natural numbers, each of type

NodeRange. The Coordinates type declares predefined functions get to retrieve its x and y

values, and the infix function “!=” to do inequality check based on structural equivalence

between two values of type Coordinates. The infix function “+” defines the addition operation

of two values typed NodeRange as being added as natural numbers, and returns the result in

NodeRange type.

12

module datatypes i s
type NodeRange i s

range 0 . . 4 of Nat
end type

type Coordinates i s
Coordinates (x : NodeRange , y : NodeRange)
with " get " , "!="

end type

function _+_ (x , y : NodeRange) : NodeRange i s
return NodeRange (Nat (x) + Nat (y))

end function end module

A channel is defined as a set of gate profiles, each of which defines a list of gate types.

Consider the type T and channel C, defined as follows:
type T i s
Request , Response
end type
channel C i s (T) end channel

The channel C includes two gates, namely “Request” and “Response”. Two gates are

considered as having compatible type, if and only if both are polymorphic or are declared

with the same channel identifier. A channel is similar to the Vhdl port declaration described

in Section 2.3.1.

2.2.2 Lnt Process

A system’s behavior can be described using Lnt processes, formally defined as follows:

process_definition ::= process Π [[gate_declaration0,...,gate_declarationm]]

[(formal_parameters1,...,formal_parametersn)]

[raises exception_declaration0,...,exception_declarationk] is

process_pragma1...process_pragma l

B

end process

where the process has a unique identifier Π, and can optionally be parameterized by a list

of formal gates, a list of formal variables, and a list of formal exceptions. The optional list

of process pragmas provides instructions for translating Lnt source code to Lotos and C.

The process body B describes the behavior.

Gate declarations specify all communicating gates that are visible to other processes.

Formal gate parameters must declare their types, which can be either a channel Γ or a

polymorphic type using the any keyword:

13

gate_declaration ::= G0,...,Gn:Γ

| G0,...,Gn:any

Each of the formal parameters in the process definition can be declared with one of the

three modes: the default mode in denotes a constant parameter whose value can be changed

locally by a process and the change remains invisible to other processes; the out mode

requires a parameter to be assigned to a value locally, and the value is visible outside the

process after its execution terminates; and the inout mode describes a modifiable parameter,

which has an initial value that may be modified by a process locally and is visible after

the process termination. For the behavior description B, this chapter highlights behaviors

related to the modeling of communication, concurrency, and certain control structures. The

complete description of behaviors is shown in Chapter 7 of [34].

2.2.3 Channel-Level Communication in Lnt

The Lnt language uses multiway gate rendezvous with data exchange to model commu-

nications between different processes. Two-way gate rendezvous can be used for modeling

the channel-level communication. The behavior expression “G [(O0,...,On)] [where V]”

specifies a potential rendezvous on gate G. Data exchange at a gate rendezvous is described

as a list of offers O0,...,On. The optional condition expression V has to evaluate to true

for the gate rendezvous to take place, and this expression uses values received by the offers

O0,...,On. An offer is either output or input, defined as:

O ::= [X =>] [!]V

| [X =>] ?P

where an output offer, “[!]V ”, describes an emission of value expression V and an input

offer, “?P ”, corresponds to the reception of a value matching pattern P . There are two

effects of the pattern matching of a value V with a pattern P : it returns a true if V has

the same structure as P , otherwise it returns a false; if V matches P , the variables used by

P are initialized with the values extracted from V . Detailed grammar of patterns and their

corresponding matching effects are provided in Chapter 6 of [34].

The semantics of gate rendezvous is that the communication is blocked by values in the

offers on both sending and receiving ends waiting for the rendezvous, and the corresponding

process executions are suspended until the rendezvous takes place. In general, Lnt does

not differentiate the sender and the receiver, and it is possible to have both sending and

receiving offers on one gate.

14

In order to specify the connections among multiple processes, the parallel composition

construct can be used. The grammar for the parallel composition has the following form:

par [G0,...,Gn in]

[G(0,0),...,G(0,n0) ->] B0

‖ ... ‖

[G(m,0),...,G(m,nm) ->] Bm

end par

Each gate specified by the optional global synchronization gate set “{G0,...,Gn}” requires

that it appears in the gate declaration in every behavior that participates in the parallel

composition. A global synchronization gate communication occurs if and only if all behaviors

“B0, ..., Bm” can make this communication simultaneously. Omission of the global synchro-

nization gate set means no such gate exists in the parallel composition. Each behavior

Bi(∀i ∈ [0,m]) has an optional synchronization interface consisting of the set of gates

{G(i,0),...,G(i,n0)}. A gate communication in a behavior’s synchronization interface can

happen if and only if all behaviors specifying this gate in their respective communication

interfaces can make this communication simultaneously. Omission of a synchronization

interface of behavior Bi means that its synchronization is empty. The global synchronization

gate set is a shorthand notation for gates that appear in every behavior’s synchronization

interface. Any behavior in the parallel composition can instantiate a process with the

form:

Π [[actual_gates]] [(actual_parameter1,...,actual_parametern)]

where process Π is instantiated with its gates and optional parameters substituted by

actual_gates and a list of actual parameters.

A producer-consumer example is shown in Figure 2.2. The top-level Lnt module,

�������� �������
����������������

�������
������������

��������
����������������

Figure 2.2: Block diagram for the producer-consumer example.

15

“producer_consumer”, specified in Figure 2.3, implements this block diagram by instantiating

one producer, two buffer, and one consumer processes, which are specified in Figure 2.4.

It connects these instantiated processes through actual gates listed in their respective syn-

chronization interfaces. Note that one of the modules in a model specification must be the

principle module where the root process is included. The root process is a process with no

value parameters and is named main. Each of the producer, the buffer, and the consumer

processes has a loop construct that makes the process repeat infinitely without exiting.

The producer process first declares an internal variable data, and then initializes it with a

nondeterministic assignment that returns a value of type Nat ranging from 0 to 3. It then

emits this value as an offer on the p_to_b gate. Connected to this gate is the input gate

buf_in of the buffer process. Both gates are replaced by the actual gate producer_to_buf1

when their processes are instantiated in the producer_consumer module. Both processes have

to simultaneously agree on a rendezvous on this gate. The input offer in a gate rendezvous

uses pattern matching, which only admits offers that match its specified pattern. If the

buffer process expected a Boolean input value instead, such as buf_in(?any Bool), the gate

rendezvous could never take place due to matching failure. A successful pattern matching

assigns values of the sender’s offers to variables used by the receiver’s pattern. In this

example, a rendezvous on gate producer_to_buf1 assigns the value stored in the producer’s

local variable data to the first buffer’s local variable data. On receiving the value from the

producer, this buffer is ready to relay it to the second buffer by doing a gate rendezvous

between its output gate buf_out and the second buffer’s input gate buf_in. In a similar

fashion, the value is finally passed to the consumer. Note that in the buffer process, a

sequential composition of two rendezvous gates, i.e., “buf_in(?data); buf_out(data)”, implies

that buf_in(?data) is executed first, and if it terminates normally, then buf_out(data) is

executed with the variable value updated by buf_in(?data). This ensures that the correct

value is passed from the input to the output of a buffer.

Another feature of the parallel composition construct is that all behaviors “B0, ..., Bm”

placed in parallel run concurrently. For example, a gate rendezvous on producer_to_buff1

occurs between producer and the first buffer, and simultaneously the second buffer and

consumer may communicate on gate buff2_to_consumer.

2.2.4 Nondeterministic Choice in Lnt

The nondeterministic choice among a finite number of behaviors B1, ..., Bn is expressed

as select B1 [] ... [] Bn end select in Lnt. It first executes all choices of behaviors

16

module top (producer , consumer , bu f f e r) i s
process main [producer_to_buf1 , buf1_to_buf2 , buf2_to_consumer : any] i s

par
producer_to_buf1 −>

producer [producer_to_buf1]
| |

producer_to_buf1 , buf1_to_buf2−>
bu f f e r [producer_to_buf1 , buf1_to_buf2]

| |
buf1_to_buf2 , buf2_to_consumer −>

bu f f e r [buf1_to_buf2 , buf2_to_consumer]
| |

buf2_to_consumer −>
consumer [buf2_to_consumer]

end par
end process
end module

Figure 2.3: Top-level Lnt process for the producer-consumer example.

module producer i s
process producer [p_to_b : any] i s

loop
var data : Nat in

data := any Nat where (data <= 3) ;
p_to_b(data)

end var
end loop

end process
end module

module bu f f e r i s
process bu f f e r [buf_in , buf_out : any] i s

loop
var data : Nat in

buf_in (? data) ;
buf_out (data)

end var
end loop

end process
end module

module consumer i s
process consumer [b_to_c : any] i s

loop
b_to_c(?any Nat)

end loop
end process
end module

Figure 2.4: Producer, buffer, and consumer Lnt processes for the producer-consumer
example.

17

��������

������������������������

�������

����������������� ��������

��������������

��������������

Figure 2.5: Block diagram for the modified producer-consumer example.

B1, ..., Bn, and the first action (i.e., gate rendezvous, internal action, or termination)

executed by one of the behaviors determines the result of the choice.

As an example, the producer-consumer example is modified to give both the producer

and consumer a choice to send to or receive from two data buffers. The block diagram is

shown in Figure 2.5. The Lnt specification is presented in Figures 2.6 to 2.8. The producer

process now repeatedly selects to communicate with one buffer: the data are sent only to a

buffer whose input gate is ready for synchronization; if both input gates of the two buffers

are ready, the choice is nondeterministic; if neither gate is ready, then the producer process

blocks until one buffer’s input gate becomes ready. Note that the choice is nondeterministic

only when both buffer’s inputs are simultaneously ready to communicate with the producer.

It is, however, deterministic when only one buffer’s input is ready.

If one wants to model a choice that is independent of the gate rendezvous availability,

an internal action i can be inserted as the first action for each choice behavior. In the

producer process, both internal actions are always ready to execute without needing to wait

module producer i s
process producer [p_to_b1 , p_to_b2 : any] i s

loop
var data : Nat in

data := any Nat where (data <= 3) ;
select

p_to_b1(data)
[]

p_to_b2(data)
end select

end var
end loop

end process
end module

Figure 2.6: Producer Lnt process with nondeterministic choice.

18

module consumer i s
process consumer [b1_to_c , b2_to_c : any] i s
loop

select
b1_to_c (?any Nat)

[]
b2_to_c (?any Nat)

end select
end loop
end process
end module

Figure 2.7: Consumer Lnt process with nondeterministic choice.

module top (producer , consumer , bu f f e r) i s
process main [producer_to_buf1 , producer_to_buf2 ,

buf1_to_consumer , buf2_to_consumer : any] i s
par

producer_to_buf1 , producer_to_buf2 −>
producer [producer_to_buf1 , producer_to_buf2]

| |
producer_to_buf1 , buf1_to_consumer −>

bu f f e r [producer_to_buf1 , buf1_to_consumer]
| |

producer_to_buf2 , buf2_to_consumer −>
bu f f e r [producer_to_buf2 , buf2_to_consumer]

| |
buf1_to_consumer , buf2_to_consumer −>

consumer [buf1_to_consumer , buf2_to_consumer]
end par

end process
end module

Figure 2.8: Top-level Lnt process with nondeterministic choice for the modified producer-
consumer example.

to synchronize with other gates. This is shown in Figure 2.9. Once an internal action is

executed to resolve the choice, the producer only waits on communicating with one buffer,

even though the other one might already be ready to synchronize.

2.2.5 Conditional Behaviors and Repetition in Lnt

Conditional behaviors are usually used to model systems with conditional flow controls.

The most common conditional behaviors in Lnt are the if and case constructs. The if

construct has the following grammar:

19

module producer i s
process producer [p_to_b1 , p_to_b2 : any] i s

loop
var data : Nat in

data := any Nat where (data <= 3) ;
select

i ;
p_to_b1(data)

[]
i ;
p_to_b2(data)

end select
end var

end loop
end process
end module

Figure 2.9: Producer Lnt process with internal nondeterministic choice.

[only]if V0 then B0

[elsif V1 then B1

...

elsif Vn then Bn]

[else Bn+1]

end if

where each of the expressions V0, ..., Vn must evaluate to Boolean type. Another conditional

behavior is the case construct. It is equipped with the pattern-matching feature like most

functional languages. The case behavior has the following form:

case V in

[var var_declaration0,...,var_declarationn in]

match_clause0 -> B0

| ...

| match_clausem -> Bm

end case

where the first behavior whose matching clause evaluates to true is executed. A match

clause has either a specific or generic pattern. The generic pattern is identified by the

keyword any:

match_clause ::= P0 [where V0] | ... | Pn [where Vn]

| any [where V]

20

module producer i s
process producer [p_to_b1 , p_to_b2 : any] i s

var data : Nat in
data := 3 ;
loop

case data in
Succ (data) −> p_to_b1(data)

|
any −>

p_to_b2(data) ;
data := 3

end case
end loop

end var
end process
end module

Figure 2.10: Producer Lnt process with the case behavior.

An expression matches “P where V ” if it first matches the pattern P , and the evaluation

of V in the context of variables bound by the matching returns the Boolean value true.

Figure 2.10 shows a producer process with the case behavior. The process starts by

assigning an initial value of 3 to variable data. It then repeatedly executes the case behavior

to perform pattern matching on the value of data. The function Succ takes a natural number

and returns its successor number. It is an example of a constant pattern. Pattern-matching

of a value V with a constant pattern F(P0,...,Pn) returns a Boolean value true if it is equal

to the value, or false otherwise. To make it clear to explain, let us rename the argument

of this function to data′ for the moment. For the value of data to match this constant

pattern, it has to be equal to the value returned by this function, i.e., data == Succ(data′).

It is obvious that data′ has to be the predecessor of data to satisfy this condition. The

case pattern Succ(data) then binds the value of variable data to that of data′, effectively

reassigning data the value of its own predecessor. Since the behavior is a repeated loop,

this value is reused for the next iteration of the case behavior. Matching of the “Succ(data)”

pattern keeps occurring in each iteration, which decrements the value of “data” by 1 until it

becomes 0. After its value reaches 0, the next iteration of the case behavior fails to match

this pattern since no natural number’s successor is 0. Matching of the generic pattern occurs

instead and the value is reset to 3. The behavior of this producer is that it repeatedly does

the following sequence of steps: it first sends values 2, 1, 0 on gate “p_to_b1”, and then

sends value 0 on gate “p_to_b2”.

The Lnt language supports several repetition behaviors. The previous examples have

shown the forever loop, i.e. “loop B0 end loop”. This behavior is useful especially for

modeling hardware processes, which usually execute their instructions forever. On the

21

module producer i s
process producer [p_to_b1 , p_to_b2 : any] i s

loop
var data : Nat in

data := 3 ;
loop L in

case data in
Succ (data) where data > 1 −> p_to_b1(data)

|
Succ (data) where data == 1 −> p_to_b2(data)

|
any −> break L

end case
end loop −− L

end var
end loop

end process
end module

Figure 2.11: Producer Lnt process with repetition behaviors.

other hand, a breakable loop “loop L in B0 end loop” can exit on a loop break behav-

ior “break L”. Conditional loops include while and for loops, and their definitions and

semantics are detailed in [34]. Figure 2.11 shows a breakable loop L nested inside a forever

loop for a producer process. It exits when the value of “data” decrements to 0. This producer

repeatedly sends value 2 on gate “p_to_b1”, and then sends value 1 on gate “p_to_b2”.

2.3 Behavioral Modeling and Verification in Lema
The Lpn Embedded Mixed-signal Analyzer (Lema) tool has been developed for the formal

modeling and verification of speed-independent asynchronous circuits [57], timed circuits

[58–60], analog-and-mixed-signal circuits [61, 62], assembly language software [37, 63], and

genetic circuits [64, 65]. This tool supports, among many others, models described in the

channel-level Vhdl [66]. Drawing inspirations from Csp, the channel model added the

notion of the probe operations [67]. Vhdl stands for VHSIC (Very High Speed Integrated

Circuits) Hardware Description Language. It was originally developed by the U.S. Depart-

ment of Defence as a means to document the behavior of integrated circuits in the mid-1980s.

It has become one of the industry’s standard languages for describing digital systems. It has

built-in parallelism to assist concurrency modeling of hardware systems. Taking a high-level

Vhdl model description, the Lema tool compiles it into Lpns [68, 69] that are used for

model checking as shown in Figure 2.12. State reachability analysis is performed on the set

of Lpns, with the option of applying on-the-fly state reduction techniques such as automatic

abstraction [37], partial order reduction, and compositional minimization [57]. If a deadlock,

or a violation of a safety property is found, a counterexample consisting of a state-transition

22

������������� ���

��������������
����������������

���
��������

�������
��������
�����������

����

��������������

Figure 2.12: Lema tool flow.

sequence that leads to the failure state is returned. Deadlock is reported when a state

without any outgoing transitions is found. The safety property that can be checked during

the reachability analysis is encoded by a failure transition, and it is the enabling of such a

transition that causes a safety property violation. Alternatively, a Reduced State-transition

Graph (Rsg) is generated from the reachability analysis.

2.3.1 Channel-Level Communication in Vhdl

The channel-level communication in Vhdl describes point-to-point communication in-

volving data exchange between two concurrently operating processes. A channel provides a

means for two-way communication: it allows both participants to perform synchronization

operations for passing data from one end to the other. Figures 2.13 to 2.16 show the Vhdl

description for the same producer-consumer Lnt example in Figures 2.3 and 2.4, whose block

diagram is shown in Figure 2.2. The first three lines of comments in Figure 2.13 indicate

the name of the file.2 The next line indicates that the standard IEEE library is used, and

it is followed by a line defining the standard logic data type. The next two lines include

the nondeterminism and the channel packages which are described in Appendix A of [66].

The nondeterminism package defines functions for producing random delays or selections

for simulations. The channel package defines data types and operations on channels.

The remaining part of this Vhdl file describes a design entity that consists of an entity

declaration and an architecture body. The entity declaration is used to describe the interface

of a design. In this example, it is simply empty because the entire system does not have any

inputs or outputs. The architecture body describes the entity in one of the following ways:

behavioral, structural, or a combination of both. It consists of a declaration section and

a concurrent statement section. The declaration section can include definitions of signals,

constants, etc., as well as components that declare other lower-level entities that can be

2In Vhdl, comments start with “–” and extend to the end of the line.

23

−−−−−−−−−−−−−−−−−−−−−−−−
−−− top− l e v e l e n t i t y −−−
−−−−−−−−−−−−−−−−−−−−−−−−
l ibrary i e e e ;
use i e e e . std_logic_1164 . a l l ;
use work . nondeterminism . a l l ;
use work . channel . a l l ;

entity top i s
end top ;
architecture s t r u c tu r e of top i s

component producer
port (p_to_b : inout channel) ;

end component ;
component buf

port (buf_in : inout channel ;
buf_out : inout channel) ;

end component ;
component consumer

port (b_to_c : inout channel) ;
end component ;
signal producer_to_buf1 : channel := in i t_channe l ;
signal buf1_to_buf2 : channel := in i t_channe l ;
signal buf2_to_consumer : channel := in i t_channe l ;

begin
THE_PRODUCER : producer

port map(p_to_b => producer_to_buf1) ;
BUF1 : buf

port map(buf_in => producer_to_buf1 ,
buf_out => buf1_to_buf2) ;

BUF2 : buf
port map(buf_in => buf1_to_buf2 ,

buf_out => buf2_to_consumer) ;
THE_CONSUMER : consumer

port map(b_to_c => buf2_to_consumer) ;
end s t r u c tu r e ;

Figure 2.13: Top-level Vhdl entity for the producer-consume example.

instantiated. Like the Lnt language, hierarchical modeling support in Vhdl allows entities

to be instantiated and composed by a top-level structural entity. Three components, namely

“producer”, “buf”, and “consumer”, are declared by this top-level entity “top”. The entity

declaration for the producer specifies its interface by declaring its port “p_to_b1”. The

component declaration is followed by signal declarations of the three channels that are

shared between the producer and the first buffer, the first buffer and the second buffer, and

the second buffer and the consumer, respectively, which correspond to the labels on the

block diagram shown in Figure 2.2. The concurrent statement part makes instantiations

of one producer, two buffers, and one consumer. An instantiation begins with the instance

name followed by a component name. For example, the first buffer is named “BUF1 ” and is

an instance of the buf component. The next part is the port map, which associates ports in

each instantiated component with the signals declared in the top-level entity. The “buf_in”

port of the “BUF1 ” instance is connected to “producer_to_buf1”, which also connects the

24

l ibrary i e e e ;
use i e e e . std_logic_1164 . a l l ;
use work . nondeterminism . a l l ;
use work . channel . a l l ;

entity producer i s
port (p_to_b : inout channel := in i t_channe l) ;

end producer ;
architecture behavior of producer i s

signal data : s td_log ic_vector (1 downto 0) := "11" ;
begin

producer : process
begin

data <= s e l e c t i o n (4 , 2) ;
wait for delay (5 , 1 0) ;
send (p_to_b , data) ;

end process producer ;
end behavior ;

Figure 2.14: Producer Vhdl entity for the producer-consume example.

the “p_to_b” port of the producer instance named “THE_PRODUCER”. The rest of the

instantiations for other entities are similar.

The Vhdl description for the producer is shown in Figure 2.14. The entity declaration

section for the producer specifies its interface by declaring its port: p_to_b. A port

declaration defines its data flow direction, i.e. in for an input, out for an output, and

inout for either an input or an output. In this example, every channel is set to inout to

allow signals to flow in both directions. Bidirectional flow is necessary because although

data always flows in one direction, the handshake communication signals on each channel

flow in both directions. The next part of the port declaration is the port types. The

port for the “producer” entity has a channel type, and is initialized by the function call

init_channel. Port initialization here is optional. Similar port declarations are specified in

the entity declarations for the consumer and buffer entities, respectively. The architecture

body begins with a signal definition, “data”, that stores the value that is passed between

communicating blocks. It is of type std_logic_vector which is an array of std_logic signals.

The std_logic type has nine values, including the binary values 0 and 1, unknown value

X, the uninitialized value U, the “don’t care” value “-”, the high impedance value Z, and

symbols indicating weak strength signals (e.g., L for weak 0, H for weak 1, and W for weak

unknown). The std_logic type is defined in the std_logic_1164 package of the IEEE library.

The value for each of the signals is encoded by a 2-bit-wide std_logic_vector. The value

stored in “data” is sent out by the producer, and is initialized to “00”.

The concurrent statement section, started with “begin” and ended with “end behavior”,

describes the behavior of each entity in this example with a process statement. A process

25

l ibrary i e e e ;
use i e e e . std_logic_1164 . a l l ;
use work . nondeterminism . a l l ;
use work . channel . a l l ;

entity buf i s
port (buf_in : inout channel := in i t_channe l ;

buf_out : inout channel := in i t_channe l) ;
end buf ;
architecture behavior of buf i s

signal data : s td_log ic_vector (1 downto 0) ;
begin

buf : process
begin

r e c e i v e (buf_in , data) ;
send (buf_out , data) ;

end process buf ;
end behavior ;

Figure 2.15: Buffer Vhdl entity for the producer-consume example.

l ibrary i e e e ;
use i e e e . std_logic_1164 . a l l ;
use work . nondeterminism . a l l ;
use work . channel . a l l ;

entity consumer i s
port (b_to_c : inout channel := in i t_channe l) ;

end consumer ;
architecture behavior of consumer i s

signal data : s td_log ic_vector (1 downto 0) ;
begin

consumer : process
begin

r e c e i v e (b_to_c , data) ;
−−wait f o r de lay (1 , 1) ;

end process consumer ;
end behavior ;

Figure 2.16: Consumer Vhdl entity for the producer-consume example.

statement begins with an optional label followed by the keyword “process”. Each process

statement runs concurrently, but the statements within a process are executed sequentially.

Also, sequential execution of these statements in a process loop forever. The buffer and con-

sumer processes shown in Figures 2.15 and 2.16 have similar structures. Two procedure calls

appearing in the behavior description of this example are send and receive. Each procedure

takes two parameters: a channel to communicate on and a std_logic or std_logic_vector

signal with a value to be transmitted. Both procedures are defined in the channel package.

The producer first randomly assigns a value to “data” by calling the selection function

defined in the nondeterminism package. It takes two integer parameters: the first is the

number of choices, and the second is the number of bits of the returned std_logic_vector. In

this example, “ selection (4,2)” returns a two-bit std_logic_vector with four possible choices.

26

Therefore, the value of “data” can be “00”, “01”, “10”, or “11”. After a value is assigned to

“data”, the producer calls the delay function to wait for a random period of time ranging

from 5 to 10 time units. Defined in the nondeterminism package, this function takes two

integer parameters as its lower and upper bound, and returns an integer number randomly

drawn from the uniformly distributed range that is set by the given bounds. The producer

initiates the communication with “BUF1” by calling the send procedure to transmit the

value of “data” on channel “p_to_b”. Execution of this procedure waits, i.e., blocks the

sequential statements execution in the producer process, until the “BUF1” process is ready

to receive the value on the same channel, at which time they synchronize to allow the

producer to send the value to “BUF1”. The “BUF1” process calls the receive procedure to

complete the communication by accepting the value from the producer and storing it in

“data”. On successfully receiving this value, the “BUF1” process then communicates with

“BUF2” by calling the send procedure to initiate transmission of the value of “data2” on

channel “buf1_to_buf2”. Following the similar behavior, data transmission from “BUF1” to

“BUF2” and from “BUF2” to “THE_CONSUMER” is achieved through synchronization of the

respective send and receive pairs. Note that since each process runs concurrently, com-

munication between “THE_PRODUCER” and the “BUF1” can happen while simultaneously

communication between the “BUF2” and “THE_CONSUMER” happens. For the purpose of

simulation, it is necessary to have either a wait statement or a sensitivity list in every Vhdl

process so that no single process execution dominates forever, starving other processes. An

implicit wait statement is included in both the send and receive procedures.

2.3.2 Probe and Parallel Communication
To model a behavior with nondeterministic choice of channel communications, it is

necessary to introduce the probe function that is defined in the channel package. Taking a

channel as a parameter, it returns either true if there is a pending communication on that

channel, or false otherwise. This function allows an entity to peek a channel in order to

determine if it needs to respond to a pending communication on that channel. With the

probe function, one can model behaviors with nondeterministic choice.

The Vhdl specifications in Figures 2.17 to 2.19 model the same Lnt behavior presented

in Figures 2.6 to 2.8. After assigning a random value to “data” and then waiting for a

delay, the producer first checks for any pending communications on both of its channels

“p_to_b1” and “p_to_b2”. This is achieved with the procedure call to await_any, which

waits until any of the channels have pending communications. If neither one has a pending

communication, it halts the producer process until at least one pending communication is

27

entity producer i s
port (p_to_b1 : inout channel := in i t_channe l ;

p_to_b2 : inout channel := in i t_channe l) ;
end producer ;
architecture behavior of producer i s

signal data : s td_log ic_vector (1 downto 0) := "00" ;
begin

producer : process
variable z : i n t e g e r ;
begin

data <= s e l e c t i o n (4 , 2) ;
wait for delay (5 , 1 0) ;
await_any (p_to_b1 , p_to_b2) ;
i f (probe (p_to_b1) and probe (p_to_b2)) then

z := s e l e c t i o n (2) ; −− r e tu rns e i t h e r a 1 or a 2
i f (z = 1) then

send (p_to_b1 , data) ;
else

send (p_to_b2 , data) ;
end i f ;

e l s i f (probe (p_to_b2)) then
send (p_to_b2 , data) ;

else
send (p_to_b1 , data) ;

end i f ;
wait for delay (1 , 1) ;

end process producer ;
end behavior ;

Figure 2.17: Producer Vhdl entity for the producer-consumer example with nondetermin-
istic choice.

detected. This behavior is described by a wait statement that is comprised of a keyword wait

until and a Boolean condition. Only when this formula evaluates to true can the producer

process continue to execute the rest of its behavior. Once a pending communication on a

channel is detected, the producer sends its data on that channel. This behavior is modeled

by the if statement with conditions that are Boolean connections of the probing result on

each channel. The if statement is a type of selection statement that is used to specify

conditional flow controls. Other Vhdl control structures are introduced in Section 2.3.3.

When pending communications on both channels are detected, the producer randomly selects

a channel with equal probability: the “ selection (2)” function returns a value of either 1 or

2 with equal probability, based on which decision is made to communicate with a buffer.

When a pending communication is detected only on one channel, the producer sends its data

on that channel. Note that in the producer process, the two if statements cover all possible

value combinations so that one of them is guaranteed to execute. Otherwise, an explicit

wait statement needs to be added to avoid starving other processes during simulation.

28

entity consumer i s
port (b1_to_c : inout channel := in i t_channe l ;

b2_to_c : inout channel := in i t_channe l) ;
end consumer ;
architecture behavior of consumer i s

signal data : s td_log ic_vector (1 downto 0) ;
begin

consumer : process
variable z : i n t e g e r ;

begin
await_any (b1_to_c , b2_to_c) ;
i f (probe (b1_to_c) and probe (b2_to_c)) then

z := s e l e c t i o n (2) ; −− r e tu rns e i t h e r a 1 or a 2
i f (z = 1) then

r e c e i v e (b1_to_c , data) ;
else

r e c e i v e (b2_to_c , data) ;
end i f ;

e l s i f (probe (b2_to_c)) then
r e c e i v e (b2_to_c , data) ;

else
r e c e i v e (b1_to_c , data) ;

end i f ;
wait for delay (1 , 1) ;

end process consumer ;
end behavior ;

Figure 2.18: Consumer Vhdl entity for the producer-consumer example with nondeter-
ministic choice.

29

entity top i s
end top ;
architecture s t r u c tu r e of top i s

component producer
port (p_to_b1 : inout channel ;

p_to_b2 : inout channel) ;
end component ;
component bu f f

port (buf f_in : inout channel ;
buff_out : inout channel) ;

end component ;
component consumer

port (b1_to_c : inout channel ;
b2_to_c : inout channel) ;

end component ;
signal producer_to_buff1 : channel := in i t_channe l ;
signal producer_to_buff2 : channel := in i t_channe l ;
signal buff1_to_consumer : channel := in i t_channe l ;
signal buff2_to_consumer : channel := in i t_channe l ;

begin
THE_PRODUCER : producer

port map(p_to_b1 => producer_to_buff1 ,
p_to_b2 => producer_to_buff2) ;

BUFF1 : bu f f
port map(buf f_in => producer_to_buff1 ,

buff_out => buff1_to_consumer) ;
BUFF2 : bu f f

port map(buf f_in => producer_to_buff2 ,
buff_out => buff2_to_consumer) ;

THE_CONSUMER : consumer
port map(b1_to_c => buff1_to_consumer ,

b2_to_c => buff2_to_consumer) ;
end s t r u c tu r e ;

Figure 2.19: Top-level Vhdl entity for the producer-consumer example with nondetermin-
istic choice.

30

entity producer i s
port (p_to_b1 : inout channel := in i t_channe l ;

p_to_b2 : inout channel := in i t_channe l) ;
end producer ;

architecture behavior of producer i s
signal data : s td_log ic_vector (1 downto 0) := "00" ;
signal se lected_chan : s td_log ic_vector (0 downto 0) ;

begin
producer : process
variable z : i n t e g e r ;
begin

data <= s e l e c t i o n (4 , 2) ;
z := s e l e c t i o n (2) ;
wait for delay (5 , 1 0) ;
i f (z = 1) then

send (p_to_b1 , data) ;
else

send (p_to_b2 , data) ;
end i f ;
−−wait f o r de lay (1 , 1) ;

end process producer ;
end behavior ;

Figure 2.20: Producer Vhdl entity for the producer-consumer example with internal
nondeterministic choice.

The behavior of the consumer, shown in Figure 2.18, is symmetrical to that of the

producer: it waits until a buffer requests a communication; it has a choice of receiving from

either of the two buffers, depending on which one is available to communicate, and a random

choice is made equally between them when both are ready. Note that the uniform random

distribution is deployed for the realization of the nondeterministic choice. It is possible to

assign other random distributions to model nondeterminism. The buffer’s behavior remains

the same as the previous example.

To model a nondeterministic choice independent of a channel’s availability to commu-

nicate, the producer can be modified such that it selects a channel to communicate first,

after which it waits for a pending communication on the selected channel before sending

the data. The behavioral description for the producer is shown in Figure 2.20. The integer

signal “z” stores the two possible outcomes of the random choice: 1 or 2. If the value is 1,

communication is expected on channel “p_to_b1”, otherwise channel “p_to_b2” is expected

to deliver the data.

2.3.3 Vhdl Control Structures

For system models with conditional flow controls, Vhdl provides selection and repetition

statements. Two selection statements of interest are the if statement and case statement.

The repetition statements in Vhdl include the infinite loop, the while-loop, and the for-loop.

31

entity producer i s
port (p_to_b1 : inout channel := in i t_channe l ;

p_to_b2 : inout channel := in i t_channe l) ;
end producer ;

architecture behavior of producer i s
signal data : s td_log ic_vector (1 downto 0) := "11" ;

begin
producer : process
begin

case data i s
when "11" | "10" | "01" =>

data <= std_log ic_vector (unsigned (data) − 1) ;
wait for delay (1 , 1) ;
send (p_to_b1 , data) ;

when others =>
send (p_to_b2 , data) ;
data <= "11" ;
wait for delay (1 , 1) ;

end case ;
wait for delay (1 , 1) ;

end process producer ;
end behavior ;

Figure 2.21: Producer Vhdl entity with a case statement.

The if statement was introduced with examples in Section 2.3.2. This section describes the

following three statements: case, infinite loop, and while-loop, through several examples.

The case statement in Vhdl checks the value of a single expression, based on which it

executes the one statement whose choice matches that value. The modified producer example

presented in Figure 2.21 is a reproduction of the Lnt code in Figure 2.10. It initially assigns

“data” the two-bit binary-encoded value 3, and then repeatedly executes the following steps:

it sends values 2, 1, and 0 on channel “p_to_b1”, then it sends value 0 on channel “p_to_b2”,

after which “data” is reset to 3. Comparing to Lnt, the Vhdl case statement lacks the

pattern-matching feature, and does not allow a nonstatic expression (e.g., a function) in

any of its choice clauses. The choice can only be either a static expression (e.g., 5, 4|6|8)

or a range expression (e.g., 4 to 9). Therefore, the value decrement of the data needs to be

explicitly expressed in “data <= std_logic_vector(unsigned(data) − 1)”.

Since Vhdl was designed to document the behavior of integrated circuits that mostly

repeat forever, the language inherently implies an infinite loop for every process. It is also

possible to specify a breakable infinite loop internal to a process. Figure 2.22 shows a

modified producer that uses a breakable infinite loop. Exhibiting the same behavior as the

Lnt model in Figure 2.11, it repeatedly sends two-bit binary value 10 on channel “p_to_b1”

and 01 on channel “p_to_b2”. For other data values, a loop break “ exit L” occurs. As a

result, the consumer receives the alternation of both values. One can create an equivalent

model with a while-loop statement together with a signal to exit the loop. An example

32

entity producer i s
port (p_to_b1 : inout channel := in i t_channe l ;

p_to_b2 : inout channel := in i t_channe l) ;
end producer ;

architecture behavior of producer i s
signal data : s td_log ic_vector (1 downto 0) ;

begin
producer : process
begin

data <= "11" ;
wait for delay (1 , 1) ;
L : loop

case data i s
when "11" =>

data <= std_log ic_vector (unsigned (data) − 1) ;
wait for delay (1 , 1) ;
send (p_to_b1 , data) ;

when "10" =>
data <= std_log ic_vector (unsigned (data) − 1) ;
wait for delay (1 , 1) ;
send (p_to_b2 , data) ;

when others => exit L ;
end case ;

end loop ;
wait for delay (1 , 1) ;

end process producer ;
end behavior ;

Figure 2.22: Producer Vhdl entity with a breakable infinite loop statement.

Vhdl entity is presented in Figure 2.23. The signal “breakloop” is used to determine whether

the execution remains in the while-loop if its condition evaluates to false, or exists the loop

if the condition evaluates to true.

2.3.4 Lpn Syntax and Semantics

The high-level Vhdl model description can be automatically compiled to a Lpn formal

representation by the Lema tool. The conversion is necessary as the model-checking engines

shown in Figure 2.12 are based on this formalism. This section describes the Lpn model

that is used to model the systems to be verified.3

A Lpn is a 1-safe Petri net in which the transitions have been labeled with expressions

on auxiliary variables to represent when transitions can occur and how they update the

system state. A Lpn is a tuple 〈P, T, F,M0, B,X, S0, Y0, L, Tf , Tp, Td〉 where:

• P is a finite set of places;

3The version of the Lpn model used in this chapter is a limited form of the one described
in [37, 38]. In particular, this version does not include continuous variables and includes only a
limited form of the delay assignments. This form is, however, sufficient to describe the asynchronous
and concurrent systems described in this thesis.

33

entity producer_while i s
port (p_to_b1 : inout channel := in i t_channe l ;

p_to_b2 : inout channel := in i t_channe l) ;
end producer_while ;

architecture behavior of producer_while i s
signal data : s td_log ic_vector (1 downto 0) := "11" ;
signal breakloop : s td_log i c ;

begin
producer_while : process
begin

data <= "11" ;
breakloop <= ’ 0 ’ ;
wait for delay (1 , 1) ;
L : while (breakloop = ’0 ’) loop

case data i s
when "11" =>

data <= std_log ic_vector (unsigned (data) − 1) ;
wait for delay (1 , 1) ;
send (p_to_b1 , data) ;

when "10" =>
data <= std_log ic_vector (unsigned (data) − 1) ;
wait for delay (1 , 1) ;
send (p_to_b2 , data) ;

when others =>
breakloop <= ’ 1 ’ ;
wait for delay (1 , 1) ;

end case ;
end loop L ;
wait for delay (1 , 1) ;

end process producer_while ;
end behavior ;

Figure 2.23: Producer Vhdl entity with a while-loop statement.

• T is a finite set of transitions;

• F ⊆ (P × T) ∪ (T × P) is the flow relation;

• M0 ⊆ P is the set of initially marked places;

• B is a finite set of Boolean variables;

• X is a finite set of integer variables;

• S0 : B → {0, 1} is the initial value for each Boolean variable;

• Y0 : X → Z is the initial value for each integer variable;

• L is a tuple of labels defined below;

• Tf ⊆ T is a finite set of failure transitions;

• Tp ⊆ T is a finite set of persistent transitions;

• Td ⊆ (T − Tp) is a finite set of disabling failure transitions.

34

The first four elements define an ordinary Petri net. The places, P , represent the states,

the transitions, T , represent the state transitions, and the flow relation, F , expresses the

connectivity between the places and transitions. The initially marked places, M0, are the

initial states for each process. The next five elements define the auxiliary Boolean, B,

and integer, X, variables, their initial values, S0 and X0, respectively, and the transition

labels, L, that use these variables. Finally, the last two elements are used to indicate special

transition types which are described in more detail below.

Before the labels are defined, the grammar used by the labels must first be presented.

The grammar of a Lpn can be categorized into the numerical portion and the Boolean

portion. The numerical portion is defined as follows:

χ ::= c | x | (χ) | − χ | χ+ χ | χ− χ | χ ∗ χ | χ/χ | χχ |

NOT(χ) | OR(χ, χ) | AND(χ, χ) | XOR(χ, χ) | INT(φ)

where c is a rational constant from Q, x is an integer variable, and the arithmetic operators

are defined as usual. The functions NOT, OR, AND, and XOR are bit-wise logical oper-

ations, and they are only applicable to integers and assume a 2’s complement format with

arbitrary precision. The function INT converts a Boolean true value to an integer 1 and

false value to an integer 0. The set Pχ is defined to be all formulas that can be constructed

from the χ grammar. The Boolean portion of the grammar is defined as follows:

φ ::= true
∣∣∣ false

∣∣∣ b ∣∣∣ BIT(χ, χ)
∣∣∣ ∼ φ ∣∣∣ φ & φ

∣∣∣ φ | φ ∣∣∣
χ = χ

∣∣∣ χ ≥ χ ∣∣∣ χ > χ
∣∣∣ χ ≤ χ ∣∣∣ χ < χ

where b is a Boolean variable, BIT(α1, α2) extracts bit α2 from α1, and the logical and

relational operators are defined as usual. The set Pφ is defined to be all formulas that can

be constructed from the φ grammar.

The grammar used by the delay expression is defined as follows:

ψ ::= 0 | UNBOUNDED

where 0 is an integer value 0, and the function UNBOUNDED indicates that the delay

is unbounded and can be any value between 0 and +∞. The set Pψ is defined to be all

formulas that can be constructed from the ψ grammar.

Each Lpn transition is labeled with an enabling condition and a set of assignments which

can now be defined as follows, L = 〈En,DA,BA,XA〉:

• En : T → Pφ labels each transition t ∈ T with an enabling condition.

35

• DA : T → Pψ labels each transition t ∈ T with a delay expression.

• BA : T × B → Pφ labels each transition t ∈ T and Boolean variable b ∈ B with the

Boolean assignment made to b when t fires.

• XA : T ×X → Pχ labels each transition t ∈ T and integer variable x ∈ X with the

integer variable assignment made to x when t fires.

Note that many assignments on a transition may be vacuous in that they do not change a

variable’s value (i.e., BA(t, b) = b or XA(t, x) = x).

A strongly connected set of places and transitions in a Lpn is referred to as a process. A

system model can have a set of concurrent sequential processes that communicate through

the variables in the labels. Indeed, in all of the models used in this thesis, each process

includes only a single marked place in any state. Therefore, if preferred, the reader can

consider the model as essentially a form of communicating finite state machines.

This section gives a brief description of the semantics focusing on the Lpn model pre-

sented in the previous section. A more formal and complete Lpn semantics description can

be found in [37, 38]. A state of a Lpn is a tuple 〈M,E, S, Y 〉 whereM is the current marking,

E is the set of enabled transitions at this state, S is the current value of the Boolean variables,

and Y is the current value of the integer variables. For any transition t ∈ T , its preset is

denoted by •t = {p | (p, t) ∈ F} and postset is denoted by t• = {p | (p, t) ∈ F}. Presets and

postsets for places are defined similarly. The evaluation function, eval, is defined to take an

expression and the values of the variables and return the evaluation of the expression. A

transition is enabled in a state if it satisfies all of the following conditions:

1. All of the places in its preset are marked (i.e., •t ⊆M).

2. One of the following conditions is satisfied:

(a) Its enabling condition function En(t), evaluates to true (i.e., eval(En(t), S, Y) =

true).

(b) It is a persistent transition and has not been fired since it was enabled in a

previous state.

Once a persistent transition is enabled, it cannot become disabled by its enabling condition

becoming false. The only way to disable a persistent transition after it becomes enabled is

to either remove the marking from its preset place or fire it.

36

Any enabled transition t can be selected to fire leading to a new state 〈M ′, E′, S′, Y ′〉

from the current state 〈M,E, S, Y 〉. The new state is defined as follows:

M ′ := (M − •t) ∪ t •

S′(b) := BA(t, b) ∀b ∈ B

Y ′(x) := XA(t, x) ∀x ∈ X

E′ := {t′ | • t′ ⊆M ′ ∧
(
(En(t′), S′, Y ′) = true

)
∨
(
t′ ∈ Tp ⇒ (t′ ∈ E ∧ t′ 6= t)

)
}

Firing of a transition also depends on its type of delay expression: an immediate transition

has a constant 0 delay and it gets fired immediately once enabled; an unbounded transi-

tion has a nonzero positive delay and can fire once enabled, but only after firings of all

simultaneously enabled immediate transitions.

The aforementioned three transition types indicate differences in interpretation when a

transition is enabled or disabled, allowing us to express correct behaviors and failures. The

first type of failure occurs when a transition from the failure set, Tf , fires. Actually, it is

sufficient to indicate a failure once it becomes enabled, since at that point, there certainly

exists a failure as it can be chosen as the next transition to fire. Failure transitions are useful

for describing a variety of different types of safety properties. After a transition fires and

changes the state, the enabling condition of some enabled transitions may become disabled.

The default behavior in this case is that these transitions are no longer considered to be

enabled and cannot fire until their enabling condition becomes true again. If this transition

is in the disabling failure set, Td, this disabling is considered a failure. Disabling failure

transitions are useful for describing circuit hazards (i.e., glitches on gates). In some cases,

it is desirable to disallow the disabling of a transition in a model, and these transitions are

members of the persistent transition set, Tp.

A simple producer-consumer model is shown in Figure 2.24. The model has only one

communication channel p_to_c that transmits a value 3 from the producer to the consumer.

The generated Lpn shown on the right of this figure includes two processes. The process

on the left models the producer while the process on the right models the consumer. This

Lpn includes places which are labeled ip0, ip1, ip2, ip3, ip4, and ip5. The places are

marked to indicate the current state. Places ip4 and ip5 are initially marked. Transitions

in this figure are labeled p_to_c_sendP1, p_to_c_sendM1, d_0P1, p_to_c_rcvP1,

p_to_c_rcvM1, and d_1P1. The Lpn also includes Boolean variables p_to_c_send

and p_to_c_rcv which are both initially false, and integer variables p_to_c_data, d0,

and d1 that have initial values of 0, 3, and 0, respectively. Each transition is labeled

37

entity producer_consumer i s
end producer_consumer ;

architecture behavior of producer_consumer i s
signal p_to_c : channel := in i t_channe l ;
signal d0 : s td_log ic_vector (1 downto 0):="11" ;
signal d1 : s td_log ic_vector (1 downto 0) ;

begin
producer : process
begin

send (p_to_c , d0) ;
end process producer ;
consumer : process
begin

r e c e i v e (p_to_c , d1) ;
end process consumer ;

end behavior ;

p_to_c_sendP1
[0]

<p_to_c_send:=true,p_to_c_data:=d0>

ip3

d_1P1
{~p_to_c_send}

[0]

ip5

p_to_c_rcvM1
{p_to_c_send}

[0]
<p_to_c_rcv:=false,d1:=p_to_c_data>

ip0

d_0P1
{~p_to_c_rcv}

[0]

ip4

p_to_c_rcvP1
[0]

<p_to_c_rcv:=true>

ip1

p_to_c_sendM1
{p_to_c_rcv}

[0]
<p_to_c_send:=false>

ip2

Figure 2.24: Lpn for a simple producer-consumer model.

with an enabling condition, a delay expression, and a set of assignments. For example,

transition p_to_c_rcvM1 has enabling condition {p_to_c_send}, delay expression [0]

and assignments 〈p_to_c_rcv := false, d1 := p_to_c_data〉. Intuitively, these labels

indicate that transition p_to_c_rcvM1 is only enabled when p_to_c_send evaluates to

true, and it fires immediately after it becomes enabled, and when it fires, it performs

the specified assignments. The transition p_to_c_rcvM1, though, is not enabled in the

initial state because place ip1 is not initially marked. In the initial state, transitions

p_to_c_sendP1 and p_to_c_rcvP1 are the only enabled transitions because they have

true enabling conditions (default when not shown) and their input places (i.e., ip4 and ip5)

are marked. Assume that p_to_c_sendP1 fires first setting p_to_c_send to true and the

integer variable p_to_c_data is assigned the value stored in d0, which is 3. The marking is

also transferred from ip4 to ip3. In this new state, only transition p_t_c_rcvP1 is enabled,

since p_to_c_rcv is false. After firing p_to_c_rcvP1, the value of p_to_c_rcv becomes

true and ip1 is marked. In this state, both p_to_c_sendM1 and p_to_c_rcvM1 are

enabled. Note that all transitions are persistent. Otherwise, the firing of one transition

would disable the other, creating a race condition and leading to incorrect behavior of the

model.

Figure 2.25a shows a Lpn with a failure transition. Its enabling condition specifies that

if any pair of the Boolean variables crit1, crit2, and crit3 is true, the failure transition

is enabled. This Lpn can be used to check for violations of mutual exclusion when three

processes compete for entering the critical section. In Figure 2.25b, the Lpn for a two-input

38

t_fail
{(crit1&crit2)|(crit1&crit3)|(crit2&crit3)}

[0]

p0

(a) Failure transition.

in2 = true
in1 = true
out = false

t2
[0]

<in1:=false>

t1
{~in1|~in2}

[0]
<out:=false>

p0

t0
{in1&in2}

[0]
<out:=true>

p1

p2

(b) Two-input AND gate.

Figure 2.25: Lpn examples with failure and disabling failure transitions.

AND gate has two disabling failure transitions, t0 and t1. Assume the two input signals are

both true in the state shown in Figure 2.25b. Both transition t0 and t2 are enabled. It is

possible that an input signal in1 glitches if t2 fires before t0. The result is that the gate has

a hazard which is typically considered a failure in an asynchronous circuit.

2.4 Conclusion and Discussion
This chapter presents detailed examples in both Lnt and channel-level Vhdl for the

modeling of concurrent systems with emphasis on the channel-level communication, non-

deterministic choice, parallel composition, as well as various data flow constructs. The

formal definition and semantics of a subset of Lpns are described, followed by a channel-level

communication example compiled from the Vhdl description and examples indicating safety

properties using different notions of failure transitions.

For the channel-level communication without probe, the model in Vhdl corresponds

to the two-way gate rendezvous in Lnt. The offers on a Lnt gate can take on all data

types specified by its syntax while the data type on a Vhdl channel is limited to either

std_logic or std_logic_vector. It is, however, possible to convert other types in Vhdl to

either of these types with additional steps. The channel definition in Vhdl uses Csp-

like notation for events, which clearly distinguishes the “send” from the “receive” action.

The Lnt gate does not have this distinction which makes it capable to send and receive

39

multiple offers in one rendezvous. Gate rendezvous in Lnt performs pattern matching

that implements exchange of values in its offers. At the Lpn level, the simple “send-and-

receive” communication on a channel is represented with six transitions with two additional

handshake signals (Figure 2.24), compared to one gate-synchronization action in Lnt.

Another difference of channel communication is the probe operation in Vhdl. Lnt lacks

direct support for this operation, although a complex implementation of the general probe

operation is possible [70]. When multiple gates are used as choice behaviors in its nondeter-

ministic construct, the choice is fair. In other words, no priority is inferred when a choice

needs to be resolved between two gates that are simultaneously ready for communication.

Implementing a priority choice is difficult as it requires probing the possibility of a gate

rendezvous.

Pattern matching built in the case construct in Lnt allows clause matching and possible

variable assignments to be combined in one step, compared to two separate steps in Vhdl.

Despite these differences in modeling constructs and semantics, this dissertation shows that

both can be used successfully to represent the behavior of a fault-tolerant NoC router.

CHAPTER 3

NoC ARCHITECTURE AND ROUTING

ALGORITHM

This chapter introduces the motivating example for this research work: a NoC archi-

tecture that supports the link-fault-tolerant routing algorithm [33] extended to a multiflit

wormhole routing setting. Various fault-tolerant routing design methodologies are surveyed

first. This chapter then describes in detail the Glass and Ni routing algorithm [32] on

a two-dimensional (2D)-mesh topology, followed by an analysis of limitations of its fault

tolerance ability. In particular, cyclic deadlock exists on a link fault, and it fails to handle

one-away link faults. The link-fault-tolerant algorithm [33] is then introduced to fix these

issues, but it pays the price of packet drop to break cycles. Simulation results indicate that

this algorithm provides significant improvements in network reliability with minimal cost.

Lastly, an extended architecture for link-fault routing is suggested to allow simultaneous

processing of multiple multiflit packets.

3.1 NoC and Fault-tolerant Routing
With the advances in process technology, multicore architecture has been replacing single-

core architecture due to performance improvement. The NoCcommunication paradigm has

been widely investigated for future Multiprocessor Systems-on-Chips (MPSoCs) and Chip

Multiprocessors (CMPs) [71, 72]. Early works such as [73] adapted asynchronous designs to

implement on-chip networks. Recent work on asynchronous NoCs [74–82] has demonstrated

many advantages over the corresponding synchronous designs, such as elimination of complex

clock distribution, ability to easily interface with multiple clock domains, and lower power

consumption.

Communication in NoCs operates as exchanges of data packets between the communi-

cating nodes. A packet follows a certain path to reach its destination through the network,

and its path is determined by the routing algorithm. Routing algorithms, therefore, can

significantly impact the communication performance of the entire NoC. Different routing al-

gorithms exhibit different degrees of adaptivity. The nonadaptive routing algorithm chooses

41

one of the shortest paths to route a packet from the sender to the receiver. For example,

XY-routing routes a packet along the x-direction first, then along the y-direction to its

destination. Routing algorithms that allow some but not all packets to use any of the

shortest paths are identified as partially adaptive. One example of a partially adaptive

routing algorithm is the turn model routing algorithm introduced by Glass and Ni in [83].

This algorithm eliminates the formation of deadlocks by preventing particular turns in the

network. Lastly, the fully adaptive routing algorithms route packets on any shortest path.

Boura et al. [84] and Chien et al. [85] provide fully adaptive routing with the help of virtual

channels.

Another important feature of a NoC routing algorithm is its tolerance to network faults.

It requires such an algorithm to provide built-in redundancy in communication that can

be used for hardware reconfiguration, so that an alternative link can be chosen to route

around a dead node to maintain the normal operation of the system. This is accomplished

by dynamically redirecting packets to avoid failures in the network. To tolerate permanent

faults, a reconfigurable routing table, e.g., [86, 87], is deployed to precompute and store

routes to avoid faulty links. This approach, however, cannot tolerate transient faults. Virtual

channels have been extensively used to provide fault tolerance in various routing algorithms

(e.g., [88–90]). Duato analyzes in [91] the effective redundancy for adaptive fault-tolerant

routing algorithms, which requires at least four virtual channels per physical channel. Note

that virtual channels are not free. The use of virtual channels introduces extra area and

energy cost. Also, in the case of a single faulty physical link, all virtual links belonging

to that faulty physical link become faulty as well. Nordbotten et al. [92] use intermediate

nodes as a backup mechanism to route packets around network failures. This solution,

however, requires extra virtual channels to handle deadlocks, and has to pause all running

processes to identify intermediate nodes when a fault is encountered. Ideas of binding faulty

links and nodes into faulty polygons, chains, and rings have been presented in [88, 90, 93].

Packets are routed around these faulty regions to achieve fault tolerance. However, a major

problem of these approaches is that they create heavy traffic load for the nodes having

to route packets around the faulty areas. Ideally, network traffic should be distributed in

a balanced way to avoid possible congestion in certain areas. To obtain balanced traffic

distribution, dedicated wires are employed by a node to provide traffic information of its

neighboring nodes (e.g., [94, 95]). The node then makes routing decisions based on the

obtained local routing information to avoid congestion. They are, however, only limited

to local traffic information. The adaptive routing algorithm in [96] requires a node that is

42

nearly overloaded to send stress values to its neighbor. The drawback is that the neighboring

nodes may already send packets to the overloaded node before they receive the stress values.

A different mechanism for exchanging routing information between nodes is proposed in [97].

Each node receives and updates the knowledge of all possible paths for a packet, which is

used for uniformly distributing the traffic across the network.

Wu presented a fault-tolerant algorithm [98] extending Chiu’s odd-even turn model [99].

Without the need of using virtual channels, the algorithm combines multiple faults to

faulty-blocks and route packets around the faulty-blocks. In [32], Glass and Ni proposed an

extension of the negative-first routing algorithm [83] that tolerates up to (n − 1) faults for

n-dimensional meshes. This algorithm is partially adaptive and achieves deadlock freedom

without any virtual channels. The algorithm always attempts to choose a route that allows

a packet to have multiple choices in selecting its next routing node along the path to its

destination. On a 2D mesh, if the first node cannot be reached due to a failure, the packet

may use the second choice as the alternative path. Therefore, a single failed node can always

be tolerated.

3.2 The Glass/Ni Routing Algorithm
Figure 3.1 shows an on-chip mesh network with 16 connected nodes and the structure

of a routing node. Each node shown in Figure 3.1a is labeled by its position (x, y) and

connects to each of its neighbors with a pair of input/output ports. Nodes have only three

or two neighbors if they are on the edges or corners of the mesh, respectively. Figure 3.1b

illustrates the structure of each routing node. It consists of a processing element (PE) and

a router. The PE injects packets into the network and absorbs packets that are destined for

its node (x, y). The router receives a packet, computes its next forwarding direction, and

then sends the packet in that direction.

The Glass/Ni algorithm [32] implements the negative-first routing, and achieves deadlock

freedom by disallowing certain turns in the network. In this turn model, the west and south

boundaries of the network are defined as negative edges, and the north and east boundaries

are defined as positive edges. Packets routed toward these two kinds of edges are called

the negative and positive phases of routing, respectively. To route a packet, the algorithm

requires the packet to proceed in negative directions first, until it reaches farther west and

south than the destination; then the packet is allowed to move in the positive directions.

The general rule is that once the packet is moving in the positive directions, it is forbidden

to move in the negative directions. The only exception where positive-to-negative routing

43

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

(a) Network topology.

�������� ����

��������

��������

��

��������

(b) Structure of an individual node.

Figure 3.1: A 4-by-4 2D mesh network with 16 nodes.

(referred to as “illegal turn” in the following text) happens is when a faulty node on a negative

edge blocks the path along the edge. The routing algorithm, however, strictly specifies all

allowed illegal moves.

The Glass/Ni routing algorithm is proven to always tolerate one node fault in a two-

dimensional mesh network [32]. This robustness is achieved by ensuring that a packet always

has at least two choices of its next move at each node along its path. When on its negative

phase, a packet can either stay in this phase or switch to the positive phase. If a packet

is already on its positive phase, it still has two choices of going north or east. There is,

though, one special case that needs to be considered, which is when a packet traverses

a negative edge (i.e., the south edge or the west edge) of the network and encounters a

faulty node. In this case, a packet only has one choice to route. For example, Figure 3.2

shows a portion of a mesh network where nodes (0,0), (1,0), and (2,0) are on the south

edge of the network. Let us denote the forward link from node (x1, y1) to node (x2, y2) as

(x1, y1) → (x2, y2). Suppose that a packet located at node (0,0) is destined for node (2,0).

If no fault is encountered, the packet would follow the route (0, 0) → (1, 0) → (2, 0). If

node (1,0) has a fault, the packet instead must route around the faulty node using the route

(0, 0)→ (0, 1)→ (1, 1)→ (2, 1)→ (2, 0). This route, though, includes the illegal turn from

(1,1) to (2,0). For this special case, this illegal turn is allowed. However, it has no potential

of introducing deadlock because no cycle can be formed in this case as the faulty node, (1,0)

44

�����

�����

�����

����� �����

�����

Figure 3.2: A special case for negative edges in the Glass/Ni algorithm.

in this example, breaks the potential cycle. To summarize the Glass/Ni routing algorithm,

the computation of the direction obeys the following rules:

1. Route the packet west and south to the destination or farther west and south than the

destination, avoiding routing the packet to a negative edge (i.e., a west or south edge)

for as long as possible.

2. Route the packet east and north to the destination, avoiding routing the packet as far

east or north as the destination for as long as possible.

The special case for the Glass/Ni algorithm just described makes the assumption of a

node fault model. The node fault model treats a node’s input link as part of the node, and

once any part of a node is detected as faulty, all other parts of the node are considered

faulty. This means that when a node’s input link becomes faulty, the entire node stops

operating immediately and becomes permanently unusable. This simplification overlooks

the fact that a node can still function when its links fail. In reality, the occurrence of

a single link fault is extremely rare, and having four faulty links on one node is almost

unrealistic. It is, therefore, necessary to model link faults and node faults separately. Since

the Glass/Ni routing algorithm only admits a node fault model, it is not directly applicable

to the link-fault model, as not only does the algorithm not guarantee one-fault tolerance,

45

�����

�����

�����

����� �����

�����

Figure 3.3: Deadlock caused by a link fault.

but also it potentially causes deadlock in the network. For example, Figure 3.3 illustrates a

packet encountering a faulty link between nodes (0, 0) and (1, 0). As described earlier, the

Glass/Ni algorithm detours packets from (0, 0) to (2, 0) using the route (0, 0) → (0, 1) →

(1, 1) → (2, 1) → (2, 0). Since it is the link (0, 0) → (1, 0) that is considered as faulty

rather than node (1,0), cycles, such as (1, 0) → (1, 1), (1, 1) → (2, 1), (2, 1) → (2, 0),

(2, 0)→ (1, 0), can still be formed. Suppose each of these four links has a one-place buffer,

and link (1, 0) → (1, 1), (1, 1) → (2, 1), (2, 1) → (2, 0), and (2, 0) → (1, 0) are obtained by

four packets, which are respectively going to node (2, 1), (2, 0), (1, 0), and (1, 1). None of

the four packets can make progress, as each packet is blocked by a packet in its outgoing

channel. The result is a deadlock.

There is another special situation that cannot be handled by the Glass/Ni routing

algorithm when assuming link faults. When a packet encounters a fault that is one hop away

from its destination node, the Glass/Ni algorithm must drop the packet since it assumes

the fault happens on the destination node. However, in the link-fault model, there are still

available routes to the destination node. In [80], Yoneda and Imai address this problem by

introducing a mechanism to forward the link-fault location to a neighboring routing node

where selection of a faulty route is avoided. In the example shown in Figure 3.4, a packet

is at node (1, 1), and its final destination node is (2, 2). Before sending out the packet,

46

�����

�����

�����

�����

�����

�����

Figure 3.4: A fault lookahead mechanism.

node (1, 1) checks links (2, 1) → (2, 2) and (1, 2) → (2, 2). If there is a fault on one of the

links, node (1, 1) sends the packet towards the other link to avoid this link fault. While

this method can handle these one-away link faults, it introduces additional hardware cost.

Moreover, it must assume that only nodes can fail on negative edges, since it cannot handle

link faults in these situations.

3.3 A Link-Fault-Tolerant Routing Algorithm
To improve the Glass/Ni routing algorithm, we propose a routing algorithm that is

capable of handling any link faults in the network [33]. The idea is that the negative-first

routing is preserved, but illegal turns are allowed. Potential deadlock is avoided by allowing

a node to drop a packet to prevent the occurrence of cyclic deadlock. To guarantee one

fault tolerance, all nodes must be able to communicate using one alternative route. This

algorithm uses nonblocking illegal turns to handle the two cases mentioned above.

For example in the case showed in Figure 3.3, the packet is allowed to make the turn

from east to south at node (2, 1). A deadlock may occur only when all the four links have

been obtained by packets in a cycle as illustrated in Figure 3.3. This method though does

47

�����

�����

�����

����� �����

�����

Figure 3.5: Packet is dropped by node 21 to break deadlock.

not block the packet moving from (1, 1) to (2, 0). Instead, if the link (2, 1)→ (2, 0) does not

clear in a sufficient time, the packet from (1, 1) is simply dropped by node (2, 1), effectively

breaking the cycle,1 as illustrated in Figure 3.5. To handle the one-away faults as illustrated

in Figure 3.4, the improved routing algorithm allows illegal turns for every node in the

network. For example, in Figure 3.6, a packet is delivered from node (0, 1) to node (2, 2)

and encounters a fault on link (2, 1)→ (2, 2). In this algorithm, the packet is redirected to

node (3,1), and it follows the route (3, 1) → (3, 2) → (2, 2). This route requires an illegal

turn on node (3, 2). However, if the link (3, 2)→ (2, 2) does not become free in a sufficient

amount of time, the packet is dropped at node (3, 2), avoiding the potential deadlock.

The behavioral model of the routing architecture presented in [33] includes the commu-

nication mechanism for packet transmission between nodes, the link that can become faulty

at any time, and the route forwarding computation in each node. The communication

mechanism employs an asynchronous handshaking protocol defined in the channel-level

Vhdl package [66]. Functions such as send, receive, and probe, introduced in Chapter 2,

are used to enable communication of data over a channel. A Vhdl process executes a

send or receive function when it wishes to request communication over the channel. A

1A router’s waiting time before dropping a packet can be determined at the implementation level.

48

�����

�����

�����

�����

�����

�����

�����

�����

Figure 3.6: One-away fault handling example.

communication occurs when one process connected on one port of a channel requests to

send while another process connected to the other port of the channel request to receive.

The data is then transmitted over the channel using a handshaking protocol. The probe

function is utilized to determine if the process connected on the other port of a channel has

a pending request on the channel. Examples of channel communications are demonstrated

through a series of producer-consumer examples in Chapter 2.

Each link shown in the 4-by-4 mesh in Figure 3.1a has a buffering capacity of one packet,

which is modeled as a buffer shown in Figure 3.7. In order to model link failures, this buffer

has a tunable probability of failure. In particular, this buffer actually includes two channels,

a Good channel and a Bad channel. The Channel select signal is used to randomly choose

for each packet transaction whether to use the Good or Bad channel. If the Bad channel is

selected, the packet cannot be transmitted to the next routing node (i.e., the link is faulty).

Otherwise, the link is functional and data is communicated over the Good channel to the

Buffer Out channel to the next routing node. The probability of selecting between the

two channels can be set to different values so that different levels of link reliability can be

simulated. In order to use this faulty buffer, before sending out a packet, a routing node

first uses the probe function to check whether the buffer at its output port is ready and able

to accept a new packet. If the buffer is full, then neither the Good nor the Bad channel is

ready. Once the buffer becomes empty, a random selection is made and either the Good or

49

Bad

Good

Channel select

Buffer

Buffer Out

Figure 3.7: Link buffer with tunable probability of failure.

Bad channel becomes ready. If the Good channel is ready, the routing node can transmit

the data to the buffer. When the Bad channel is ready, no data transmission occurs, and

the routing node simply handshakes with the Bad channel to complete the communication,

after which the buffer makes a new channel selection.

The routing algorithm works as follows. Each router communicates with its correspond-

ing PE, and when a PE node (x, y) wishes to send a packet to another node (x′, y′), it

injects that packet into the network via its router. Based upon the intended destination of

the packet, the router determines a direction to forward the packet. Following the Glass/Ni

routing rule, each node first routes packets south and west, overshooting by one position

from the destination in either direction, and then sends them north and east. One exception

is that if the destination is one node away and on the east or north of the source node, i.e.,

(x′ = x+ 1, y′ = y) or (x′ = x, y′ = y + 1), then the node sends such packets east or north

first. After selecting a direction, the node attempts to communicate with the desired buffer

on the link. At this point, one of three things can occur. First, the link may be busy, and

the router must wait its turn to use the link. Second, the link may be faulty, and the node

must either send the data in another direction or drop the packet if no viable alternative

exists. Finally, the link may be functional and ready, and the node forwards the packet to

the output buffer. The buffer then relays the packet to its successor node, which executes

50

the same algorithm. When receiving a packet from its neighboring node, a node may have to

attempt an illegal turn to forward the packet. This is only successful if the link is functional

and ready, otherwise the packet is dropped to avoid potential deadlock. Once a packet

reaches its destination (x′, y′), the packet is consumed. In summary, this link-fault-tolerant

routing algorithm has the following rules for determining the next forwarding direction:

1. Route the packet east or north first if the destination is only one node away on the

east or north, i.e., (x′ = x+ 1, y′ = y) or (x′ = x, y′ = y + 1).

2. Route the packet west and south to the destination or farther west and south than the

destination, avoiding routing the packet to a negative edge (i.e., a west or south edge)

for as long as possible.

3. Route the packet east and north to the destination, avoiding routing the packet as far

east or north as the destination for as long as possible.

4. Illegal turns are allowed only if making such a turn does not cause potential cycle of

dependencies which leads to deadlock. Otherwise, the packet attempting the illegal

turn must be dropped.

3.4 Evaluating Packet Loss Rate for Single-Fault Tolerance
To examine the importance of single link-fault tolerance, consider the 2-by-2 mesh

network shown in Figure 3.8. Let us denote the probability of a link being faulty as pf .

By setting pf to be the same for every buffer, faults are distributed randomly on the

network. These faults are transient faults, since the fault state is determined for each

individual transaction. For example, for every 1 million packets with an average of 5 hops,

50 thousand faults are injected when pf is 1%. The network reliability can be characterized

as the probability of a packet being dropped due to link faults, which is denoted by Pfault.

Consider a packet that is injected at node (0, 0) and destined for node (1, 0). In a nonadaptive

algorithm, only one choice of route is possible (i.e., (0, 0) → (1, 0)), so Pfault = pf . If two

choices can be made at node (0, 0) (i.e., (0, 0)→ (1, 0) or (0, 0)→ (0, 1)→ (1, 1)→ (1, 0)),

the probability is calculated as:

Pfault = p2f + pf (1− pf)[pf + (1− pf)pf]

= 3p2f − 3p3f + p4f

≈ 3p2f

51

p
f

p
f

p
f

p
f

0,0 1,0

0,1 1,1

Figure 3.8: A 2-by-2 mesh network with fault probability of pf on each link.

Note that the single link-fault probability is extremely rare, i.e., pf << 1, so 3p3f and p4f

can be ignored. For node (0, 0)’s two other possible destinations, node (0, 1) and node

(1, 1), Pfault is still about 3p2f . Although the Glass/Ni algorithm can tolerate single faults

in most cases, this is not true in some special cases in the link-fault model, as mentioned

previously. Therefore, the packet loss rate in the Glass/Ni algorithm is dominated by pf , i.e.,

the probability of a packet being dropped is increased significantly, even if there is only one

case where a single fault cannot be tolerated. If transient faults are randomly distributed

in the network, these unsupported situations can easily be encountered and determine the

overall packet loss rate. It is therefore necessary to maintain one-link-fault tolerance to keep

a low packet loss rate.

This improved routing algorithm, however, may introduce additional packet loss due to

deadlock avoidance when attempting to make illegal turns. Therefore, the overall packet

loss rate, Poverall, is given as follows:

Poverall = Pfault + Pdeadlock,

where Pdeadlock is the additional packet loss due to deadlock avoidance. It is important to

note that while Pfault is independent of the packet injection rate in the network, Pdeadlock is

a function of this rate. Therefore, Pdeadlock can be minimized by limiting the network traffic

load, adding additional link buffering capacity, or resending these dropped packets.

Since Pdeadlock is a function of packet injection rate, it is important to determine the

injection rates of interest. For this purpose, a Vhdl model of the link-fault-tolerant routing

52

0 . 2 9 0 . 5 8 0 . 8 7 1 . 1 6 1 . 4 5 1 . 7 4 2 . 0 3 2 . 3 2 2 . 6 1 2 . 9 0 3 . 1 9 3 . 4 8

2 0 0 0 0

4 0 0 0 0

6 0 0 0 0

8 0 0 0 0
Ne

two
rk

thr
ou

gh
pu

t (p
ac

ke
ts/

ms
)

P a c k e t i n j e c t i o n r a t e (p a c k e t s / r o u t e r d e l a y)

 N e t w o r k t h r o u g h p u t

Figure 3.9: Network throughput vs. packet injection rate.

algorithm described previously was constructed and simulated on a 4-by-4 2D mesh. The

link-fault probability is the same for all links in the mesh, and is modeled with the help of

the selection function defined in the nondeterminism package (see Appendix A of [66]). For

instance, the one percent link-fault probability is achieved by letting the selection function

return an integer number uniformly drawn between 1 and 100, and the Bad channel becomes

ready when this number is 100, otherwise the Good channel is set ready. Figure 3.9 shows

the network’s throughput under different packet injection rates. The packet injection rate

is measured by the number of packets injected into the network per router delay. Note that

all simulations are run for about 1000 ms, with an average of 80 million packets injected

following a uniform traffic pattern. The plot shows that the network’s throughput reaches its

maximum at an injection rate of about 1.8 packets/router delay. After that, the throughput

drops due to network saturation. Since the network only works efficiently when it is not

saturated, our evaluations of fault-tolerance performance are focused on injection rates below

about 2.0 packets/router delay.

Figure 3.10 presents a comparison of packet loss rates for the proposed link-fault-tolerant

algorithm with a nonadaptive routing algorithm and a variation on the Glass/Ni algorithm

53

0.29 0.58 0.87 1.16 1.45 1.74 2.03
0.0

0.5

1.0

1.5

2.0

2.5

3.0
P

ac
ke

t l
os

s
ra

te
 (%

)

Packet injection rate (packets/router delay)

 Packet loss caused by link faults only
 Proposed routing algorithm
 Glass/Ni routing algorithm*
 Non-adaptive routing

Figure 3.10: Packet loss rates for different routing algorithms.

that avoids the deadlock problems on the negative edges. This variation does not handle

one-away link faults. The packet loss rate is measured as the percentage of dropped packets

out of the total number of injected packets. These results demonstrate that the packet loss

rate of the proposed routing algorithm is significantly better. Even though one-away faults

are only part of all single fault cases, failure to handle these types of faults increases the

packet loss rate by 20 times compared to our proposed algorithm. This justifies the previous

analysis that the existence of any single link-fault problems ends up dominating the overall

packet loss rate. Since our algorithm gives priority to deadlock avoidance, the trade-off is

that packets get dropped when there is a potential for deadlock. To see this tradeoff, this

figure includes both the overall packet loss rate as well as the loss rate due to link faults

only. While for low packet injection rates most packet loss is due to link faults, as this rate

increases, the packet loss due to deadlock avoidance begins to dominate.

3.5 NoC Architecture for Multiflit Wormhole Routing
Wormhole routing has been utilized in many NoC designs, such as Aethereal [100],

Hermes [101], and QNoC [102]. It is a switching technique that routes a packet of data

54

in small units, known as flits. A packet travels through the network like a worm, and

it typically consists of a header flit with the packet’s destination, body flits carrying the

packet’s information, and a tail flit indicating the end of the packet. All flits of a packet

take the path established by the header flit. The advantage of wormhole routing is the small

buffer space in the switches that is needed and the pipelined data transfer.

The architecture of a node discussed so far simply consists of a PE and a router, as

shown in Figure 3.1b. The router of a node, however, handles only one packet at a time,

which is a limiting factor for the network throughput. This performance degradation can

significantly worsen when each packet consists of multiple flits. Since the router of each

node forwards one flit at a time, a multiflit packet may occupy the node for a significant

amount of time, preventing other packets from using the same node. Therefore, the network

can easily saturate when only a small number of such packets are in flight. To improve the

throughput, a new architecture is introduced in [35] to allow each node to handle multiple

multiflit packets simultaneously. For example, node 00 may be routing a packet from node

01 to node 10, while simultaneously routing a packet from node 10 to node 01.

The improved architecture for a three-by-three mesh is depicted in Figure 3.11. There

are nine types of router nodes for this architecture. Namely, there are four types of corner

nodes (i.e., nodes 00, 02, 20, and 22), four types of edge nodes (i.e., nodes 01, 10, 12, 21),

and one type of center node (i.e., node 11). A larger network would include duplicates of

the routers shown here. This architecture implements the extended version of the routing

algorithm described in Section 3.3. To accomplish this, each node xy is composed of several

independent routers (r_D_xy) and arbiters (arb_D_xy), where D ∈ {PE,E,N, S,W}

corresponds to the direction the packet is coming from in the case of routers and going to

in the case of arbiters.

The routing algorithm works as follows on this new architecture. Each node communi-

cates with its corresponding processing element (PE), and when the PE of a node xy wishes

to send a packet to the PE of another node x′y′, it injects that packet into the network via its

router (r_PE_xy). Based upon the intended destination of the packet, a router determines

a direction D to which to try to forward the packet, and then attempts to communicate

with the arbiter (arb_D_xy) in charge of the corresponding link. At this point, one of

three things can occur. First, the link may be busy, and the router must wait its turn to use

the link. Second, the link may be faulty, and the router is instructed to find an alternate

route. Finally, the link may be free, and the arbiter may nondeterministically select to

communicate with this router over any other routers that may be trying to obtain this link.

55

�������

��������

��������

���������

������

������

������

������

�������

��������

��������

��������

���������

������

������

������

������

�������

��������

��������

���������

������

������

������� ��������

��������

��������

��������� ������

������

������

������

�������

��������

��������

���������

������

������

��������������

���������

��������

��������

������

�������

������

������

�������

��������

��������

���������

������

������

������

��������

���������

��������

��������

������ �������

�������

��������

��������

��������

��������

���������

Figure 3.11: Architecture of the nine routing nodes in a three-by-three mesh.

The arbiter then forwards the packet one flit at a time to the succeeding router (i.e., the

router the output of the arbiter is connected to), which then executes the same algorithm.

Once a packet reaches its destination x′y′, the packet is consumed by the arbiter connected

to its PE (arb_PE_x′y′).

Assuming there is at most one link-fault, an alternate route always exists, but it may

require an illegal turn. For example, consider the two-by-two mesh shown in Figure 3.12 and

assume that node 10 wishes to send a packet to node 01. In this case, a west then north route

is the preferred option. If arb_W_10 reports a fault on its link to r_E_00, r_PE_10 must

communicate with arb_N_10 instead. Once the packet reaches r_S_11, this router must

make an illegal turn and route the packet west through arb_W_11. However, arb_W_11

may be busy routing a packet from node 11 to node 00. This packet in turn may be

blocked because arb_S_01 is busy routing a packet from node 01 to node 10. Similarly,

56

�������

��������

��������

���������

������

������

������

������

�������

��������

��������

���������

������

������

�������

��������

��������

���������

������

������

�������

��������

��������

���������

��

��

��

��

Figure 3.12: Illustration of a deadlock caused by a cyclic communication dependency.
Each packet is represented by a circle containing its destination. A solid line coming out of
a packet indicates the router where it is currently traveling to. A dashed line indicates the
remaining route of a packet. The crossed link indicates that the link from node 10 to node
00 is faulty.

this packet may be blocked because arb_E_00 is busy routing a packet from node 00 to

node 11. Finally, this packet is blocked because arb_N_10 is busy due to the packet from

node 10 to node 01. Taken all together, there is a communication cycle causing a deadlock,

as is illustrated in Figure 3.12. In this case, arb_W_11 sends a negative acknowledgement

to r_S_11, indicating its unavailability to accept a packet from this router, which tells

this router (r_S_11) to drop the incoming packet, removing the communication cycle and

avoiding the potential deadlock.

3.6 Conclusion and Discussion
This chapter introduces the Glass/Ni fault-tolerant routing algorithm on a 2D-mesh

topology. Its node-fault assumption, which treats a faulty link as a node fault, severely

limits its practical application. Switching to a link-fault model, however, fails to handle

both cyclic deadlock and one-away faults. Next, an improved routing algorithm with one

link-fault tolerance is described, with additional packet loss as a tradeoff. This cost, however,

57

is shown to be minimal from the simulation results of a Vhdl implementation of the routing

algorithm. An extended routing architecture is then introduced to enable simultaneous

routing of multiple packets on a single node, and improve the efficiency of multiflit wormhole

routing.

Note that the deadlock avoidance mechanism used by the link-fault routing algorithm

detects potential deadlock in a conservative way. If the link on the way of an illegal turn is

not available, i.e., either busy or faulty, a packet making this turn gets dropped. However,

such cases do not necessarily mean deadlock can occur due to the lack of cyclic dependency,

as it may be the case that it is the only busy link. Also, deadlock detection is based on a

one-time probing execution on a communication channel. Depending on the execution time,

the result may vary, which consequently alters the decision for packet drop. For instance,

the link on the illegal turn may be occupied when the probe is executed, but after it quickly

clears, probing it again gives a different result that prevents the packet drop. It is possible

to execute multiple probe operations for some amount of time before a packet is dropped.

This modification can improve the accuracy of deadlock detection, but it requires more

complicated methods which, in turn, require additional hardware.

The presented link-fault-tolerant routing protocol in this chapter is formally modeled

using a process-algebra action-based approach in Chapter 4 and a Lpn state-based approach

in Chapter 5. These chapters also describe detailed verification results of several desired

functional properties for this routing algorithm.

CHAPTER 4

FORMAL ANALYSIS USING Cadp

This chapter first describes several key lessons that are learned during the evolution

of the Lnt model of the NoC architecture introduced in Section 3.5. Formal analysis of

several important diagnostic examples reveals design flaws leading to false behaviors such as

unexpected packet drop and deadlock in the routing architecture. With the help of a data

abstraction technique, deadlock freedom and single-link-fault tolerance are verified. In order

to verify packet delivery, this chapter then introduces a refined data abstraction technique.

This refinement leads to the discovery of a potential livelock problem through formal analysis

on the link-fault tolerant NoC architecture presented in Section 3.5 of Chapter 3. In

the process of eliminating this problem, an improved routing algorithm is derived. The

improvement simplifies the routing architecture, enabling successful verification using the

Cadp verification toolbox [103]. The routing algorithm is proven to have several desirable

properties, including deadlock and livelock freedom, and tolerance to a single-link-fault.

Finally, this chapter describes several remaining challenges to the verification of this and

similar systems.

4.1 Background and Related Work
Verification of a concurrent system using a process algebra approach typically performs

either equivalence checking or model checking. Equivalence checking tests behavioral equiv-

alence between two models: one detailed that is close to the actual implementation of a

system, and one abstract that describes the sequences or trees of relevant actions the system

has to perform. Model checking proves whether a system specification, described as process

terms, satisfies temporal logic formulae. It is the model checking approach that is of interest

for the NoC verification in this chapter. In particular, our approach constructs a system’s

Lts in a compositional fashion where Ltss for each component of the system are generated

first, and are incrementally composed and minimized to obtain the Lts of the complete

system. Minimization steps on a Lts are governed by a behavioral equivalence specification.

In many situations, the interest of a system is its behavior with respect to the outside

59

world: its reaction to the environment’s stimuli and its effect on the environment. Behavioral

equivalences are therefore mostly defined as relations that describe two indistinguishable

labeled transition systems under some external observations, e.g., experiments or tests.

They allow one to replace a Lts with an abstract, equivalent counterpart with a smaller

state space that omits unwanted details. A state minimization technique typically defines a

process of obtaining such an abstract replacement. Combined with the step-wise incremental

composition, state minimization plays a key role in maintaining manageable intermediate

state size before the state space for the complete system is generated.

Over the years, the need of analyzing different properties has promoted propositions of

many theories of equivalences in the literature. A comprehensive review of major classes

of equivalences is described in [104]. The main families of equivalence relations over two

systems’ Ltss are based on traces, decorated-traces, and bisimiluation. Traces equivalences

require two systems to execute the same sequences of actions, and decorated-traces adds an

additional requirement on equivalent states after each sequence: they are ready to accept the

same set of actions. Bisimulation-based equivalences (or bisimilarity) define the equivalence

relations recursively in a stepwise fashion on each pair of equivalent states: two states are

bisimilar if they reach states that are also bisimilar via the same action.

A classical vending machine example shown in Figure 4.1 illustrates different levels of

granularity of these equivalence relations. The trace equivalences consider all of them as

equivalent, while the bisimulation-based equivalences distinguish all of them. The decorated-

traces equivalences are able to distinguish the Lts in Figure 4.1a from the other two, but

consider the two Ltss in Figures 4.1b and 4.1c equivalent. This is because state r2 is ready to

execute either action coffee or tea, but no such equivalent state can be found on either of the

other two machines. However, every state of machine in Figure 4.1b can find an equivalent

state on that of Figure 4.1c, and vice versa. Bisimilarity identifies the difference between

the first and the second machine after the insertion of the second coin: the first machine

still offers the user a choice of hot beverages while the second one does not. Similarly, it

distinguishes the second one from the third one after they accept the first coin, at which

point the third machine already takes away the user’s choice.

Despite the strong power of bisimilarity to distinguish system’s behaviors, in some cases,

fine-grained discrepancies in their behaviors are of little interests to an external observer.

For example, in Figure 4.1, a user cannot tell the difference between the second and the third

vending machines by observing the results of two coin insertions, as they both disallow the

user’s choice of beverages. To address equivalences based on external observations, testing

60

��

��

�����

��

�����

��

������

��

���

(a)

��

��

�����

��

�����

��

�����

��

������

��

���

(b)

��

��

�����

��

�����

��

�����

��

�����

��

���

��

������

(c)

Figure 4.1: Three vending machines.

equivalence was proposed in [105], which does not differentiate systems that cannot be

taken apart by external observers. Two systems are test-equivalent if they lead to successful

observations by the same sets of observers.

Weak variants of the aforementioned equivalences have been proposed to define equiva-

lences for Ltss with internal actions, i.e., actions that are not observable. Weak bisimulation

requires that every visible action in one Lts corresponds to the same visible action in the

other, possibly preceded or followed by an arbitrarily long sequence of internal actions, and

every internal transition in one Lts should correspond to an arbitrarily long (possibly empty)

sequence of internal actions. The major shortcoming of this equivalence is that it does not

preserve the branching structure of processes and hence lacks one significant characteristics

of bisimulation semantics. As an example, consider two Ltss in Figure 4.2. They are

equivalent under weak bisimulation because the introduced visible action b from state r2 in

Figure 4.2b does not violate this equivalence between the two Ltss. However, this added

action introduces a computation sequence that ignores the execution of action d2 from the

initial state r0. To preserve branching structures, an alternative equivalence, the branching

bisimulation equivalence (or branching bisimilarity) [106], has been proposed to consider

61

�� ��
� ��

�

��

��

��
�

��

��

��
�

��

��

��
�

��

��

(a)

�� ��
� ��

�

��

��

��
�

��

��

��
�

��

��

��
�

��

��

�

(b)

Figure 4.2: Weak bisimulation equivalence.

equivalences of internal actions that appear at the corresponding branching points of two

Ltss. Added upon the equivalence relation for weak bisimilarity, branching bisimulation

equivalence requires that the states of an internal sequence in one Lts are related to the

same state in the other. The differences between branching and weak bisimulation are

characterized in Figure 4.3. The starting and end points, i.e., s0 and s1, of the internal

sequence path are required to be equivalent to r0 for branching bisimulation, but only s0

is required to be equivalent to r0 for weak bisimulation. It is obvious that the two Ltss

in Figure 4.2 are not branching bisimilar, because in order to find an equivalent sequence

segment for r1
b−→ r3 of Figure 4.2b, it has to be the case that r1 and r2 in Figure 4.2a both

correspond to r1 in Figure 4.2b, which is not the case.

The divergence-sensitive branching bisimulation equivalence adds on top of branching

bisimilarity the condition that checks for equivalence of the corresponding τ -loops in two

Ltss. A τ -loop is an internal action sequence that starts from and returns to its initial

state. A practical meaning of a τ -loop is the existence of livelock. This equivalence relation

is of interest to us as it preserves deadlocks, livelocks, linear-time, and branching-time

62

��

��

�

���
� �� ��

�
���

� ��

��

�

�

� �

(a) weak bisimulation

��

��

�

���
� �� ��

�

�

��

�

���
� ��

�

�

� �

(b) branching bisimulation

Figure 4.3: Differences between weak and branching bisimulation.

properties [107]. Compared to branching bisimulation that collapses every livelock into a

deadlock, divergence-sensitive branching bisimulation preserves livelocks and therefore can

reveal true deadlock scenarios.

There have been several previous works that have applied model checking to NoC routing

algorithms. For example, to facilitate the use of model-checking techniques, automatic trans-

lations are developed from the asynchronous hardware description language CPH (Commu-

nicating Hardware Processes) to networks of automata [108] and to the process-algebraic

language LOTOS [70]. The latter approach is applied to verify an input controller [109] for

an asynchronous NoC [110] that implements a deadlock-free routing algorithm based on the

odd-even turn model [99]. However, this NoC does not handle failures. Deterministic XY

routing algorithms, whose routing logic are significantly simpler than the fault-tolerant rout-

ing algorithm presented in this chapter, have been previously studied [111, 112], leading to

the verification of functional properties requiring little network traffic, such as packet deliv-

ery. Also, Chen et al. face state explosion when attempting to verify deadlock freedom [111],

and Palaniveloo and Sowmya mention no results on deadlock verification [112]. Lugan et al.

verified an optical NoC with four initiators and four targets using Uppaal [113]. To reduce

63

the verification time, their verification used a two-level approach (a first verification on an

abstract level, complemented by a more detailed verification of a part of the NoC). Their

NoC, however, is not fault-tolerant, and it has highly symmetric processes.

An interesting alternative to model checking is to use static analysis. Verbeek and

Schmaltz [114] proposed a necessary and sufficient condition for deadlock-free wormhole

routing that can be statically computed independently from the network status. This

condition is used in a decision procedure for deadlock detection on large networks from a wide

range of NoC topologies and routing algorithms [115]. With the help of the Dci2 (Deadlock

Checker In Designs of Communication Interconnects) tool [116], Alhussien et al. [117] proved

deadlock-freeness, livelock-freeness and packet delivery of a fault-tolerant wormhole routing

logic for large-scale mesh networks. A formal NoC specification and validation environment,

GeNoC (Generic Network-on-Chip), implemented in the ACL2 theorem prover, was first

proposed by Borrione et al. [118]. It was used to verify a nonminimal adaptive routing

algorithm in [119]. An improvement of the GeNoC model [120] is proposed to enable static

verification of deadlock freedom and livelock freedom, as well as functional correctness. It

was shown to prove these properties on an adaptive west-first routing algorithm on a Hermes

NoC, with approximately 86 percent of the proof automatically derived. By using static

analysis, both the Dci2 and GeNoC approaches are extremely efficient for checking the same

properties checked in this chapter for deadlock prevention routing algorithms. This efficiency

enables them to be applied to large networks. These approaches, however, are incapable of

verifying properties of deadlock avoidance algorithms, as this requires a dynamic analysis.

4.2 Evolution of Formal NoC Models
This section describes several key lessons learned in the process of developing a Lnt

model of the two-by-two mesh shown in Figure 4.4. Formal analysis of the diagnostic

information on the examples in this section has revealed flaws in our routing architecture

that are challenging to detect otherwise. A direct verification approach consists in gen-

erating the corresponding Lts. If successful, the generated Lts can be used to analyze

functional properties of the protocol. The Cadp toolbox supports compositional techniques

to alleviate the exponential growth of the number of states. In a nutshell, compositional

Lts generation proceeds in a “bottom-up” manner, starting with individual processes and

alternating generation and minimization steps. Svl script automates the compositional Lts

generation, implementing heuristics [121] to optimize the order processes.

64

�������

��������

��������

���������

������

������

������

������

�������

��������

��������

���������

������

������

�������

��������

��������

���������

������

������

�������

��������

��������

���������

Figure 4.4: Architecture of the two-by-two mesh.

4.2.1 One Direction Routing

The first model developed and verified is the simple one-direction routing model shown

in Figure 4.5. It is advantageous to construct a model with one complete cycle consisting

of partial components from each node, since the model is simple enough for testing asyn-

chronous communications between any two components. Also, the resultant state space is

manageable, enabling the efficient checking for deadlock and packet loss without having to

abstract the model. Since this model only has one routing direction, there are no alternative

routes available, avoiding the need to model route-forwarding computation in each router.

Having only the counterclockwise routing direction forces the north-to-west illegal turn to

occur on the northeast node.

In this first model, each PE router only generates one single-flit packet destined to the

node in its diagonal direction. For example, the PE connected to node 01 sends a packet

to node 10. After emitting one packet, each PE router becomes inactive. No components

consume any packets and it is assumed that no link fault exists in the network. The expected

65

r_PE_00

arb_E_00

r_N_00

r_W_10 r_PE_10

arb_N_10

r_S_11

r_PE_01

arb_S_01

r_E_01

r_PE_11

arb_W_11

Figure 4.5: A counterclockwise routing model.

behavior is that the packet from node 10 to node 01 gets dropped due to deadlock avoidance,

and the remaining three packets keep cycling through nodes in the network forever, and no

deadlock exists. The arbiter, arb_W_11, on the northeast corner is responsible for detecting

the potential deadlock by checking availability of its succeeding router r_E_01. To avoid

deadlock, it informs its preceding router r_S_11 to drop the packet when router r_E_01

is not available.

The Lnt descriptions of arb_W_11 and r_S_11 are shown in Figure 4.6. The arbiter

arb_W_11 is modeled by the Lnt process “arbiter_nack”. The three gates “PEr_Wa_11”,

“Sr_Wa_11”, and “n11_n01” (between square brackets) of this process correspond to the three

links (r_PE_11 → arb_W_11), (r_S_11 → arb_W_11), and (arb_W_11 → r_E_01)

in Figure 4.5, respectively. The contents of each flit is represented by a natural number,

and the arbiter process uses the variable “ one_flit ” of type “Nat” to store the flit travelling

through it.

The behavior of this process is a nonterminating loop with two nested choices. The

outer choice decides whether the arbiter is ready to receive a packet: if its preceding router

r_E_01 confirms its availability by synchronizing on the “n11_n01” gate with the arbiter,

then it starts to receive the packet; or the arbiter issues a negative acknowledgement

“Sr_Wa_11(false)” to r_S_11 indicating that its output is blocked by another packet. If

both options are available, one is chosen nondeterministically. When the arbiter is ready

to receive a packet, it nondeterministically chooses between the PE router, r_PE_11, and

the south router, r_S_01. Since taking a packet from r_S_01 effectively makes an illegal

66

process arbi ter_nack [PEr_Wa_11, Sr_Wa_11, n11_n01 : any] i s
var one_ f l i t : Nat in loop

select
n11_n01 ; −− Router r_E_01 i s ready to accept packet
select

PEr_Wa_11(? one_ f l i t) ; −− Receive packet from r_PE_11
n11_n01 (one_ f l i t) −− Send packet to r_E_01

[]
Sr_Wa_11(true) ; −− Send p o s i t i v e ack . to r_S_11
Sr_Wa_11(? one_ f l i t) ; −− Receive packet from r_S_11
n11_n01 (one_ f l i t) −− Send packet to r_E_01

end select
[]

Sr_Wa_11(fa l se) −− Send nega t i v e ack . to r_S_11
end select

end loop end var end process

process router_drop_pkt [n10_n11 , Sr_Wa_11 : any] i s
var s t a tu s : Bool , on e_ f l i t : Nat in loop

n10_n11 ; −− Ready to accept packet from arb_N_10
n10_n11 (? one_ f l i t) ; −− Receive packet from arb_N_10
Sr_Wa_11(? s t a tu s) ; −− Request arb_W_11’ s s t a t u s
−− Send packet to arb_W_11 ONLY on TRUE s t a t u s
i f s t a tu s then
Sr_Wa_11(one_ f l i t)

end i f
end loop end var end process

Figure 4.6: The Lnt processes for arb_W_11 and r_S_11.

turn, this arbiter first sends an acknowledgement “Sr_Wa_11(true)” to r_S_11. The router

r_S_11 (represented by the Lnt process “router_drop_pkt”) checks the received status of

arb_W_11, and a false status leads to a packet drop: r_S_11 is ready to receive the next

packet which overwrites the current one that needs to be dropped.

The generated state space for the counterclockwise routing model contains terminal

states, indicating deadlocks in the model. Analysis of the diagnostic sequences of transitions

reveals that all four packets can get dropped by the r_S_11 router, which is an unexpected

behavior. According to the routing protocol, r_S_11 should drop a packet when arb_W_11

returns a false status, and the arbiter should do so only when its output, r_E_01, is busy

serving other packets. As mentioned previously, it is possible that one packet is dropped

for this reason, but the remaining three should stay in the network as the network is not

congested anymore. Analysis of the outer choice on the arbiter’s specification shows that

there always exists a path where it sends a negative acknowledgement to tell the router

r_S_11 to drop its packet. The nondeterministic choice enables sending both a true and a

false acknowledgement to the router, and as long as the gate rendezvous for sending a false

acknowledgement is possible, it gets a chance to occur. Therefore, arb_W_11 can always

send a false acknowledgment regardless of potential deadlocks.

One possible improvement is to have a prioritized choice: the option of sending a positive

67

acknowledgement is always the preferred one. Ideally, availability of the preferred positive

option should prevent the option of sending the negative acknowledgement. To implement

this priority would require that the “ select” operator could probe the possibility of a gate

rendezvous on the preferred choice. Implementing the priority choice in Lnt requires

additional processes [70], which may lead to state explosion. Even if it can be verified,

the packet leakage path may not get removed due to the timing of when the probes are

executed. Another option is to prune the unwanted execution paths from the generated

state space using the priority operator in Exp.Open/Svl [56]. However, the state space of

the entire model is generated compositionally using branching bisimulation, which is not a

congruence for the priority operator [122].

4.2.2 Removing Arbiter’s Buffering Ability
Our initial analysis has focused on a two-by-two NoC shown in Figure 4.4, since state

space generation for the three-by-three NoC even using compositional techniques is chal-

lenging. The intermediate state space corresponding to only 13 out of the 66 components

in the three-by-three NoC already has several hundred million states. Including just one

more component to construct the next intermediate LTS almost doubles the size of the

LTS. Since there are still 52 components to be included, it is clear that this growth of the

intermediate state spaces is unmanageable. Although it might be surprising, these large

state spaces can be explained by the fact that each of the 66 components can store a packet

(or be empty), resulting in a theoretical state space size of more than 1014 states for 14

components of the three-by-three NoC. Although the content of a packet is abstracted to

just its destination coordinates, which are necessary to precisely determine a packet’s next

forwarding direction, the existence of many possible data values further contributes to the

combinatorial state explosion.

One improvement to alleviate the state explosion problem is to reduce gate rendezvous

between arbiters and routers in each node. This means that on the Lnt model level,

routers and arbiters in one node are merged into one process, removing the need for gate

rendezvous between them. The resultant northwest routing node has the following behavior.

It nondeterministically selects one among the following three operations: generating its own

packet, receiving a packet from the northeast node, or receiving one from the southeast

node. Once the node has a packet, based on the packet’s destination, it attempts to send

out the packet to the first choice of route, and tries alternative routes if the first one is not

available. All the other three nodes have a similar behavior.

This simplification of the routing nodes indeed helps to reduce the state space. However,

68

it removes the buffering capacity in each arbiter, and consequently causes deadlocks. A

typical deadlock scenario is that initially the four routing nodes generate their own packets at

the same time, between the northwest and southwest nodes, and between the northeast and

southeast nodes, the packet in one node tries to go the other. No nodes can make progress in

this situation. To send a packet, a node needs its neighboring node to communicate on the

same gate. It is required because the node’s own arbiter, which connects to the neighboring

node, cannot store anything, and only the neighboring node has the storing capacity. In

the mean time, If the neighboring node is trying to do the same thing to this node, neither

one can deliver packets because both are waiting for the other to accept their own packets.

Removal of the arbiter’s buffering ability also makes it impossible for one node to have

multiple packets passing through it at the same time.

From this experiment, we conclude that arbiters in the network need storage capacity

in order to relay a packet, freeing up their corresponding routing nodes to handle other

communications. It also implies that simplifications on the node architecture without

modifying the routing algorithm can introduce deadlocks in the system behavior. Therefore,

removing interleavings of gate rendezvous on the Lnt models is unsuccessful. 1

4.2.3 Finding Data Abstractions

As mentioned earlier, a major contributor to the large state space is the existence of

many data values in the model. The previous experiments do not consider data abstraction

of a packet’s content, because a router requires the packet’s destination to decide its next

forwarding direction: it is impossible for a router to perform routing computation without

the destination information, although this information is only needed by the routers. In

theory, all except the PE routers can receive packets destined to all node locations. Since

our link-fault-tolerant routing algorithm allows illegal turns (cf. Section 3.5), it means that

a router may potentially direct packets to all of its viable directions. The idea is, thus, to

abstract the routing decision with nondeterministic choice. In other words, after receiving a

packet, a router nondeterministically selects either its own node, indicating that the packet

has reached its destination, or one of the (two, three, or four) forwarding directions for the

packet, without the need to examine the packet’s destination. This abstraction enables us

to eliminate a packet’s destination information. Moreover, since every packet is provided

1One might argue that it is not necessary to include the arbiters arb_PE_xy in the model,
because we assume that a processing element is always ready to consume a packet, so that there is
nothing to arbitrate. However, to be closer to the real circuit, we prefer to keep these processes, in
particular because they do induce only a small performance penalty in verification execution time.

69

with a preferred route and at least one alternative route for the purpose of fault-tolerance,

the router’s model should provide, in the nondeterministic choice, the possibility for every

forwarding direction as the preferred route for a randomly destined packet, assuming the

router does not perform an illegal turn. From the analysis of the routing algorithm, it

is obvious that making an illegal turn is never a preferred choice for a route unless all

forwarding routes of a router are illegal. For example, the north-to-east legal turn is always

a preferred choice over the illegal north-to-south turn at router r_S_01 in Figure 4.4.

In a two-by-two mesh, there are three types of routers. First, there are routers r_S_11

and r_W_11 that can make two illegal turns (RI2). Next, there are routers r_W_10 and

r_S_01 which can make one illegal turn (RI1). Finally, there are all other routers which

never make illegal turns (RI0). Since routers in each of the three categories have the same

abstract behavior, the rest of this section uses representatives, i.e., RI2, RI1, and RI0, to

refer to routers in each category.

The next question is whether packets need to be modeled at all. Our first experiment

shows that the model without packet information exhibits the packet leakage problem. As

discussed in Section 4.2.1, the reason is an intrinsic feature of RI2, which has a nondeter-

ministic choice of where to send a packet: either to RI2 itself or to an illegal forwarding

direction. Without any packet information, taking an illegal forwarding direction is always

possible, regardless of deadlock avoidance, effectively creating a leakage path. To fix this

problem, an abstraction of a packet has to be included such that an illegal turn in RI2 is not

always possible. An important feature of the routing pattern is that a packet takes an illegal

turn only after its attempt to the preferred route fails due to a failure on the route. In other

words, when a packet makes an illegal turn, it must have been diverted at least once before.

Thus, a packet can be modeled as a single-bit Boolean variable, indicating its diversion

status. In the RI2’s Lnt process “ router_two_illegal” shown in Figure 4.7, only a diverted

packet can take illegal turns. The “only if” statement is useful for implementing guarded

commands. This restriction rules out the possibility of dropping a nondiverted packet, at

which point the process terminates as all dropped packets should be diverted at least once

before. Comparing to the precise routing decision, a packet with one forwarding direction

in the concrete model has the possibility to be forwarded to any direction in the abstract

model. Therefore, the abstraction is conservative in that it preserves all transition sequences

in its corresponding concrete model. One subtle difference introduced in the abstract model

is the notion of a diverted packet, which does not exist in the concrete model. It is, however,

a feature that implicitly exists in the concrete model’s routing behavior.

70

process rou te r_two_i l l e ga l [input , out_arb_PE , ou t1_ i l l e ga l ,
ou t2_ i l l e ga l , drop : any] i s

var one_f l i t , arb_status : Bool in loop
input (? one_ f l i t) ;
select

out_arb_PE(one_ f l i t)
[]

only i f one_ f l i t == true then −− packet i s d i v e r t e d
−− f i r s t t r y ou t 1_ i l l e g a l , then ou t 2_ i l l e g a l
ou t 1_ i l l e g a l (? arb_status) ;
i f arb_status == true then

ou t 1_ i l l e g a l (on e_ f l i t)
else

ou t 2_ i l l e g a l (? arb_status) ;
i f arb_status == true then

ou t 2_ i l l e g a l (on e_ f l i t)
else

drop −− both i l l e g a l turns impos s i b l e
end i f

end i f
end i f

end select
end loop end var end process

Figure 4.7: The Lnt process for the RI2 router.

There are also three categories of arbiters, corresponding to the router categories. Fig-

ure 4.8 shows the arbiter corresponding to RI2. It selects between its PE router and two

routers, from which flits may just have made an illegal turn. For each option the arbiter

takes, after receiving a flit, it keeps rejecting requests from RI2 routers until it delivers the

flit. When receiving rejections on all its illegal forwarding routes, RI2 drops the packet

to prevent potential deadlock. The complete Lnt specification for the two-by-two NoC is

available at http://www.async.ece.utah.edu/~zhangz/research/lnt_modeling/.

4.3 Removing Livelock to Improve Routing
Although this data abstraction enables successful verification of properties like deadlock

freedom and single-link-fault tolerance as described in [35], proving packet delivery is im-

possible, since it is always possible that some, if not all, packets produced get continuously

dropped in the network. Using the available information in an abstract packet, one cannot

know if a packet reaches its destination or gets dropped by a router on the way. In order to

check packet delivery while keeping intermediate state spaces manageable, we investigated

a hybrid modeling scheme, combining concrete and abstract packets. The idea is that for

one experiment, one node generates a single concrete packet followed by repeated abstract

packets, while all other nodes only generate abstract packets. In this way, the delivery

of a particular concrete packet can be checked with the existence of abstract packets to

model network traffic. All routers are modified to handle both types of packets. A router

71

process arbiter_nack_2 [in_PE_router , i n 1_ i l l e g a l ,
i n 2_ i l l e g a l , arb_out : any] i s

var one_ f l i t : Bool in loop
select

in_PE_router (true) ; in_PE_router (? one_ f l i t) ;
loop L1 in select

arb_out (one_ f l i t) ; break L1
[]

i n 1_ i l l e g a l (fa l se)
[]

i n 2_ i l l e g a l (fa l se)
end select end loop −− L1

[]
i n 1_ i l l e g a l (true) ; i n 1_ i l l e g a l (? one_ f l i t) ;
loop L2 in select

arb_out (one_ f l i t) ; break L2
[]

i n 1_ i l l e g a l (fa l se)
[]

i n 2_ i l l e g a l (fa l se)
end select end loop −− L2

[]
i n 2_ i l l e g a l (true) ; i n 2_ i l l e g a l (? one_ f l i t) ;
loop L3 in select

arb_out (one_ f l i t) ; break L3
[]

i n 1_ i l l e g a l (fa l se)
[]

i n 2_ i l l e g a l (fa l se)
end select end loop −− L3

end select
end loop end var end process

Figure 4.8: The Lnt process for the arbiter corresponding to RI2.

determines the packet’s next forwarding direction either precisely based on its destination

coordinates or nondeterministically if the packet is abstract. We can then exhaustively run

all experiments for every possible concrete packet produced by all four nodes, combined with

all possible single-fault locations, and check packet delivery properties on the Lts generated

for each experiment.

4.3.1 Potential Livelock Problem

Consider the situation shown in Figure 4.9 with a faulty link, namely the output of

arb_W_10. Router r_PE_10 of node 10 generates a concrete packet destined for node

01. The generated LTS for the concrete model shows that router r_N_10 might fail to find

a route for this packet. However, this failure does not exist in the generated LTS for the

corresponding abstract model [35]. This mismatch indicates that the abstraction for this

router is not correct. The issue is that the fault-tolerant concrete routing logic for r_N_10

provides only one forwarding direction (W) and the only alternative route (N) is forbidden.

No routing occurs if the only available route is faulty. However, the corresponding abstract

72

�������

��������

��������

���������

������

������

������

������

�������

��������

��������

���������

������

������

�������

��������

��������

���������

������

������

�������

��������

��������

���������

��

Figure 4.9: Illustration of the problem with the abstract model. The crossed link indicates
that link from node 10 to node 00 is faulty. Solid thick arrows end in the routers’ handling
packets. The dashed arrow indicates the route for the packet from node 10 to node 01,
taking into account the failed link.

routing behavior still provides the second routing choice, avoiding the routing failure when

the first choice is not available. Below, we discuss this problematic example in detail to

illustrate the incorrect abstraction and show how it should be fixed.

For a concrete packet to node 01, r_PE_10 first attempts to send it west to arb_W_10,

but fails because of the faulty link. Then, it diverts the packet to send it north to r_S_11,

which then diverts the packet south to r_N_10 because its first preference to the west is

blocked (as arb_W_11 is serving another packet). Receiving a concrete packet destined

for node 01, r_N_10 of the concrete model only attempts the west direction, and signals a

routing failure if the attempt is not successful — r_N_10 does not redirect this packet back

to arb_N_10, because it can infer that this packet has been diverted already, based on its

location and the packet’s destination. Assume a node only generates packets destined for

nodes other than itself. So a packet destined for node 01 can only be generated by node 00,

11, or 10. The first choice to forward this packet is north for node 00, and west for node 11,

as either node has two equal choices to send the packet and the first choice is to the shortest

path to node 01. For node 10, the preferred choice for this packet is west. Note that none of

73

the preferred choices for node 10 go through r_N_10, which means that if r_N_10 receives

a packet for node 10, it must have been diverted.

The router r_N_10 is modeled by the Lnt process “r_N_10_abs” in Figure 4.10a. The

first gate parameter “ inp” corresponds to the incoming link (connected to the south arbiter

of node 11). The next three gate parameters “out_PE”, “out_W”, and “out_N” correspond

to the three externally visible communication links (r_N_10 → arb_PE_10), (r_N_10

→ arb_W_10), and (r_N_10 → arb_N_10) in Figure 4.4, respectively. The fifth gate

parameter “ fail ” does not correspond to a physical communication link but is used for

making routing failures visible. The router process uses the variable “pkt” of type Bool to

store the (contents of the) packet it forwards. Because the router r_N_10 can never make an

illegal turn, the Boolean value contained in a packet is never consulted. Variable “arb_status”

of type Bool stores the condition status of its output link connected to an arbiter, to which

the router is attempting to forward the packet.

The behavior of process “r_N_10_abs” is a nonterminating loop consisting of a ren-

dezvous “ inp (?pk)”, which synchronizes on gate “ inp” and stores the received packet in

variable “pkt”, followed by a nondeterministic choice between sending the packet to its own

PE (gate “out_PE”, connected to the arbiter arb_PE_10), or forwarding the packet first to

the west (gate “out_W”, connected to arb_W_10), or to the north (gate “out_N”, connected

to arb_N_10). Two-way gate rendezvous is used to model packet forwarding: the gate on

the router’s side can synchronize with the gate on its connected arbiter’s side (not shown on

the figure). In the nondeterministic choice, the packet is sent only to a gate that is ready

for synchronization; if more than one gate is ready, the choice is nondeterministic; if no gate

is ready, the process waits until one of the gates becomes ready. During the rendezvous on

a gate, both processes can exchange offers. For example, the “out_PE” gate represents the

router’s side of the communication link “r_N_10 → arb_PE_10”; hence the value of the

packet “pkt” is passed to the receiving arbiter arb_PE_10. A rendezvous on a gate can only

happen if both participating processes are ready; otherwise a gate blocks process execution

when it waits for synchronization. In the second choice, r_N_10 checks the output link

status of its connected arbiter arb_W_10 before sending a packet. This is represented by

the rendezvous “out_W(?arb_status)”, which waits to receive the status from this arbiter. It

sends the packet west through “out_W” if the link is available, otherwise it tries to direct it

to the north. If neither choice is feasible, the router performs a rendezvous on gate “ fail ”;

this rendezvous is always possible, because it is not synchronized with any process. This gate

rendezvous is referred to as “route-failure rendezvous” in the rest of this chapter. Execution

74

of a rendezvous on a gate produces a transition labeled with the gate’s name and the values

of the offer (if any). Notice that the order of the nested “ if−then−else” constructs depends

on the router, reflecting the asymmetry of the routing function.

The reason why the abstract model does not contain a route failure is that r_N_10_abs

provides an alternative choice for any packet. Moreover, it does not use a packet’s diversion

status to limit the redundant alternative choice. Consider the case of a packet destined to

another node (those destined to 10 can always be routed without failure). Because the other

arbiter that r_N_10 connects to, namely arb_N_10, is not faulty in the situation depicted

in Figure 4.9, this means that r_N_10 always sends the packet to arb_N_10 so that the

“ fail ” gate rendezvous never occurs. To refine the abstract model, the router should only

divert a packet to an alternative route if it has not been diverted already. Figure 4.10b

shows the added check for the diversion status for the second choice in Figure 4.10a. A

similar correction is made on the third choice, which is omitted on Figure 4.10b.

Although the general principle for the fault-tolerance routing is to provide as much

adaptivity as possible, this error in the abstract model illustrates that making multiple

process r_N_10_abs [inp , out_PE , out_W, out_N , f a i l : any] i s
var pkt : F l i t , arb_status : Bool in loop

inp (? pkt) ;
select

out_PE(pkt) −− send packet to arb_PE_10
[] out_W(? arb_status) ; −− check arb_W_10’ s output

i f arb_status then −− west l i n k to node 00 OK
out_W(pkt) −− send packet to arb_W_10

else −− west l i n k to node 00 f au l t y
out_N(? arb_status) ; −− check arb_N_10’ s output
i f arb_status then −− north l i n k to node 11 OK

out_N(true) −− send true as packet d i ver t ed
else −− north l i n k to node 11 f au l t y

f a i l (pkt) −− f a i l u r e to route the packet
end i f end i f

[] out_N(? arb_status) ;
i f arb_status then

out_N(pkt)
else

out_W(? arb_status) ;
i f arb_status then out_W(true) else f a i l (pkt) end i f

end i f
end select

end loop end var end process

(a) The original Lnt process for abstract r_N_10.

out_W(? arb_status) ;
i f arb_status then

out_W(pkt)
e l s i f get_diver s ion (pkt) then

f a i l (pkt) −− mul t ip l e d ivers ion : route f a i l u r e
else −− f i r s t d ivers ion : same behavior as above

out_N(? arb_status) ;
i f arb_status then out_N(true) else f a i l (pkt) end i f

end i f

(b) Added check for diversion before sending on alternate route.

Figure 4.10: The original and modified Lnt process for abstract r_N_10.

75

diversions can introduce incorrect functional behavior. As described above, r_N_10 can

infer the diversion status from a concrete packet destined for node 01 and use it to avoid

multiple diversions. On the other hand, if r_N_10 keeps diverting a packet destined for

node 01 back to the direction it comes from, it is possible that this packet gets stuck in an

infinite livelock loop: r_N_10→ arb_N_10→ r_S_11→ arb_S_11→ r_N_10, as shown

in Figure 4.11. Livelock is a scenario where a packet circles around a loop infinitely often

without ever reaching its destination. Therefore, avoiding multiple diversions on a NoC is

an effective way to prevent livelock. On the fault-free two-by-two NoC in Figure 4.11, there

are only two circular paths, the clockwise inner path and the counterclockwise outer path,

that a packet can take to reach any of the four nodes. A router diverts a packet only if it

is unable to continue forwarding it on the current circular path due to a link fault. Every

time a router diverts a packet, it switches the packet from its current path to the other,

effectively reversing its routing direction. The router hopes to deliver the packet through the

alternative path. However, if the packet encounters another faulty link on the alternative

path, making another diversion puts the packet back to its previous failure path, and the

packet is guaranteed to hit the previous faulty link again before it reaches the destination.

So having multiple diversions allows a packet to infinitely circle around a loop, which is

formed by segments of the two circular paths, i.e., the connected routers and arbiters except

for any processing element arbiter (arb_PE_xy).

4.3.2 Eliminating Livelock
The existence of livelocks in a NoC routing algorithm can significantly degrade a net-

work’s performance, since packets stuck in livelock loops never get delivered, but rather

occupy limited buffering capacities, causing network congestion. Also, repeatedly forward-

ing packets in livelock loops results in unnecessary power consumption. It is, therefore,

important to remove livelocks in our routing algorithm. The simplest solution to eliminate

livelocks is to keep track of the diversion status on a packet using an added Boolean variable.

This variable, however, requires further space in the packets header (and aggravates the

already challenging state explosion problem). It would be better to deduce the diversion

status solely from a packet’s destination information. This section presents a solution based

on this idea through a series of diagnostic examples, which leads to simplifications in both

the routing architecture and the routing algorithm.

Clearly, routers making only illegal turns (besides delivering the packet to its destination

PE) have superfluous diversions, because in order to make the first illegal turn, the packet

must have been diverted already. In a two-by-two NoC, for example, on receiving a packet,

76

�������

��������

��������

���������

������

������

������

������

�������

��������

��������

���������

������

������

�������

��������

��������

���������

������

������

�������

��������

��������

���������

Figure 4.11: Illustration of the two circular paths that a packet can reach any node and
the livelock loop r_N_10 → arb_N_10 → r_S_11 → arb_S_11 → r_N_10.

r_S_11 tries a north-to-west turn first, and tries the north-to-south turn only if the first

choice fails. This alternative second choice corresponds to a second diversion and the router

should drop the packet if the first route is not available. This also means that r_S_11 does

not need to communicate with arb_S_11, and the link between them can be safely removed.

This simplification potentially leads to a reduction in the number of gate rendezvous between

the two processes during the compositional state space generation. Similarly, the link from

r_W_11 to arb_W_11 can be removed.

In general however, inferring the diversion status is difficult as a router does not know

a packet’s entire forwarding history. As an example, consider all packets that r_N_10 has

to forward to its neighboring nodes. It receives all south-going packets from arb_S_11,

and then sends them to either arb_W_10 or arb_N_10. Packets destined for node 11

(arb_PE_11) are not sent through arb_S_11 and hence do not reach r_N_10, and packets

destined for node 10 (arb_PE_10) are not forwarded by r_N_10 to its neighbors. This

means that packets of interest are destined for either node 01 (arb_PE_01) or node 00

(arb_PE_00). We know from the previous analysis that all packets destined for node 01

must have been diverted to reach this router. For packets destined for node 00, if they are

77

process r_N_10_concrete [inp , out_PE , out_W, f a i l : any]
(node_loc : Coordinates) i s

var pkt : F l i t , arb_status : Bool in
loop

inp (? pkt) ;
i f pkt . des t == node_loc then

out_PE(pkt) −− de s t i na t i on reached
else −− Only need to t r y west

out_W(? arb_status) ;
i f arb_status then

out_W(pkt)
else

f a i l (pkt)
end i f

end i f
end loop

end var end process

Figure 4.12: The new Lnt process for r_N_10.

generated at either node 01 or node 10, then they must have been diverted before reaching

r_N_10 as they failed on their preferred choices, i.e., their respective shortest paths to node

00. If a packet is generated at node 11, then its diversion status is not clear as it could be

diverted if r_PE_11 forwards it west first or not diverted if south is the first choice. This

uncertainty makes it impossible for r_N_10 to infer the diversion status for a packet, since

it has no information about the packet’s source and its routing preferences.

According to the original description [33] of the routing algorithm by Wu et al., there is

no defined order between the two equal routing choices. This means that the implementation

of the routing algorithm can bias towards one choice without violating the routing rules. For

example, if r_PE_11 always chooses west over south for all packets destined for arb_PE_00,

then the said uncertainty at r_N_10 can be resolved. This means that all packets received

by r_N_10 are diverted, and this router does not need to divert them again by sending

them back north, and the link from r_N_10 to arb_N_10 can be removed. The new

Lnt process for r_N_10 is shown in Figure 4.12. After receiving a packet on its “ inp”

gate that is connected to the output of arb_S_11, it extracts the packet’s destination and

stores it in “pkt_dest”. It then compares the coordinates of the packet’s destination with

its own location — as usual, the “ .” notation expresses access to the field of a record.

If the destination is reached, it delivers the packet by synchronizing on gate “out_PE”

with arb_PE_10. Otherwise, it forwards the packet west if arb_W_10’s output link

is functional, and fails if it is faulty. A symmetric improvement is made to r_S_01 by

tweaking r_PE_00 to make east as its preferred route. This resolves a similar uncertainty

that all packets generated by r_PE_00 and destined for arb_PE_11 are routed to the

east first. The result is that r_S_01 only receives diverted packets to forward to its

78

east, and the router does not need its output to arb_S_01. This breaks the livelock loop,

i.e., arb_N_00→r_S_01→arb_S_01→r_N_00→arb_N_00. Moreover, this modification

makes the north-to-south illegal turn disappear, preventing packet drop at this router. Note

that the assigned ordering between two equal choices is only limited to the mentioned two PE

routers when they forward packets destined for nodes in their diagonal directions. Both are

equal choices for routing such a packet since each have the same distance to the destination,

and therefore no performance penalty is introduced.

Since livelock always occurs on a closed path on the routing architecture, i.e., a path

formed by alternating routers and arbiters that makes a packet circle around indefinitely, we

may find livelock by identifying closed paths. For example, a packet destined for arb_PE_11

loops infinitely on the closed path if the output links of arb_N_00 and arb_N_10 are faulty:

arb_E_00→ r_W_10→ arb_W_10→ r_E_00→ arb_E_00. In this case, r_E_00 can

be modified to not divert the packet back east, but only send it north. The resultant NoC

architecture is shown in Figure 4.13.

�������

��������

��������

���������

������

������

������

������

�������

��������

��������

���������

������

������

�������

��������

��������

���������

������

������

�������

��������

��������

���������

Figure 4.13: Improved two-by-two NoC architecture with livelock removal. Note that
the modifications to avoid livelock have led to the removal of four connections that are no
longer needed (i.e., between r_S_01 and arb_S_01, r_W_11 and arb_W_11, r_S_11
and arb_S_11, and r_N_10 and arb_N_10).

79

Note that multiple diversions still exist in some routers in Figure 4.13. This is because

a packet’s destination information alone is not sufficient to determine its diversion status

at these routers. For example, the packets received by r_E_01 can be diverted if they are

forwarded by r_S_11, and not diverted if they come from r_PE_11. However, livelock does

not occur even if r_E_01 diverts a packet forwarded by r_S_11 again, because this packet

is sent to r_N_10, where it gets squashed to avoid multiple diversions. While the improved

routing algorithm cannot guarantee that a packet is not diverted more than once, it does

guarantee that it is not diverted infinitely often for the two-by-two NoC. This property,

however, needs to be formally verified.

Figure 4.14 presents the decision tree of the livelock-free routing protocol in pseudo code.

For simplicity, this pseudo code only describes the decision, and it does not provide details

on the communication between the routers and arbiters. In particular, determining if a link

is faulty requires a communication with the arbiter to determine its current status. This

communication is crucial to enable the protocol to adapt to transient failures. Furthermore,

in the case of an illegal turn, the router must determine if the arbiter is busy, and in this

case, if it is found to be busy, it drops the packet. Notice that also the modified routing

protocol is not symmetric, because the possible routes depend on both the address of the

router and the destination of the packet.

4.4 Verification Results
We applied a two-phase approach to verify a NoC model using the Cadp toolbox: first

generating the Lts from the Lnt specification, and then analyzing the Lts to verify proper-

ties of interest. The Lts for each investigated model is generated compositionally [123], i.e.,

by first generating and minimizing the Ltss for each process separately before alternating

combination, hiding, and minimization operations to obtain the Lts of the complete system.

For the combination, we applied smart reduction [121], which uses heuristics to find an

optimal ordering of the combination and minimization operations to keep the intermediate

Ltss manageable. The maximal number of Ltss that can be composed in one step is set to 5.

Hiding operations transform into internal transitions those labels that are no longer necessary

for further synchronisations or the verification of the properties of interest, greatly enhancing

the effectiveness of minimization and verification [124]. To ease the verification tasks, we

hide all labels, except those corresponding to route failures and packet drops. Minimization

is performed with respect to divergence-sensitive branching bisimulation equivalence [107].

A desktop machine with a CPU of eight 3.60 GHz cores and 16GB of available RAM is

80

– If the packet has reached its destination, deliver the packet.
– else if the packet is one hop away and the corresponding link is available, send on that link
– else

– go west if:
1)the current node is not on the west edge,
2)the packet is going in the west/south direction or just injected,
3)the west link is fault-free, and
4)the current node is at or east of the destination OR

it is at or south of the destination and the south link is faulty
– else go south if:
1)the current node is not on the south edge,
2)the packet is going in the west/south direction or just injected,
3)the south link is fault-free, and
4)the current node is at or north of the destination OR

it is at or west of the destination and the west link is faulty
– else go east if:
1)the destination is more than one node to the east OR

the destination is east of the current node AND exactly one row north,
2)the packet is not traveling west, and
3)the east link is fault-free

– else go north if:
1)the destination is north of the current node,
2)the packet is not traveling south, and
3)the north link is fault-free

– else
– go west if:

1)the current node is not the west edge,
2)the current node is at or east of the destination,
3)the packet is not traveling east OR the destination is directly north, and
4)the west link is fault-free

– else south if:
1)the current node is not the south edge,
2)the current node is at or north of the destination,
3)the packet is not traveling north, and
4)the south link is fault-free

– else go east if:
1)the current node is at or west of the destination,
2)the east link is fault-free, and
3)the packet is not traveling west OR

the destination is in the current column OR
the destination is one node to the east AND not one node north

– else go north if:
1)the current node is at or south of the destination,
2)the north link is fault-free, and
3)the packet is not traveling south OR

the current node is at or west of the destination

Figure 4.14: Pseudo-code of the routing protocol.

used to generate the results in this section. One core is used at any time for the parallel

composition and state minimization steps. One interesting observation is that with the

removal of links and simplification of the routing algorithm presented in Section 4.3.2, it

is possible to completely generate the LTSs of models with concrete packets. All results

presented here are based on the two-by-two NoC models with concrete packets. The

properties of interest are: (1) the routing algorithm is free of deadlocks and always tolerates

a single link fault; (2) it guarantees packet delivery without network traffic; and (3) it is free

of livelocks.

81

4.4.1 Deadlock Freedom and Single-link-fault Tolerance

In all experiments described in this subsection, each of the four PE routers repeatedly

executes the following steps: it first generates a packet with a nondeterministically chosen

destination (except to itself), and then sends the packet to its next forwarding direction,

which is determined based on the packet’s destination. Since each PE router is free to

nondeterministically send a packet to any possible destination at any time, our verification

generates all possible network traffic patterns. It is necessary to model all possible network

traffic for the verification of deadlock freedom, since a deadlock can only occur when multiple

packets in the network create a communication cycle as described in Section 3.5, and this

cycle is broken by dropping one of the packets. Table 4.1 shows the Lts information for nine

two-by-two mesh models: the first row represents a mesh without any link failure, and the

remaining eight rows each represent the same NoC with one failure link whose location is

shown in the first column. The columns under “Largest Intermediate Lts” show the number

of states and transitions of the largest intermediate Lts, and the columns under “Final

Lts” show those of the Lts corresponding to the complete model obtained at the end of

the compositional generation. The two columns under “Performance” display the maximal

amount of allocated virtual memory (in MB) and the total execution time (in seconds) to

generate each Lts.

Because the Lts for each model is generated by hiding all gates that represent the links

between the routers and the arbiters, the only two visible gates are the route-failure gates

and the packet-drop gates. Rendezvous on the former happen when a router has exhausted

all options to forward a packet; rendezvous on the later occurs when a router drops a packet.

Table 4.1: Ltss of the two-by-two NoCs generated for the verification of deadlock freedom
and one-fault tolerance.

Failure Largest Interm. LTS Final LTS Performance
Link States Transitions St. Tr. RAM Time
none 87,040 677,184 1 1 154.7 208.8

00→ 01 622,080 5,214,528 1 2 224.5 217.7
00→ 10 469,632 4,252,000 1 2 261.5 221.0
01→ 00 7,541,100 65,866,878 3 7 7,316.5 910.3
01→ 11 1620 10,422 1 1 133.6 196.1
10→ 00 397,575 3,445,506 3 7 133.9 226.7
10→ 11 2,980,593 27,889,224 1 2 2,752.0 477.6
11→ 01 1,848 11,830 1 1 138.7 196.0
11→ 10 52,752 484,572 1 1 139.3 208.2

82

To model a single link fault in Lnt, a working arbiter process is replaced by an arbiter that

sends false status to all its connected input routers.

Deadlock freedom is a global property, which requires reasoning about the complete

system, and cannot always be inferred from the components taken in isolation. A system

has a deadlock if its Lts contains a state/transition sequence that starts from the initial state

and ends in a terminal state, i.e., a state without outgoing transitions. A straightforward

approach for deadlock detection is to search for such states in the corresponding Lts. Using

the Cadp toolbox, it is found that no such sequence exists in any Lts of Table 4.1. Note

that large intermediate Lts does not correspond proportionally to high memory usage. For

example, the size of the largest intermediate Lts in the “00 → 01” model is larger than

that in the “00 → 10” model, but it consumes less memory. The largest intermediate Ltss

in the “01 → 11” and “10 → 00” models are substantially different in size, but they have

comparable memory usage. All experiments show that the peak memory usage is a result of

minimizing the largest intermediate Lts in each model. Memory usage for state minimization

is, however, not only determined by the size of the Lts, but also determined by the branching

structure of the Lts. This explains the weak correlation between the largest Lts and the

peak memory usage. It is also worth noting that the differences in the state counts clearly

show the asymmetry of the routing protocol. Since the entries in Table 4.1 cover all possible

single-link-fault configurations, we can conclude that the link-fault-tolerant algorithm is free

of deadlock for the improved routing algorithm on the two-by-two NoC.

To prove that a router is always able to route a packet, it is necessary to verify that

no route-failure gate rendezvous occurs. Since these gates are not hidden during parallel

composition, it is straightforward to check their existence in each Lts. Table 4.2 shows that

no transitions are labeled with route-failure labels. This table also shows that with a single

failure link in the network, packets may be dropped, namely when the attempt to make an

illegal turn could potentially cause a deadlock. The packet drop labels in this table show the

location where the drop happens together with the destination of the dropped packet. For

example, “drop_Sr_11!Coordinates(0,1)” means a packet destined for node 01 is dropped by

the southern router of node 11. The internal transition label is indicated by “i”. Therefore,

in a highly congested network, dropping packets is likely to happen. Note also that the

occurrence of packet drop is more sensitive to certain fault locations than others. Faults

in one of node 00’s two incoming links from node 01 and 10 are responsible for the largest

variety of packet drops. But faults in one of node 11’s two outgoing links can be entirely

tolerated by the routing algorithm without any packet loss.

83

Table 4.2: Labels of the Lts’s corresponding to two-by-two NoCs generated for the
verification of deadlock freedom and one-fault tolerance.

Failure Labels
none i

00→ 01 i, drop_Sr_11 !Coordinates (0, 1)
00→ 10 i, drop_Wr_11 !Coordinates (1, 0)
01→ 00 i, drop_Wr_11 !Coordinates (1, 0), drop_Wr_11 !Coordinates (0, 0)
01→ 11 i
10→ 00 i, drop_Sr_11 !Coordinates (0, 0), drop_Sr_11 !Coordinates (0, 1)
10→ 11 i, drop_Wr_10 !Coordinates (1, 1)
11→ 01 i
11→ 10 i

4.4.2 Packet Delivery

After the successful verification of deadlock freedom and single-link-fault tolerance, it

is important to thoroughly check that each packet can reach its destination. The models

of interest for this verification task have at most a single link fault. From the analysis

in Section 4.3.1, it is known that with two (or more) faulty links, certain routing failures

are unavoidable, therefore packet delivery is not guaranteed. Since the routing algorithm

guarantees single-link-fault tolerance, it makes sense to check packet delivery on models

with at most a single faulty link. Moreover, Table 4.2 shows that with network traffic,

some packets may get dropped instead of reaching their destinations, with even a single link

fault. However, packet drop only occurs to avoid deadlock, which requires the existence of

network traffic. This means that packet delivery can only be checked on models without

any additional network traffic. Therefore, while packet delivery can be verified using the

Cadp toolbox, in this simple case, it can be ensured by simply confirming that the network

remains connected after removing a single failing link.

4.4.3 Livelock Freedom

In Section 4.3.2, a series of diagnostic examples is provided to eliminate livelock issues,

which led to simplifications of the NoC architecture. This subsection provides formal

analysis of livelock freedom on the simplified NoC. Since it requires at least two faulty

links to cause a livelock, with eight external links, there is a total number of
(
8
2

)
= 28

different combinations of fault locations. The livelock freedom verification is divided into 28

individual tasks in which each one generates a Lts from a NoC model with a unique pair

of link faults.

Similar to the packet delivery verification tasks, only one packet is allowed in the network.

84

A single packet in the network is sufficient for livelock detection, since only a link fault can

trigger packet diversion and with multiple diversions a livelock can potentially occur. Traffic

may cause a packet to be dropped, but it never causes a packet to be diverted. Therefore,

network traffic does not contribute to the cause of livelock. The same configuration for PE

routers from Section 4.4.2 can be used here. As mentioned before, the drawback of this

configuration is the introduction of deadlock. Besides, with two link faults, it is unavoidable

to have a routing failure that causes deadlock. So, it is certain that some deadlock state

exists on the final Lts. However, this fact does not change the results of livelock freedom

verification. Livelock is characterized as the existence of an infinite loop on a Lts containing

only internal transitions. The goal of checking livelock freedom is to guarantee the absence

of such a loop on the final Lts. Thus, the existence of a deadlock state is of no relevance for

this verification goal. It is, however, necessary to perform state minimization with respect

to divergence-sensitive branching bisimulation equivalence to preserve any actual livelock

loop in the NoC model.

For each of the 28 verification tasks, there are 4 different experiments in which one node

generates a single packet and then becomes inactive while the other three nodes remain

inactive. Gate hiding for each experiment is applied to all communication gates in the

model. This means that all previously visible gates are hidden, including the routing-failure

gates and the packet’s generation and consumption gates. Note that gate hiding has the

potential danger of turning a cycle into a livelock loop, which causes a false negative result

on the final Lts. A cycle differentiates from a livelock loop in that it is a loop with at least

one visible transition label representing a communication with its environment. This factor,

however, is eliminated in the proposed experiment setting, since with a single packet in the

network, there does not exist meaningful cycles of transitions, such as continuous generation

of packets. Hence it does not hamper the detection of real livelocks.

Livelock freedom is verified by checking a simple property requiring the presence of a

livelock cycle, which can be expressed in the Model Checking Language (MCL) [125] by the

following formula:

< true ∗ > < " i " > @

where “< "i" > @” specifies an infinite loop of internal transitions labeled with “ i”. The

property is satisfied if there exists a state with an outgoing looping internal transition.

Violation of this property guarantees that no such state exists and thus shows absence of

livelock.

It is found that none of the 112 experiments satisfies the livelock property, which proves

85

livelock freedom on the improved routing architecture. From all experiments, the largest

intermediate Lts has 112,176 states and 718,564 transitions, and the longest runtime is

175.08 seconds. Each final Lts has a single deadlock state and no transitions. For all

experiments, the peak virtual memory used is 114 MB and the total time is about 5.28

hours.

4.5 Conclusion and Discussion
The construction and refinement of the two-by-two NoC model provided us with two

valuable insights. The counterclockwise routing example reveals a packet leakage path in

the arbiters that instructs their preceding routers to drop the packet. This leakage is due

to the arbiter’s model, in that each arbiter must check its succeeding router’s availability

before it can receive a packet from another router. For example, arb_W_11 must check

with r_E_01 before it receives a packet from either r_PE_11 or r_S_11. Otherwise, if the

arbiter does not receive its succeeding router’s acknowledgement, it sends a “drop” signal to

its preceding router. This option is modeled simply as the arbiter sending back the “drop”

signal, which opens the path for packet leakage. The second lesson is that it is necessary

for an arbiter to have a buffering capacity for the proposed routing architecture because an

arbiter does not need to guarantee the availability of its succeeding router before it receives

a packet. It is this idea that leads us to redesign the arbiters, such as the one shown in

Figure 4.8. The state explosion problem encountered during the evolutions of our NoC

models inspired us to implement a data abstraction scheme. This process provided us with

a deeper understanding of the routing algorithm. With the data abstraction, routers can be

categorized into RI0, RI1, and RI2, as described previously, and each category corresponds

to one type of arbiter, as well.

To enable the verification of packet delivery, this chapter presents a hybrid modeling

scheme as an extension to the previously presented pure abstract model. The discovery

of routing failure hidden by the abstract model for router r_N_10 leads to the detection

of the potential danger of multiple packet diversions in the original routing algorithm. It

is found that excessive fault-tolerance in terms of multiple packet diversions not only fails

to increase the chance of delivering a packet, but also potentially causes livelock problems

where a packet circles around an infinite loop and never reaches its destination.

Multiple diversions are then analyzed in detail through a series of diagnostic examples

on the concrete NoC model. The routing algorithm is corrected and certain routers are

restricted to avoid multiple diversions and eliminate potential livelock loops. Since the

86

diversion status is not directly encoded in a concrete packet, it is not always possible to

infer from the packet’s destination information. Therefore, biased choice between two equally

preferred routes is assigned to some PE routers, so that only diverted packets are received

by those routers that cannot always decide upon the diversion status of packets. These

modifications make it possible to remove redundant communication links on the routing

architecture. This simplification eventually leads to manageable state space generation of

the concrete model for the two-by-two NoC.

With the help of the Cadp verification toolbox, several interesting functional behaviors

of the improved routing algorithm are analyzed. Deadlock freedom and single-link-fault

tolerance are proved in a congested network with zero or one link fault. Under the single-

link-fault condition, a packet is successfully delivered to its destination or dropped due to

deadlock avoidance. Without the network traffic, packet delivery is guaranteed. The absence

of livelock is proved under two link-fault conditions.

Experience gained in livelock elimination for the two-by-two case provides us valuable

insights to determine the appropriate fault tolerance in the routing algorithm. These insights

can guide the design of more complex routing behaviors in a large network, as well as

abstractions of these complex designs. Formal analysis of these complex designs is necessary

to guarantee their functional correctness. Also, diagnostic counterexamples generated from

property checking may potentially be useful to refine a model’s abstraction.

CHAPTER 5

FORMAL ANALYSIS USING Lema

This chapter describes an alternative approach for modeling and verification using Lpn

and Lema. Different from Lnt, which uses rendezvous actions to represent progress of a

system, Lpn, defined in Section 2.3.4, uses global variables to encode a system’s progress.

Global variables can be used to enable or disable Lpn transitions when they are assigned new

values. State reachability analysis from Cadp produces one or more Ltss whose transition

labels store crucial information between states, and that from Lema produces a state-

transition graph where each state stores global and local variable values, place markings,

etc. Our focus of state reduction techniques is also different: for Cadp, it is on compositional

minimization with respect to divergence-sensitive branching bisimulation, and for Lema, the

focus is on a Por technique based on the ample set method for Lpns.

Por techniques have proven to be successful at reducing the state space by ignoring

unimportant concurrency in the model. The Por technique presented in this chapter

analyzes transition dependencies through a recursive trace-back search on Lpns. A set

with the smallest number of transitions that need interleaving is selected at each state. This

approach preserves safety properties1 and deadlock conditions by preserving traces that can

potentially lead to their occurrences. This chapter then compares the cost and benefit of

including trace-back in the ample set calculation in terms of state reduction, memory, and

runtime for a series of buffers that uses asynchronous communication. These results are

compared to those produced from a series of corresponding Lnt models. Vhdl models

for representative routers and arbiters are described for the livelock-free link-fault-tolerant

routing algorithm. They are constructed using a subset of the Vhdl syntax that can be

compiled to correct Lpns by the Lema tool. Finally, observations are described on the

verification results using Por with trace-back on components of the two-by-two NoC.

1We restrict to safety properties that can be encoded as a Lpn failure transition.

88

5.1 Background and Related Work on Por
A major source of state explosion in many model checking tasks is the need for modeling

concurrency by interleaving. For systems that are highly concurrent, such as most asyn-

chronous circuits and protocols, techniques based on Por have proved to be highly effective

at reducing the number of reachable states. Commutativity, also known as independence,

is a common underlying principle for choosing a sufficient subset of transitions to fire in

many sophisticated Por algorithms [25, 126–128]. Por techniques exploiting commutativity

establish an equivalence relation based on all sequential executions of a system, and explore

at least one representative execution from each equivalent class, while ignoring others in

the same class. The basic idea is that instead of exploring all possible interleavings of

concurrently enabled transitions, only a provably-sufficient subset of the enabled transitions

at every state is selected, and only the states resulting from the firings of these transitions

are explored.

Peled’s ample sets method [20] selects the minimal number of enabled transitions that

need interleaving at each state. Stubborn sets method [22, 23, 129, 130] maps statically de-

termined dependencies between places and transitions of a Petri-net to a dependency graph,

and it finds a strongly connected component (Scc) on the dependency graph containing at

least one enabled transition at each state [3]. An optimal result for maximal reduction on

deadlock-preserving strong stubborn sets [131] selects a Scc with the minimal number of

enabled transitions. Godefroid’s persistent sets method [24, 132, 133] builds a subset of

enabled transitions that do not interact with and are not affected by transitions outside the

persistent set in all states reachable from the initial state. The sleep sets method [24, 134]

reduces concurrent transition firings but retains full state space. It saves significant effort

for state matching [135] by reducing state revisits. A state search algorithm integrated with

a coupling between sleep sets and persistent sets [25] or stubborn sets [136] allows one not

to store an already visited state, as the probability of exploring a previously visited state

again is very small. Algorithms for these reduction methods have been integrated in various

on-the-fly model checkers (e.g. [23, 24, 137]). Peled and Godefroid’s methods [21, 138] have

been implemented as extensions to the Spin model checker.

The key ideas behind these approaches are similar in that they all attempt to approximate

the transition dependency, which is used in the state exploration to construct a sufficiently

small subset at each state to prune unnecessary interleavings, while ensuring correctness of

the verification result. The amount of analyses invested both statically and dynamically in

the reduction can determine the precision of the approximations, and consequently affect the

89

size of the dependent transition set at each state [25, 131]. Unfortunately, it is not, in general,

practical to construct a precise and yet minimal dependent set. Valmari proves in [131]

that detecting deadlock for the state reduction on a 1-safe Petri-net is Pspace-hard. The

accuracy in the dependency prediction always come with high computational complexity.

Theorem 11 in Chapter 10 of [2] proves that checking the dependency condition for a state

and its subset of enabled transitions is at least as hard as checking the reachability of the full

state space. It is therefore important that this approximation retain a good balance between

a too coarse approximation and a too fine one, as the former renders reduction which does

not solve the state explosion problem and the latter is too expensive to compute. The

quality of dependency relation analysis can significantly affect the results of state reduction.

In recent years, a dynamic Por (Dpor) approach for software model checking has been

proposed by Flanagan et al. [126] to dynamically track interactions between concurrent

processes/threads, and this information is used to refine the construction of persistent sets

at run time. Rodríguez et al. [139] proposes an optimal Dpor algorithm that leverages

cutoff events in net-unfolding to effectively prune the number of explored Mazurkiewicz

traces [140], and uses state caching to speed up event revisits.

5.2 Por with Lpns
In Section 2.3.4, detailed examples are given to show how the enabling and disabling of

Lpn transitions can be used to check certain safety properties. To summarize, the three

types of failure behaviors that can be checked in our Lpn models are

1. Enabling of a failure transition;

2. Disabling of a disabling failure transition; and

3. Deadlock (i.e., no transition is enabled in some state).

A correct verification algorithm must ensure that none of these failures is missed. The

critical step to partial order reduction is the construction of the ample set (i.e., the subset of

the enabled transitions which must be interleaved). A smaller ample set leads to more state

reduction, but care must be taken to ensure that a sufficient set of transitions are included

such that none of the stated failure behaviors are missed. The correctness of this approach

is discussed in Section 5.2.4.

To construct the ample set, it is necessary to understand the dependency between

transitions, and that no dependent transitions are missed in any cycle in the state space.

This section describes our method of constructing an ample set that leverages trace-back

90

to reduce their size. The top-level algorithm is shown in Algorithm 5.1. At state s, each

enabled transition t is used as a seed to construct a possible ample set. For each enabled

transition t in state s, there exists a dependent set, which is a set of transitions consisting of

t itself and transitions that must interleave with t due to dependencies. The algorithms for

computing this dependent set are adapted from the ones presented in [141] and [142] with

modifications as needed for our Lpn model and correctness conditions.

The computed dependent set is put in the ampleQueue(s). The ampleQueue(s) is a

priority queue: the dependent set of the minimal size is put on top of the queue; if

two sets are of the same size, the set constructed by the seed that had less chances to

fire before is put on the front of the queue. The top of the queue is returned as the

ample set at state s. Organizing the queue in this way helps impose fairness on transition

firings. It may potentially reduce the burden of firing concurrent transitions when a cycle

needs to close during the state space search. If a transition is enabled at each state of a

cycle of states, it has to get a chance to fire in at least one of those states in the cycle.

The strong cycle condition [2, 143] requires that one state in the cycle fully expands all

interleaving transitions to avoid missing the firing of any consistently enabled transitions in

the cycle. This mechanism, however, may degrade the result of the state space reduction by

forcing independent transitions to interleave. Our improved cycle closing condition adapts

an analysis technique proposed by Zhang et al. [144]: it expands only a set of necessary

interleaving transitions. With the imposed fairness in transition firings in ampleQueue(s),

this set can get even smaller.

5.2.1 Preparations

To improve the efficiency of the ample set construction, static analysis is performed before

state exploration to derive structural information about the Lpns. First, the set conflict(t)

is computed that includes all transitions that share preset places with transition t, as the

firing of one transition in this set disables all other transitions in the set. Each transition t′

in the DisabledBy(t) set satisfies one of the following conditions: t′ is in the set conflict(t);

the firing of t can potentially set the enabling condition for t′ to false; or at least one of

t’s and one of t′’s nonvacuous assignments assign to the same variable. The set Disable(t)

Algorithm 5.1 Ample set ample(s) computation.
for all t ∈ enabled(s) do

π := dependent(s, t, ∅)
enque(ampleQueue(s), π)

return top of ampleQueue(s)

91

is a collection of all transitions that can potentially disable transition t. This includes any

transition t′ that satisfies the following condition: t′ is in the set conflict(t) or t /∈ Tp, and

the firing of t′ can potentially set t’s enabling condition to false. The set canEnable(t) is a

set of transitions that can enable t by setting its enabling condition to true.

As described later, the size of DisabledBy(t), Disable(t) and canEnable(t) determines

the amount of analysis needed to perform trace-back. Refinements on any of these sets

can potentially reduce unnecessary effort on Lpns’ traversal. Let us consider two types of

static refinements on DisabledBy(t) and Disable(t). More specifically, after these two sets

are computed for each transition t according to the said conditions, the following screening

steps are taken on every transition in these sets. First, if t belongs to a Lpn process

that does not have concurrency, then for any transition t′ in the same Lpn process, t′ /∈

DisabledBy(t) and t′ /∈ Disable(t), unless t′ ∈ conflict(t). In other words, for transitions

in the same Lpn process as t that does not allow concurrency, only transitions that are

in conflict with t are kept in DisabledBy(t) and Disable(t). This refinement is based on

the fact that nonconflicting transitions t and t′ in a nonconcurrent Lpn process are never

simultaneously enabled as they never obtain their respective preset markings at the same

time. In Figure 5.1a, t4 is included in DisabledBy(t3) since its enabling condition can be set

to false by t3. However, they can never obtain their preset tokens at the same time because

no concurrency exists, and therefore t4 /∈ DisabledBy(t3) and t3 /∈ Disable(t4). Similarly,

t3 /∈ DisabledBy(t4) and t4 /∈ Disable(t3). The second refinement prunes transitions with

contradictory enabling conditions. If there are no variable assignments that satisfy the

enabling conditions of both t and t′, then they are never enabled simultaneously. If t′ is in

either DisabledBy(t) or Disable(t), or both, then it can be safely removed from these sets.

For example, Figure 5.1b shows that t1 and t2 are in conflict as they share preset place p1.

However, since they have contradictory enabling conditions, they can never be enabled at the

same time. As for the algorithmic implementation, the first refinement requires identifying

nonconcurrent Lpn processes, where every transition t has exactly one preset place and one

postset place (i.e., | • t| = |t • | = 1). The second refinement needs the implementation

of a subset of the functionality of a standard SAT solver (i.e., the “unsatisfiable” part).

Also, note that these refinements operate on the previously computed DisabledBy(t) and

Disable(t) sets, and hence do not necessarily examine all transitions in a Lpn model. These

refinements are new, relative to the method described in [141, 142].

92

��
���
���

���������

��

��
���
���

���������

��

��
����
���

����������

��
����
���

����������

��

��
������
���

��

(a) LPN process with no concurrency.

���������
��������
���������

��
���
���

���������

��

��
������
���

���������

��

��
����
���

����������

��
������
���

����������

��

��
������
���

��

(b) Contradictory enabling conditions.

Figure 5.1: Examples of refinements.

5.2.2 Dependent Set

The dependent set function, shown in Algorithm 5.2, finds all transitions that must

interleave with the enabled transition t in state s. This set always includes transition t

(line 1). Then, the algorithm checks transitions that can be disabled by firing t or can

disable the firing of t (line 4). For each transition ti in DisabledBy(t) ∪ Disable(t), if it is

currently enabled and is not already included in the dependent set d, and either ti is not a

persistent transition or it can disable t (line 5), 2 then the algorithm recursively determines

the dependent set for ti and adds it to the current dependent set d (line 6). On the other

2We only need to check whether the persistent transition ti ∈ Disable(t) when it is enabled.
Since the only way that ti is disabled by t is if ti ∈ conflict(t), checking ti ∈ Disable(t) is
sufficient as conflict(t) ⊆ Disable(t).

93

Algorithm 5.2 Dependent set dependent(s, t, d) computation.
1: d := {t}
2: if |d| = |enabled(s)| then . d has all enabled transitions.
3: return d
4: for all ti ∈ (DisabledBy(t) ∪ Disable(t)) do
5: if (ti ∈ enabled(s) ∧ (ti /∈ d) ∧ (ti /∈ Tp ∨ ti ∈ Disable(t))) then
6: d := d ∪ dependent(s, ti, d)
7: else if (ti /∈ enabled(s)) then
8: if necessary(s, ti, d) 6= null then
9: for all tj ∈ (necessary(s, ti, d)− d) do

10: d := d ∪ dependent(s, tj , d)
11: else
12: return enabled(s)
13: return d

hand, if ti is not enabled, then the algorithm attempts to find the necessary set (described

in Section 5.2.3) that can lead to the enabling of ti. If the necessary set of ti can be found

(line 8), then for each transition tj in the necessary set but not already in d, the algorithm

finds its dependent set and adds it to the dependent set (lines 9-10). On the other hand,

when no necessary set for ti can be found, the enabled set at state s is returned (line 12).

Finally, after all transitions have been considered, the algorithm returns the dependent set

d (line 13).

5.2.3 Necessary Set

The purpose of constructing a necessary set for transition ti in state s is to not only

construct an ample set with the minimal size, but also guarantee that the resulting ample

set does not miss the enabling of any potentially dependent transition that has a chance to

become enabled. The idea is to start from the disabled transition ti, trace back on one or

more Lpn processes to find enabled transition(s) that can help to enable ti. The necessary

set computation recursively calls itself to find two sets of transitions that can contribute to

the firing of ti: one that can help to bring the token(s) to the preset of ti and one that can

help to set the enabling condition of ti to true. The one with the smaller size is selected to

be the necessary set for ti.

The algorithm for computing the necessary set is shown in Algorithm 5.3. To improve the

efficiency of the necessary set calculation, a cache is maintained of previous results. The table

cache(s, t) stores previously computed necessary sets for transition t in state s. Therefore,

the first step of the algorithm is to determine if the result already exists in the cache, and if

so, return that result (line 1). Next, the algorithm creates a set nm which includes enabled

transitions that may help to get a preset place of ti marked (lines 2-14). To compute nm,

each unmarked preset place, pj , is considered. The algorithm checks its preset transition tk.

94

Algorithm 5.3 Necessary set necessary(s, ti, d) computation.
1: if cache(s, ti) is defined then return cache(s, ti)
2: nm := null
3: if •ti * markedPlaces(s) then
4: for all (pj ∈ •ti) ∧ (pj /∈ markedPlaces(s)) do
5: nt := ∅
6: for all tk ∈ •pj do
7: if tk ∈ enabled(s) then nt := nt ∪ {tk}
8: else
9: if tk ∈ visited(s, ti) then

10: if cache(s, tk) is defined then nt := nt ∪ cache(s, tk)
11: else
12: visited(s, ti).Add(tk)
13: nt := nt ∪ necessary(s, tk, d)
14: if nt 6= ∅ ∧ ((nm = null) ∨ (|nt − d| < |nm − d|)) then nm := nt

15: if nm 6= null ∧ |nm| = 1 ∧ |nm − d| = 0 then
16: cache(s, ti) := nm

17: return nm

18: ne := null
19: if eval(En(ti), s) = false) then
20: for all conjunctj ∈ En(ti) do
21: if eval((conjunctj , s) = false) then
22: nc := ∅
23: for all tk ∈ canEnConj(j, ti) do
24: if tk ∈ enabled(s) then nc := nc ∪ {tk}
25: else
26: if tk ∈ visited(s, ti) then
27: if cache(s, ti) is defined then nc := nc ∪ cache(s, ti)
28: else
29: visited(s, ti).Add(tk)
30: nc := nc ∪ necessary(s, tk, d)
31: if nc 6= ∅ ∧ ((ne = null) ∨ (|nc − d| < |ne − d|)) then ne := nc

32: if (ne = null ∨ nm = null) then n := getSmallerSet(nm, ne)
33: else n := getSmallerSet(nm − d, ne − d)
34: if n 6= null then cache(s, ti) := n
35: return n

If tk is an enabled transition, it is then included in the temporary set nt. If it is not enabled

but has been visited by ti before (line 9), the algorithm returns its stored necessary sets

if it is in the cache. The hash table visited(s, t) stores all the visited transitions by t at

state s. If tk is not stored in the cache, it means that a circular trace-back has been formed

in that tk was visited before by ti but its necessary set has not been found. In this case,

the algorithm skips searching for tk’s necessary set and considers the next candidate for •pj
(line 6). As we can see, it is possible to get into a circular search for necessary transitions

for ti and the use of a hash table visited(s, t) breaks the cycle and guarantees termination

of the necessary computation. If tk has not been visited before (line 11), the algorithm adds

it to the set of visited transitions for ti and recursively computes the necessary set for tk,

and the recursion terminates when an enabled transition is encountered. For each unmarked

95

place pj , the set nm is updated if a nonempty necessary set nt of a smaller size is found

(lines 14). Lines 15 to 17 describe an optimization step in that a minimal necessary set

has been found and the search for necessary set can terminate without further exploration.

This condition (line 15) is satisfied when only one transition can bring a marking to a preset

place for ti and this transition is already included in the dependent set d. It is a locally

optimal choice because no additional enabled transitions other than those in d are needed

for the enabling of ti. Next, the algorithm creates a set ne which includes enabled transitions

that may help enable ti by setting the enabling condition to true (lines 18-31), provided

that ti’s enabling condition evaluates to false at state s (line 19). If the enabling condition

of ti is in a conjunctive form, then each conjunct is considered separately, otherwise the

entire enabling condition is considered as one single conjunct (line 20). For each transition

tk in canEnConj(j, ti) (a set of transitions that can help enable the jth conjunct of ti’s

enabling condition and 0 < j ≤ number_of_conjuncts(En(ti))), the algorithm recursively

finds its necessary set and updates ne until an enabled transition is encountered. The search

for necessary transitions that can help enable ti’s enabling condition is actually the search

for transitions that can help enable one conjunct of ti’s enabling condition. Although all

conjuncts of ti’s enabling have to be true in order for it to fire, having necessary transitions

that can help the enabling of one conjunct is sufficient in state s. If more conjuncts need to

be enabled, then necessary transitions in future states will be searched until all conjuncts

are enabled. It is therefore not necessary to interleave all transitions (by including them in

the necessary set) that can help enable all conjuncts in state s. Finally, the smaller of nm

and ne is selected as the necessary set, assuming a null set has the size of infinity (line 32

to 35). The resulting necessary set is stored in the cache and returned.

To illustrate the trace-back procedure, consider the ample set construction for the producer-

consumer model in Figure 5.2. Note that this model is the same model shown in Figure 2.24

in Chapter 2, except that places, transitions, and some variables have been renamed to ease

the explanation here. First, for the enabled transition t0, one of its assignments assigns

s to true, which disables t5. However, t5 is not enabled in the initial state, therefore a

necessary set must be calculated for t5. Transition t4 is necessary to bring the token to p5,

but transition t4 is not enabled because p4 is not marked and s is false. To get a token to

p4 requires transition t3, which is enabled. Setting s to true requires transition t0. The

algorithm needs to only include one of these transitions, and it includes t0 since it is already

included in the dependent set. Therefore, the dependent set for t0 only includes t0 itself,

which means the ample set can include just this single transition, and it does not need to be

96

���������
���������
������
������

�����������

��
���

���������������������

��

��
����
���

��

��
���
���

����������������������

��

��
����
���

��

��
���

���������

��

��
���
���

����������

��

Figure 5.2: A simple producer-consumer Lpn model.

interleaved with t3. State graphs from full state search and Por are shown in Figure 5.3.

Transitions and states marked in green in Figure 5.3a are those selected by Por. As we can

see, Por ignores unnecessary interleavings of transition firings by selecting and executing a

representative sequence of transitions to fire. The resultant reduced state graph is shown in

Figure 5.3b.

5.2.4 Correctness and Time Complexity

When the ample set construction is used to check the failure behaviors discussed in the

beginning of Section 5.2, it is guaranteed to find a failing behavior when the Lpn includes

97

S8

S9

t1

S10

t4

S4

t4 t1

S0

S15

t0

S1

t3

S2

t3 t0

S5

t5

S13

t2

S14

t0

S6

t5

S11

t5t0

S7

t3

t3

S3

t4

S12

t2

t0

t3 t2

t1t4

(a) Full state graph.

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

(b) Reduced state graph

Figure 5.3: Full and reduced state graphs for the producer-consumer Lpn model. Note
that labels of each state is not showing here.

failures. For this to be true, it must be the case that it never misses the enabling of a failure

transition. It must also not miss the disabling of a disabling failure transition. Preserving

the disabling of transitions also helps to identify deadlock in the system. A system is said

to deadlock if, at some state, no progress can be made. For Lpns, deadlock occurs when no

transition is enabled. Such a behavior can be inherent in all paths, and is easily checked.

However, it may be that a particular interleaving leads to the disabling of all possible enabled

transitions. In this case, correctly preserving the disabling of transitions guarantees that

the system deadlocks if there exists such a possibility.

The key element of the ample set construction is the computation of the dependency

98

relation. The dependency relation is defined by taking the set of complement of independent

transitions (e.g., [25], [2]). A pair of independent transitions should not enable or disable

each other, and commuting both enabled transitions should lead to a unique state. The

dependency condition requires that a transition depending on any transitions in the ample

set cannot occur before some transition from the ample set occurs first. This implies that

such a dependent transition should be included in the ample set [143]. Given the properties

that are checked on our Lpns, our dependency relation must be constructed in such a way

that any transition that can be enabled gets a chance to be enabled and any transition

that can be disabled gets a chance to be disabled. The dependent set is constructed using

Algorithm 5.2. This algorithm checks the dependent transitions of a seed transition t in

two sets: a set of transitions that can be disabled by t (i.e., DisabledBy(t)) and a set of

transitions that can disable t (i.e., Disable(t)). For every transition ti in DisabledBy(t),

if it is enabled, is included in the dependent set of t. Next, the algorithm searches for any

other transitions depending on ti and includes those transitions in the dependent set of t

as well. The iterative process terminates when all dependent transitions of t are found.

On the other hand, if ti is not enabled, the algorithm searches for the set of necessary

transitions of ti to be included in the dependent set of t. The idea of tracing-back to

find necessary transitions complies with the dependency condition, and the reasoning is as

follows. For every transition ti depending on t, if ti is not enabled, some other transition,

say tj , that leads to the enabling of ti, should depend on t. Therefore, t must interleave

with tj and the chance of enabling ti is preserved. A similar argument can be made for

transitions in Disable(t). This case is used to preserve the chance of a transition to be

disabled. Namely, any enabled transition ti that can disable t must be included in the

ample set. Also, if ti disables t but is not currently enabled, trace-back is used to find, if

one exists, another enabled transition tj that contributes to the eventual enabling of ti. In

this case, the potential for disabling t is preserved. Therefore, the ample set construction

always preserves the potential for any transition to become enabled or disabled. This result

coupled with cycle closing, which, as described earlier, is used to ensure that a consistently

enabled transition is not ignored. A verification method using this ample set construction

is therefore correct. The correctness argument made here coincides with the criteria for the

stubborn set construction on Petri-nets [131], whose correctness is formally proven.

The time complexity is estimated by analyzing algorithms in the following order: Algo-

rithm 5.3, 5.2, and 5.1. The necessary computation effectively walks on transitions of a Lpn

model, until an enabled transition is encountered. Since the necessary set for each visited

99

transition is cached, and circular search is prevented, the complexity is bounded by O(n),

where n is the number of transitions in the Lpn. For the dependent computation of an

enabled transition t, consider two extreme cases, assuming that t is dependent on almost all

transitions. The first case is that almost no transitions are enabled in a state. This means

that each dependent transition calls the necessary computation once. Since the complexity

of necessary computation is O(n), having n dependent transitions calling it results in a

complexity of O(n2). The second case is that almost all transitions are enabled in the Lpn,

eliminating the need for necessary computation. Again, assuming that t is dependent on

all transitions in the Lpn, then each transition is added to t’s dependent set, resulting in a

complexity of O(n). As for the ample set algorithm (Algorithm 5.1), the first case implies

that in its loop over enabled transitions, there is a negligible number of calls to the dependent

function, and the complexity is O(n2), as it is dominated by the necessary set computation.

In the second case, the complexity of the loop over enabled transitions is O(n), as almost

all transitions are enabled, and each iteration calls the dependent computation once, whose

complexity is O(n). Therefore, the complexity in the second case is bounded by O(n2).

Overall, in both cases, the time complexity for the presented ample set algorithm is O(n2).

5.2.5 Evaluation of Trace-Back
The proposed partial order reduction technique on Lpns is implemented in Java and

performs state reductions on a standard depth-first search algorithm. Experiments have

been performed on a series of buffers that use asynchronous communication and several

nontrivial asynchronous circuit designs. All experiments are performed on a Linux machine

with 4GB memory and a quad-core 2.8GHz processor. The time limit for running each test

case is set to 4 hours.

To evaluate the cost and benefit of trace-back, the Lpn model in Figure 2.24 is extended

by inserting a series of buffers between the producer and the consumer. Communication

between any two connected modules (i.e., producer, consumer, buffers) is asynchronous,

and the model in Figure 2.24 depicts the communication protocol. Concurrency increases

significantly as the number of buffers increases and the resulting state space grows exponen-

tially. Experiments are performed on 20 models, each with an increasing number of buffers

from 1 to 20. Figure 5.4 shows comparisons of their runtimes and state counts. The runtime

for state exploration increases significantly when trace-back is turned off, removing most

of the benefit of partial order reduction, but significant improvements are possible with a

partial order method that uses trace-back. Indeed, the state count grows in a nearly linear

fashion, enabling much larger models to be analyzed.

100

0 2 4 6 8 10 12 14 16 18 20
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

number of buffers

lo
g

(r
u

n
ti
m

e
)

full

PO−w/oTB

PO−TB

(a) Runtime.

0 2 4 6 8 10 12 14 16 18 20
10

1

10
2

10
3

10
4

10
5

10
6

10
7

number of buffers

lo
g

(s
ta

te
 c

o
u

n
t)

full

PO−w/oTB

PO−TB

(b) State count.

Figure 5.4: Runtime and state count for the buffer examples with 1 to 20 buffers.

101

Table 5.1: Results for several asynchronous circuits models.

Designs Dfs Spin-Por Por-Tb
Name Time Mem |S| Time Mem |S| Time Mem |S|
arbN3 0.357 17.4 3756 0.860 0.4 3756 0.644 33.5 397
arbN5 3.431 363.0 227472 1.44 79.8 227472 2.031 208.6 2466
arbN7 m-out m-out m-out 261 3196.8 6758278 6.119 208.9 8980
arbN9 m-out m-out m-out m-out m-out m-out 49.5 333.2 58814
arbN11 m-out m-out m-out m-out m-out m-out 462.952 420.5 493369
fifoN3 0.146 8.4 644 0 0.1 644 0.172 11.1 29
fifoN5 0.493 37.3 20276 0.07 4.5 20276 0.266 16.2 77
fifoN8 63.891 919.3 3572036 26.5 1144.6 3572036 0.956 33.8 882
fifoN10 m-out m-out m-out m-out m-out m-out 2.039 130.9 2286
dmeN3 4.924 356.3 267999 0.18 15.2 117270 0.991 66.2 402
dmeN4 m-out m-out m-out 11.2 785.3 4678742 2.358 208.8 1665
dmeN5 m-out m-out m-out m-out m-out m-out 44.482 209.0 29919

The second analysis involves the state space search for several asynchronous circuit

designs. They include a tree arbiter (Arb) of multiple cells [145], a self-timed first-in-first-out

(Fifo) design [146], and a distributed mutual exclusion element (Dme) with a ring of Dme

cells [145]. The results are shown in Table 5.1. The results in columns under Dfs are from

traditional depth-first search without any state reduction. The columns under Spin-Por

show results from the Spin model checker with its own partial order reduction [21], and

those under Por-Tb show results of depth-first search with partial order reduction using

trace-back. For each of these methods, the total runtime (Time), total memory usage (Mem),

and state count (|S|) are compared. Also, an entry “m-out” in the table means the memory

upper limit is reached.

From Table 5.1, it can be seen that the depth-first search (Dfs) method quickly fails

on designs with a large state space, due to the state explosion problem. The results from

Spin with partial order reduction (Spin-Por) show some advantages over the Dfs method

in that more designs are able to complete. Spin exceeds the memory limit on arbN9,

arbN11, fifoN10, and dmeN5. Partial order reduction with trace-back (Por-Tb) has effective

reduction in the state count for all the designs listed in this table, compared to Dfs and Spin-

Por, especially for designs with large size. The savings in state count leads to significant

memory savings for the Por-Tb method. For the set of arbiters and Fifo designs, Spin-Por

does not reduce the state count at all. It is possible that Spin finds the state space for arbN7

due to its efficient state storing mechanisms, such as reliable hashing [147] and state-space

caching [148] and its improvement with the use of sleep sets [135], and therefore could

102

complete more designs than the Dfs method. Also, note that Spin is implemented in

C whereas our Dfs and Por are implemented in Java, which has a well-known memory

overhead compared to a C implementation. The only set of designs showing reductions from

Spin-Por is the set of Dmes. The Por-Tb approach, however, produces even smaller state

count and consequently leads to memory savings as the size of the DME becomes larger. One

drawback of using the Por-Tb approach is the long runtime on large models such as arbN11

and dmeN5. This is because these circuit models contain many dependent transitions, which

leads to extensive graph analysis on all Lpns for trace-back during state exploration. Overall,

these circuit models indicate that Por-Tb outperforms Dfs and Spin-Por for large designs

by constructing a smaller state space with some runtime overhead.

A partial order reduction approach with behavioral analysis has recently been presented

by Zhang et al. in [144]. This method generates full local state graphs first for each

module of a Lpn model. By analyzing the local state graphs which show state-transition

relations, it determines the dependency relation for each transition and applies reduction

when constructing the global state space. Figure 5.5 shows a comparison of state count

between Por with trace-back and behavioral analysis. Note that the state count in this

figure uses a logarithmic scale. The mixed results indicate that each method has advantages

on different models, or the same set of models but with different scales. The runtime and

memory results of the behavioral analysis reported on these examples show only a small

amount of performance overhead occurred.

3 5 7 9 11
0

5

Arbiters

behavioral

trace−back

3 5 8 10
0

2

4
FIFOs

3 4 5
0

5
DMEs

Number of components

Figure 5.5: State count comparison between trace-back and behavioral analysis.

103

5.2.6 Comparisons Between Por-Tb with Compositional Minimization

Comparisons are also made on state count, runtime and memory usage between the

Por-Tb approach in Lema and the compositional minimization (Cm) approach in Cadp.

The same set of buffer examples with asynchronous communication are used. Similar Lnt

and Vhdl examples with two buffers in series have been presented in Figures 2.3 and 2.4

and Figures 2.13 to 2.16. The difference is that each buffer example used here does not

nondeterministically assign different values in its producers, but rather uses an initial value

of 0. All experiments have been performed on a Linux machine with a CPU of eight 3.60 GHz

cores, and 16GB of available RAM is used to generate the results in this section. One core

is used at any time for all experiments conducted with both tools. Note that no transition

labels are hidden for any Lnt models.

Figure 5.6 shows comparisons of state counts and medians of 50 runtimes on a logarithmic

scale between the two approaches. The Por-Tb approach produces a near-linear increase of

state counts as more buffers are inserted, while the Cm approach produces an exponential

increase. The former’s runtimes are two orders of magnitude shorter than the latter’s.

number of buffers
0 5 10 15 20

lo
g
(s

ta
te

 c
o
u
n
t)

10 0

10 1

10 2

10 3

10 4

10 5

10 6

10 7

LPN-POR
LNT-Composition

(a) State count comparison.

number of buffers
0 5 10 15 20

lo
g

(r
u

n
ti
m

e
 (

s
e

c
))

10 -2

10 -1

10 0

10 1

10 2

10 3

LPN-POR
LNT-Composition

(b) Runtime comparison.

Figure 5.6: State counts and runtimes comparisons of the buffer examples with 1 to 20
buffers.

104

number of buffers
0 5 10 15 20

m
em

or
y

(M
B)

0

5

10

15

20

25

30

35

40

45

50
LPN-POR
LNT-Composition

Figure 5.7: Memory comparison of the buffer examples with 1 to 20 buffers.

For the memory usage comparison shown in Figure 5.7, the Cadp tool is more ad-

vantageous. Even though the state counts produced by the Lnt models are significantly

larger, their corresponding memory footprint is kept small. The difference in memory usage

is largely due to different language implementations: Lema uses Java which relies on its

garbage collection for memory management, whereas Cadp is implemented in C where it

optimizes state space storage with full control of memory management.

It is worth noting that the series buffer examples are loosely coupled with little transition

dependencies. Indeed, Por approaches have distinct advantages in handling systems with

high concurrency but low dependencies. On the other hand, compositional minimization

used to conduct these experiments minimizes Ltss with respect to divergence-sensitive

branching bisimulation equivalence. The need for preserving branching structures may

prevent significant state minimizations. Also, transition label hiding plays a key role for

composing and minimizing Ltss. State reduction can improve significantly as more labels

are hidden. Actually, with all labels hidden in each buffer example in the series, they all

105

reduce down to a final state space with a single state and a single transition. Runtimes,

however, show only slight improvement over the case where all labels are visible, and are still

two orders of magnitude longer than those produced by Por-Tb. The runtime overhead is

because the Cm approach is not performed by a single tool, but that Svl generates a shell

script, which generates quite a lot of tool invocations: for instance, each composition step

requires at least a call to choose the set of processes to combine, a call to the composition

tool, and a call to the minimization tool, not to mention the generation and clean up of

auxiliary files.

5.3 Vhdl Model for the Two-by-Two NoC
The livelock-free routing architecture for the two-by-two NoC in Figure 4.13 has been

modeled in the channel-level Vhdl. This section describes several representative components

of the routers and arbiters with their Vhdl descriptions.

5.3.1 Modeling Nondeterministic Choice in Arbiters

The behavior of nondeterministic choice is needed for all arbiters in the model. Figure 5.8

shows the entity for an arbiter with two inputs. This arbiter is instantiated by all arbiters

except the PE arbiters and arbiters making an illegal turn. Port declarations are omitted

from the example code. This arbiter uses two pairs of ports to handle communications with a

PE router and a non-PE one: (in0_status, in0) and (in1_status, in1). Ports with the “_status”

suffix are used to inform the connected routers of the arbiter’s output status: a Boolean

value 1 indicates a nonfaulty output link, and 0 indicates a faulty link. The output port

arb_out is used by the arbiter to send data, i.e.,one_flit , to its connected succeeding router.

All ports are all of type channel , and are initialized by the function call init_channel.

The behavior of this arbiter is that it blocks until either in0_status or in1_status channel

requests to receive its output link status. If both requests are sampled by their respective

probes simultaneously, variable z is nondeterministically assigned to a value of 1 or 2, based

on which the corresponding channel is selected by the arbiter to receive data. This data is

then sent out on the arb_out channel. On the other hand, if a request is detected only on

one of the channels, the arbiter communicates on that channel with the connected router in

a similar way. All PE arbiters have a slightly simpler behavior in that they receive the data

directly without reporting the output link status first, as they do not have any outputs and

only consume data packets.

For an arbiter that helps to make an illegal turn (e.g. arb_W_10, arb_S_11), it needs

to be able to send negative acknowledgements to the router. The snippet of a two-input

106

architecture behavior of arb_2_in i s
signal one_ f l i t : s td_log ic_vector (1 downto 0) ;
signal sig_one : s td_log ic_vector (0 downto 0) := "1" ;

begin
arb_2_in : process

variable z : i n t e g e r ;
begin

await_any (in0_status , in1_status) ;
va s s i gn (sig_one , "1" , 1 , 1) ;
i f (probe (in0_status) and probe (in1_status)) then

z := s e l e c t i o n (2) ; −− r e tu rn s e i t h e r a 1 or a 2
i f (z = 1) then

send (in0_status , sig_one) ;
r e c e i v e (in0 , on e_ f l i t) ;
send (arb_out , on e_ f l i t) ;

else
send (in1_status , sig_one) ;
r e c e i v e (in1 , one_ f l i t) ;
send (arb_out , on e_ f l i t) ;

end i f ;
e l s i f (probe (in0_status)) then

send (in0_status , sig_one) ;
r e c e i v e (in0 , on e_ f l i t) ;
send (arb_out , on e_ f l i t) ;

else −− only probe (in1_status) r e tu rn s t rue
send (in1_status , sig_one) ;
r e c e i v e (in1 , on e_ f l i t) ;
send (arb_out , on e_ f l i t) ;

end i f ; −−wait f o r de lay (1 , 1) ;
end process arb_2_in ;

end behavior ;

Figure 5.8: Vhdl entity for the arbiter with two inputs.

buffer’s behavior, i.e., the behavior when both of its input channels request to communicate,

is shown in Figure 5.9. Similar to the arbiter in Figure 5.8, it arbitrarily selects one router

to communicate with. The difference is that it has to send a negative acknowledgement

so that the router attempting an illegal turn can drop the packet to avoid deadlock. The

behavior is modeled with a breakable while-loop. A standard logic variable free is used to

model the arbiter’s availability to receive a network flit. After receiving a packet from its

connected PE router on in_pe_router (Line 6), the arbiter assigns free to 0 with a uniform

delay of one time unit (Line 7), indicating the arbiter is occupied. The vassign statement

is defined in the handshake package [66]. Each iteration of the while-loop L1 (Lines 8 to

24) first waits until either the router attempting an illegal turn requests the arbiter’s status

(in_illegal_status) or the router connected to the arbiter’s output is ready to receive its data

flit (arb_out) (Line 9). Nondeterministic choice is made when both requests are sampled

simultaneously (Lines 10 to 17). After the arbiter successfully sends out its flit on arb_out

107

1 await_any (in_pe_router_status , i n_ i l l e g a l_s t a tu s) ;
2 i f (probe (in_pe_router_status) and probe (i n_ i l l e g a l_s t a tu s)) then
3 z0 := s e l e c t i o n (2) ; −− r e tu rn s e i t h e r a 1 or a 2
4 i f (z0 = 1) then
5 send (in_pe_router_status , sig_one) ;
6 r e c e i v e (in_pe_router , one_ f l i t) ;
7 vas s i gn (f r e e , ’ 0 ’ , 1 , 1) ;
8 L1 : while (f r e e = ’0 ’) loop
9 await_any (in_ i l l e ga l_s ta tu s , arb_out) ;

10 i f (probe (i n_ i l l e g a l_s t a tu s) and probe (arb_out)) then
11 z1 := s e l e c t i o n (2) ;
12 i f (z1 = 1) then
13 send (arb_out , one_ f l i t) ;
14 vas s i gn (f r e e , ’ 1 ’ , 1 , 1) ;
15 else
16 send (in_ i l l e ga l_s ta tu s , s ig_zero) ;
17 end i f ;
18 e l s i f (probe (i n_ i l l e g a l_s t a tu s)) then
19 send (in_ i l l e ga l_s ta tu s , s ig_zero) ;
20 else −− only probe (arb_out) r e tu rn s t rue
21 send (arb_out , one_ f l i t) ;
22 vas s i gn (f r e e , ’ 1 ’ , 1 , 1) ;
23 end i f ;
24 end loop L1 ;
25 else −− z0 = 2
26 send (in_ i l l e ga l_s ta tu s , sig_one) ;
27 r e c e i v e (i n_ i l l e g a l , on e_ f l i t) ;
28 vas s i gn (f r e e , ’ 0 ’ , 1 , 1) ;
29 L2 : while (f r e e = ’0 ’) loop
30 await_any (in_ i l l e ga l_s ta tu s , arb_out) ;
31 i f (probe (i n_ i l l e g a l_s t a tu s) and probe (arb_out)) then
32 z1 := s e l e c t i o n (2) ;
33 i f (z1 = 1) then
34 send (arb_out , one_ f l i t) ;
35 vas s i gn (f r e e , ’ 1 ’ , 1 , 1) ;
36 else
37 send (in_ i l l e ga l_s ta tu s , s ig_zero) ;
38 end i f ;
39 e l s i f (probe (i n_ i l l e g a l_s t a tu s)) then
40 send (in_ i l l e ga l_s ta tu s , s ig_zero) ;
41 else −− only probe (arb_out) r e tu rn s t rue
42 send (arb_out , one_ f l i t) ;
43 vas s i gn (f r e e , ’ 1 ’ , 1 , 1) ;
44 end i f ;
45 end loop L2 ;
46 end i f ;

Figure 5.9: Partial Vhdl entity for the two-input arbiter with negative acknowledgement.

(Line 13), it sets free to 1 (Line 14) so that it can exit loop L1, after which the arbiter is

ready to accept the next flit. If the arbiter chooses to communicate with the router at its

input (Line 15), it sends a negative acknowledgement represented by sig_zero (a Boolean

signal initialized to 0) on channel in_illegal_status (Line 16). This models the behavior that

this arbiter is not available to receive a flit and tells the router to drop its flit to avoid

deadlock. It repeats sending a negative acknowledgement, indicated by the free variable

remaining at 0, until it clears out its own flit. Note that both a busy and a faulty arbiter

output link are modeled with the same signal value 0. Differentiating them is unnecessary

because in either case, the router receiving this status has to drop its packet. The rest of

this arbiter model uses the same control structures.

108

5.3.2 Router Models

Each of the PE routers has similar behaviors: it first nondeterministically assigns a

two-bit destination coordinate to a flit, and then checks each bit against its own location

coordinates, the result of which determines the next forwarding location for the flit. Fig-

ure 5.10 describes the PE router of node 10. It has two pairs of output ports: (out_w_status,

out_w) and (out_n_status, out_n). They are all typed channel, and are initialized by the

function called init_channel.

The random choice in a nondeterministic data assignment is modeled with a variable z

that can take a random value, and different destinations are assigned in each choice branch

(Lines 4 to 11). The expression one_flit (0 downto 0) = "0" (Line 12) compares the horizontal

coordinate of one_flit to the destination coordinate 0. For a packet destined for either node

1 r_PE_10 : process
2 variable z : i n t e g e r ;
3 begin
4 z := s e l e c t i o n (3) ; −− r e tu rn s 1 , 2 , or 3
5 i f (z = 1) then
6 vas s i gn (one_f l i t , "00" , 1 , 1) ;
7 e l s i f (z = 2) then
8 vas s i gn (one_f l i t , "01" , 1 , 1) ;
9 else

10 vas s i gn (one_f l i t , "11" , 1 , 1) ;
11 end i f ;
12 i f (on e_ f l i t (1 downto 1) = "0") then −− y >= j and x < i
13 r e c e i v e (out_w_status , arb_status) ; −− r e c e i v e the west output s t a tu s
14 i f (arb_status = "0") then −− west output f au l t y
15 r e c e i v e (out_n_status , arb_status) ;−− r e c e i v e the north output s t a tu s
16 i f (arb_status = "0") then −− north output f a u l t y
17 vas s i gn (fa i l_to_route , ’ 1 ’ , 0 , 0) ;
18 guard (fa i l_to_route , ’ 0 ’) ;
19 vas s i gn (fa i l_to_route , ’ 0 ’ , 0 , 0) ;
20 else −− north output good
21 send (out_n , one_ f l i t) ;
22 end i f ;
23 else −− out_w output good
24 send (out_w , one_ f l i t) ;
25 end i f ;
26 e l s i f (on e_ f l i t (0 downto 0) = "1" and one_ f l i t (1 downto 1) = "1") then−− y = (j +1)
27 r e c e i v e (out_n_status , arb_status) ; −− and x = i
28 i f (arb_status = "0") then
29 r e c e i v e (out_w_status , arb_status) ;
30 i f (arb_status = "0") then
31 vas s i gn (fa i l_to_route , ’ 1 ’ , 0 , 0) ;
32 guard (fa i l_to_route , ’ 0 ’) ;
33 vas s i gn (fa i l_to_route , ’ 0 ’ , 0 , 0) ;
34 else
35 send (out_w , one_ f l i t) ;
36 end i f ;
37 else
38 send (out_n , one_ f l i t) ;
39 end i f ;
40 end i f ;
41 end process r_PE_10 ;

Figure 5.10: Vhdl entity for the NoC PE router of node 10.

109

00 or 01, the router first tries to send the packet west (Line 13). If this direction is not

possible due to a faulty link (Line 14), it diverts the packet to its north output (Line 15).

Otherwise it forwards the packet to its west output (Line 25). If the north direction is

not viable after the packet is diverted, then a routing failure occurs, which is modeled by

assigning the standard logic signal fail_to_route to 1 (Line 17). The following guard statement

(Line 18) only executes if fail_to_route evaluates to 0. Since this signal is just assigned to

1, it will not finish executing this line, which creates a deadlock. This is useful for the

verification tool to detect routing failure. The next line (Line 19) is vacuous as it is never

reachable. Its existence is to pair with the previous assignment to the same signal (Line

17) to facilitate correct compilations of this Vhdl model. On the other hand, if the north

direction is not faulty, the packet is sent to north (Line 21).

Unlike the PE router, a non-PE router receives data flits instead of generating them.

Some non-PE routers are also responsible for dropping flits. In Figure 5.11, router r_W_10

drops its flit after a failure attempt to send it back west (Line 11). It is an illegal turn

because this router only receives east-going packets, and hence making a west turn is illegal.

Also, note that if a packet’s destination is node 01, the router does not try an alternative

path after it fails to send it north (Lines 20 to 29). This is due to the removal of multiple

diversions to avoid livelock.

5.4 Verification Observations
Auxiliary Vhdl entities are provided to model the environment that produces and/or

consumes network packets for each router and arbiter. A Lpn is automatically compiled

from the Vhdl specifications for each router or arbiter and their respective environment.

Full state exploration on these individual models produces large state spaces due to the

existence of high concurrency and nondeterminism. The full state search for the Lpn model

of the arbiter with two inputs, whose Vhdl entity is shown in Figure 5.8, generated 713,122

states. Por-Tb has demonstrated effective state reduction on the two-input arbiter with

negative acknowledgement, whose representative Vhdl entity is shown in Figure 5.9, and

the PE arbiter: it reduces the state count for the former from 5,778 to 81, and the latter

from 20,192 to 1795, achieving over 90% state reduction. Unfortunately, due to a glitch in

the Por-Tb Java implementation, state reduction on other routers and arbiters ran into

erroneous deadlock states.

Compared to the state count generated from the corresponding Lnt processes, the Lpn

exhibits significant overhead, even after Por-Tb is applied. For example, state count for the

110

1 r_W_10: process
2 begin
3 r e c e i v e (in_w , one_ f l i t) ;
4 i f (one_ f l i t (0 downto 0) = "0" and one_ f l i t (1 downto 1) = "1") then −− y = j and x = i
5 send (out_ip , one_ f l i t) ;
6 e l s i f (one_ f l i t (0 downto 0) = "1" and one_ f l i t (1 downto 1) = "1") then−− y = (j +1)
7 r e c e i v e (out_n_status , arb_status) ; −− and x = i
8 i f (arb_status = "0") then −− f a u l t y
9 r e c e i v e (out_w_status , arb_status) ;

10 i f (arb_status = "0") then −− f a u l t y
11 vas s i gn (drop , ’ 1 ’ , 1 , 1) ;
12 guard (drop , ’ 0 ’) ;
13 vas s i gn (drop , ’ 0 ’ , 0 , 0) ;
14 else −− out_w i s good
15 send (out_w , one_ f l i t) ;
16 end i f ;
17 else −− out_n i s good
18 send (out_n , one_ f l i t) ;
19 end i f ;
20 e l s i f (one_ f l i t (0 downto 0) = "1" and one_ f l i t (1 downto 1) = "0") then−− y = (j +1)
21 r e c e i v e (out_n_status , arb_status) ; −− and x < i
22 i f (arb_status = "0") then
23 vas s i gn (rm_livelock , ’ 1 ’ , 0 , 0) ;
24 guard (rm_livelock , ’ 0 ’) ;
25 vas s i gn (rm_livelock , ’ 0 ’ , 0 , 0) ;
26 else
27 send (out_n , one_ f l i t) ;
28 end i f ;
29 end i f ;
30 end process r_W_10;

Figure 5.11: Vhdl entity for the west router of node 10.

two-input arbiter with negative acknowledgement and the PE arbiter is 7 with 18 transitions

and 1 with 8 transitions. This discrepancy is largely due to different representations of

synchronization operations in Lnt and Lpn. Lnt encodes a pair of “send” and “receive”

operations on the same channel with a pair of synchronization gates that exchange offers.

Cadp generates a single-labeled transition and one state on the Lts when the rendezvous

of this pair of gates happens. Lpn, however, uses six transitions to represent the handshake

between these operations without an explicit notion of synchronization, as shown in Fig-

ure 5.2. As can be seen from Figure 5.3, full state exploration in Lema interleaves all possible

transition-firing sequences, producing 16 states. Even after the removal of unnecessary

interleavings by Por-Tb, there are still 10 states. Other Vhdl compilation overhead, such

as a dummy Lpn transition for each branch of a nondeterministic assignment, and complex

Lpn enabling condition expressions for standard logic vector slicing, has also contributed to

the large state space and slow runtime.

111

5.5 Conclusion and Discussion
This chapter first presents the evaluation of the costs and benefits of using trace-back

to improve the ample set computation for partial order reduction on several asynchronous

designs. For examples with significant concurrency, such as the series buffers examples and

large Fifo circuit models, trace-back can produce better ample sets, leading to a significant

reduction in the number of states that must be explored during verification. This result

can provide both memory and runtime benefits. The asynchronous circuit models are

particularly challenging for this approach due to the fact that every transition in these

models is a disabling failure transition. However, with the proposed refinements in the

preparations step (Section 5.2.1), our method achieves considerable state reduction. This

is largely due to the fact that the proposed refinements statically eliminate a large amount

of seemingly dependent transitions, avoiding unnecessary dependency analysis for the state

exploration. It should also be noted that, in general, one cannot expect a partial order

reduction method to be effective for every model. It tends to work well on models that have

components are loosely coupled, giving more concurrency than dependency. This can be seen

from the state count comparisons between Por-Tb and the compositional minimization

on the series of buffers. The buffer examples are ideal cases for Por-Tb, as transitions

have little dependency but substantial concurrency. Another key observation is that gate

hiding in Lnt plays a very important role on compositional minimization. It is somewhat

related to partial order reductions, in the sense that irrelevant interleavings of internal

transitions are abstracted away. Representative Vhdl models are described for the routers

and arbiters of the livelock-free two-by-two NoC. They are compiled to Lpn models, which

are used by Lema to do state exploration. Por-Tb enables over 90 percent state reduction

over the full state space on two arbiter models. Lnt, which uses explicit synchronizations,

still outperforms Por-Tb. Observations show that the main reasons for this are the lack

of Lpn-explicit synchronization and inefficient compilation of some Vhdl constructs and

expressions. One possible solution to the implicit Lpn synchronization is to apply state

minimizations on immediate states, which are generated by immediate transitions during

state exploration, to only keep a single, nonimmediate state in a synchronization operation.

Vhdl compilation also needs to be improved to achieve more direct and efficient conversion

to Lpn.

CHAPTER 6

CONCLUSION

A NoC approach to flexible mapping of Ecus to sensors and actuators on an automotive

system has the following distinctive advantages: it is possible for Ecus to balance their

computation load by sharing processing power through network communications; it provides

spare control units that can replace the faulty ones without losing control of their designated

sensors and/or actuators. It is desirable to implement a fault-tolerant NoC routing algo-

rithm to provide additional resilience to network faults. Fault-tolerance, however, increases

the design complexity, making the NoC routing prone to deadlock and other problems.

This dissertation proposes a link-fault-tolerant routing algorithm and its formal models that

are verified to prove its functional correctness. This chapter concludes the dissertation by

providing a summary and presenting possible future work.

6.1 Summary
This dissertation describes the development of a link-fault-tolerant routing algorithm on

an asynchronous, multiflit routing architecture. It is formally modeled in a process-algebra

action-based language Lnt, and a channel-level Vhdl which can be automatically compiled

to a transition-based Lpn formalism. Compositional verification has been applied to the

Lnt model to successfully prove several desirable functional properties. An optimal Por

approach is proposed to ease the combinatorial state explosion for state reachability of Lpns.

With the help of this approach, significant state reduction is achieved on two arbiters of the

two-by-two NoC model. Key observations are made between the two competing verification

methodologies.

Improving upon the node-fault-tolerant Glass/Ni routing algorithm, the proposed routing

algorithm presented in Chapter 3 loosens the stringent and unrealistic node-fault assump-

tion, and is able to achieve link-fault tolerance on a 2-D mesh network. To guarantee

deadlock freedom, this algorithm drops network packets to avoid formations of dependency

cycles. The cost of this performance tradeoff is shown to be minimal from the simulation

results of a Vhdl implementation of the routing algorithm. A routing architecture is

113

proposed to improve efficiency by allowing simultaneous routing of multiple packets on a

single node.

Evolution of the Lnt model for this NoC architecture is described in Chapter 4. Key

lessons learned from a leakage path and a deadlock scenario after removing all arbiters’

buffering capacity have contributed to the construction of a correct behavioral model for

the arbiters. To address a major source of state explosion, a data abstraction scheme is

proposed that maps a flit’s concrete destination coordinates to its diversion status. The

discovery of routing failure hidden by the abstract model leads to the discovery of excessive

fault-tolerance in the routing algorithm that can cause livelock issues. Removal of livelock

loops yields a simplified architecture that enables full state space generation of the concrete

model. With the help of the Cadp verification toolbox, functional properties are verified

for deadlock and livelock freedom and packet delivery.

The obtained livelock-free two-by-two NoC architecture is then modeled in channel-level

Vhdl, from which the Lpn model can be generated and used for verification. Representative

Vhdl entities of this NoC archietecture are described in Chapter 5. Given the highly

concurrent nature of this NoC model, a different avenue of state reduction technique,

namely partial order reduction, is studied in detail. Algorithms are proposed for a minimal

ample set construction method with tracing back on processes of the Lpn model to obtain

transitions necessary to interleave, while pruning certain seemingly dependent transitions.

Evaluation of the costs and benefits of using partial order reduction with trace-back on

several asynchronous designs shows that this mechanism works well on models that have

loosely coupled components that exhibit more concurrency than dependency. It manages

to substantially reduce the state space of two arbiter models of the two-by-two NoC.

However, the state spaces are still larger than the corresponding Lnt models that use

explicit synchronization. Analysis of this difference suggests the need for minimizing states

created by Lpn immediate transitions and improving the Vhdl compiler.

6.2 Future Work
Experiences and insights gained in using formal analysis techniques to debug and verify

properties of the complex NoC routing architecture have inspired us to pursue several future

research directions. This section describes some potential approaches to undertaking these

research investigations.

114

6.2.1 Large-scale NoC Verification Using Cadp

Although it is possible to obtain successful verification results for the Lnt version of

the two-by-two NoC, as described in Section 4.4, the two-by-two NoC only includes four

corner nodes that do not exhibit all possible behaviors specified by the link-fault routing

algorithm. On the other hand, the three-by-three NoC, as shown in Figure 3.11, contains

all the nine different types of nodes that can exercise all possible behaviors of the routing

algorithm specified in Figure 4.14. Unfortunately, deadlock freedom verification on a purely

abstract version of this NoC fails due to state explosion. Other general state reduction and

optimization techniques are considered, but they do not seem to be promising in dealing

with the large NoC example. Detailed remarks are given below.

• Symmetry reduction. The considered three-by-three NoC is not quite symmetrical, as

can be seen from its architecture in Figure 4.13. Added upon it is the nonsymmetrical

negative-first-based routing algorithm that gives bias to negative routing directions and

sets special routing rules on the two negative edges. Therefore, applying symmetry

reduction may not be effective.

• Assign priorities to transitions. This technique could be potentially useful, but pri-

orities are incompatible with the compositional approach, because the divergence-

sensitive branching bisimulation is not a congruence for priority. Though priorities

would work for strong bisimulation, which would enable far fewer reductions.

• Symbolic techniques. Cadp does not yet support them. But but for such an asym-

metric system, the benefit of symbolic techniques is not completely obvious.

• Iterative techniques (e.g., Counter-Example Guided Abstraction Refinement (Cegar),

or Bmc techniques) are also not guaranteed to succeed. To the best knowledge

of the author, data abstraction adopted in this work is the coarsest, i.e., only a

one-bit Boolean variable remains to indicate the diversion status. Even with the

coarsest abstraction, state explosion still occurs. It is not clear if the Cegar approach

can result in more significant abstraction, and any refinement on the abstraction is

expected to worsen the already unmanageable state space. As for Bmc techniques, it

may be difficult, if possible, to check whether a deadlock state exists without a full

state space. Also, it has been applied by Palaniveloo [112] without success.

The prevailing asymmetry in the three-by-three NoC poses significantly challenging

tasks, especially for deadlock freedom verification where all routing nodes continuously

115

generate network packets. One idea to tackle this problem is to avoid generating the

global state space (or more precisely, Lts), but to reason about deadlock from locally

generated Ltss. Partial model checking [149] is potentially a promising option. Rooted

in the compositional verification, this technique incrementally incorporates the extracted

behavior from a process into a temporal logic formula to obtain a new formula, and this

formula can be verified on a composition of the rest of the processes, i.e., all processes

excluding the one already incorporated in the formula. Simplifications of the formula must

be applied to keep its size tractable. Recently, Lang and Mateescu [150] generalized and

optimized this technique to the network of Ltss and implemented as a companion software

for the Cadp toolbox. Another idea worth exploring is to experiment with techniques using

state space caching, i.e., not all states are stored, but only some.

6.2.2 Combining Static Analysis with Dynamic Analysis
While model checking is needed to check implementation details, such as connectivity

of routers and arbiters; and dynamic properties, such as deadlock avoidance; static analysis

methods such as those used by Dci2 and GeNoC can be much more efficient.

To better understand the value of static analysis, we attempted to encode our NoC

routing algorithm using the Dci2 approach. Using Dci2, the routing algorithm is encoded

as a function in the C language. This function determines the next direction to route based

on the current state (i.e., current node, destination of packet, and where the packet came

from). While the Lnt description includes implementation details, such as the connections

between the routers and arbiters and the interaction between routers and arbiters to check

for availability, the Dci2 approach abstracts away these details. So, while Dci2 can verify

a static model of the protocol, it does not verify the implementation architecture for the

protocol nor its dynamic behavior. Using Dci2, it is possible to show that the routing

protocol without faults is deadlock-free and livelock-free for larger networks (we checked up

to five-by-five router nodes). It is also possible to verify that there are no disconnected routes

in the presence of a single fault. In the single fault case, though, Dci2 reports deadlocks,

since there is no mechanism to encode packet dropping to avoid deadlock in Dci2. Finally,

in the double fault case, Dci2 reports both deadlocks and disconnected routes, though no

livelocks are found. While this is reassuring, these results should be confirmed with model

checking, because our deadlock avoidance routing protocol cannot be precisely encoded in

Dci2.

Therefore, an interesting area of future research is to develop methodologies that leverage

both techniques. For example, Dci2 can be used to refine a routing protocol to eliminate

116

static deadlocks, livelocks, and disconnected route conditions. Once the routing protocol is

developed, model checking can be employed to check the implementation architecture and

verify dynamic properties.

6.2.3 Improving Partial Order Reduction on Lpns

The cost and benefit evaluation of using trace-back of Por on Lpns discussed in Sec-

tion 5.2.5 has shown a performance penalty in computing an optimal ample set at each state.

There are several approaches to improve the results for Por with trace-back. First, limiting

the depth of the necessary set calculation can reduce the run time at perhaps some loss of

optimality. Second, the calculation of our DisabledBy and Disable sets is done in a fairly

conservative fashion. Namely, if a transition assigns to any variable that can potentially

disable an enabling condition, this transition is assumed to disable the transition. A better

analysis of the enabling condition should be able to eliminate false disablings. Since this is

statically computed at the beginning of analysis, it is a one-time-only cost, and its complexity

is on the size of the model and not the size of the state space.

Another future research direction to be investigated is to leverage advantages of different

state reductions. Experiences gained from this work have demonstrated that a particular

state reduction technique is good at handling one type of features. For example, data

abstraction is effective for models with complex data structures, whereas Por is mostly

efficient for highly concurrent models. However, for many real-world systems, it is often the

case that they possess several features, which degrades the effectiveness of applying a single

state reduction method. It is therefore necessary to explore ideas that intelligently combine

several state reduction methods. Not only can a combined approach improve the state

reduction efficiency, but also each individual technique can potentially benefit from others.

One possible approach is to use local state graphs generated by compositional verification

approach to infer more accurate trace-back for Por. The basic idea is to generate local

state using the expansion method presented by Zheng [151], then use local state information

to remove unnecessary concurrency. Depending on the quality of the generated local state

graphs, removing concurrency based solely on the local state information may not always

be efficient [152], especially when the dependency information is not obvious, i.e., for each

enabled transition, it is dependent on at least one other transition that is not enabled. A

naive approach is to take the enabled set as ample set in this case. However, it is believed

that if trace-back is applied in this case, more refined dependency relation for each enabled

transition can be obtained, and the resultant ample set can potentially be smaller. Also,

117

due to the limited usage of trace-back in this combined approach, the performance cost can

decrease for the combined approach.

6.2.4 Stochastic Analysis

Packet drop can limit the effectiveness of the routing algorithm, especially when a

particular link is faulty, as can be seen from Table 4.2. Packet drop, however, is necessary for

deadlock avoidance in our link-fault routing algorithm. It is a challenging task to justify the

performance of the routing algorithm in terms of packet drop due to deadlock avoidance

in a pure functional verification setting. To obtain a more accurate justification, it is

promising to annotate Lts transitions obtained for the functional analysis with link failure

probabilities, and then apply numerical quantitative methods such as the Continuous-Time

Markov Chain (Ctmc) analysis to evaluate its performance.

One widely known difficulty for the Ctmc analysis is also state explosion. This is

because, in general, Markovian analysis requires a full state space of a system to perform

calculations. A possible research direction is to apply Por techniques on stochastic models

for the Ctmc analysis. There are two foreseeable challenges here. Firstly, for a nonprob-

abilistic model, the ample set is always chosen to be the set with the smallest number of

necessary enabled transitions. This may not be the case for Ctmcs. When there is a choice

for determining an ample set, transition rates will have to be considered. Improperly selected

state-transition sequence by a Por technique may have the least significant accumulated

probability, leading to the enabling of a failure transition, which should not be missed. The

second challenge is the transition rates approximation. Pruning transition firings does not

change the rates on the remaining ones. However, when performing transient analysis on

Ctmcs, one standard technique is to use uniformisation, which involves converting Ctmcs

to embedded Discrete-Time Markov Chains (Dtmcs). One step in this conversion requires

rates-to-probabilities transformation, and the pruned rates are converted to probabilities of

staying at a state. Therefore, Por on Ctmcs can potentially decrease the probability of

leaving a state for any remaining transition. The rates on the remaining transitions have

to be approximated. It is possible to produce a uniformly distributed range of probabilities

where lower and upper bounds are derived after Por prunes transitions. However, this idea

needs to be further investigated to examine what types of probabilistic properties can be

checked with reasonable accuracy and whether efficient algorithms can be derived to perform

Ctmc analysis on a range of probabilities.

REFERENCES

[1] E. A. Lee, “Cyber Physical Systems: Design Challenges,” tech. rep., Center for Hybrid
and Embedded Software Systems, EECS University of California, Berkeley Berkeley,
CA 94720, USA, 2008.

[2] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. MIT Press, 1999.

[3] A. Valmari, Lectures on Petri Nets I: Basic Models: Advances in Petri Nets, ch. The
state explosion problem, pp. 429–528. Berlin, Heidelberg: Springer Berlin Heidelberg,
1998.

[4] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang, “Symbolic
model checking: 10ˆ20 states and beyond,” Inf. Comput., vol. 98, no. 2, pp. 142–170,
1992.

[5] K. L. McMillan, Symbolic model checking: an approach to the state explosion problem.
PhD thesis, Pittsburgh, PA, USA, 1992.

[6] R. E. Bryant, “Graph-based algorithms for boolean function manipulation,” IEEE
Trans. Comput., vol. 35, pp. 677–691, Aug. 1986.

[7] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L. Dill, “Symbolic
model checking for sequential circuit verification,” IEEE Trans. on CAD of Integrated
Circuits and Systems, vol. 13, no. 4, pp. 401–424, 1994.

[8] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, Tools and Algorithms for the Construction
and Analysis of Systems: 5th International Conference, TACAS’99 Held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS’99
Amsterdam, The Netherlands, March 22–28, 1999 Proceedings, ch. Symbolic Model
Checking without BDDs, pp. 193–207. Berlin, Heidelberg: Springer Berlin Heidelberg,
1999.

[9] M. Davis and H. Putnam, “A computing procedure for quantification theory,” J. ACM,
vol. 7, pp. 201–215, July 1960.

[10] A. Pnueli, Logics and Models of Concurrent Systems, ch. In Transition From Global
to Modular Temporal Reasoning about Programs, pp. 123–144. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1985.

[11] E. Clarke, D. Long, and K. McMillan, “Compositional model checking,” in Proceedings
of the Fourth Annual Symposium on Logic in computer science, (Piscataway, NJ, USA),
pp. 353–362, IEEE Press, 1989.

[12] T. A. Henzinger, S. Qadeer, and S. K. Rajamani, Computer Aided Verification: 10th
International Conference, CAV’98 Vancouver, BC, Canada, June 28 – July 2, 1998
Proceedings, ch. You assume, we guarantee: Methodology and case studies, pp. 440–
451. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998.

119

[13] S. Graf, B. Steffen, and G. Lüttgen, “Compositional Minimisation of Finite State
Systems Using Interface Specifications,” Formal Asp. Comput., vol. 8, no. 5, pp. 607–
616, 1996.

[14] D. Bustan, “Modular minimization of deterministic finite-state machines,” in In 6th
International Workshop on Formal Methods for Industrial Critical Systems, pp. 163–
178, 2001.

[15] E. M. Clarke, O. Grumberg, and D. E. Long, “Model checking and abstraction,” ACM
Trans. Program. Lang. Syst., vol. 16, pp. 1512–1542, Sept. 1994.

[16] D. Dams, R. Gerth, and O. Grumberg, “Abstract interpretation of reactive systems,”
ACM Trans. Program. Lang. Syst., vol. 19, pp. 253–291, Mar. 1997.

[17] E. M. Clarke, R. Enders, T. Filkorn, and S. Jha, “Exploiting symmetry in temporal
logic model checking,” Form. Methods Syst. Des., vol. 9, pp. 77–104, Aug. 1996.

[18] E. A. Emerson and A. P. Sistla, “Symmetry and model checking,” Form. Methods Syst.
Des., vol. 9, pp. 105–131, Aug. 1996.

[19] C. N. Ip and D. L. Dill, “Better verification through symmetry,” Form. Methods Syst.
Des., vol. 9, pp. 41–75, Aug. 1996.

[20] D. Peled, Computer Aided Verification: 5th International Conference, CAV ’93
Elounda, Greece, June 28–July 1, 1993 Proceedings, ch. All from one, one for all:
on model checking using representatives, pp. 409–423. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1993.

[21] G. J. Holzmann and D. Peled, “An improvement in formal verification,” in Proceedings
of the 7th IFIP WG6.1 International Conference on Formal Description Techniques
VII, (London, UK), pp. 197–211, Chapman & Hall, Ltd., 1995.

[22] A. Valmari, “A stubborn attack on state explosion,” Formal Methods in System Design,
vol. 1, no. 4, pp. 297–322.

[23] A. Valmari, Computer Aided Verification: 5th International Conference, CAV ’93
Elounda, Greece, June 28–July 1, 1993 Proceedings, ch. On-the-fly verification with
stubborn sets, pp. 397–408. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993.

[24] P. Godefroid, Computer-Aided Verification: 2nd International Conference, CAV ’90
New Brunswick, NJ, USA, June 18–21, 1990 Proceedings, ch. Using partial orders to
improve automatic verification methods, pp. 176–185. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1991.

[25] P. Godefroid, Partial-Order Methods for the Verification of Concurrent Systems: An
Approach to the State-Explosion Problem. Springer Berlin Heidelberg, 1996.

[26] E. A. Emerson, S. Jha, and D. Peled, Tools and Algorithms for the Construction
and Analysis of Systems: Third International Workshop, TACAS’97 Enschede, The
Netherlands, April 2–4, 1997 Proceedings, ch. Combining partial order and symmetry
reductions, pp. 19–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997.

[27] A. Valmari, “Stubborn Sets of Coloured Petri Nets.,” in Proceedings of the 12th
International Conference on Application and Theory of Petri Nets, 1991, Gjern,
Denmark, pp. 102–121, June 1991.

120

[28] R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer, and S. K. Rajamani, “Partial-order
reduction in symbolic state-space exploration,” Form. Methods Syst. Des., vol. 18,
pp. 97–116, Mar. 2001.

[29] H. Hansen and X. Wang, “Compositional Analysis for Weak Stubborn Sets,” in Pro-
ceedings of the 2011 Eleventh International Conference on Application of Concurrency
to System Design, ACSD ’11, (Washington, DC, USA), pp. 36–43, IEEE Computer
Society, 2011.

[30] I. Konnov, H. Veith, and J. Widder, “On the completeness of bounded model check-
ing for threshold-based distributed algorithms: Reachability,” in CONCUR 2014 —
Concurrency Theory (P. Baldan and D. Gorla, eds.), vol. 8704 of Lecture Notes in
Computer Science, pp. 125–140, 2014.

[31] I. Konnov, H. Veith, and J. Widder, “SMT and POR beat counter abstraction:
Parameterized model checking of threshold-based distributed algorithms,” in CAV
(Part I), vol. 9206 of LNCS, pp. 85–102, 2015.

[32] C. J. Glass and L. M. Ni, “Fault-Tolerant Wormhole Routing in Meshes,” in Twenty-
third annual international symposium on falut=tolerant computing, pp. 240–249, 1993.

[33] J. Wu, Z. Zhang, and C. Myers, “A Fault-Tolerant Routing Algorithm for a Network-
on-Chip Using a Link Fault Model,” in Virtual Worldwide Forum for PhD Researchers
in Electronic Design Automation, 2011.

[34] D. Champelovier, X. Clerc, H. Garavel, Y. Guerte, C. McKinty, V. Powazny, F. Lang,
W. Serwe, and G. Smeding, Reference manual of the LNT to LOTOS translator
(version 6.3). INRIA/VASY/CONVECS, 2015.

[35] Z. Zhang, W. Serwe, J. Wu, T. Yoneda, H. Zheng, and C. Myers, Formal Methods for
Industrial Critical Systems: 19th International Conference, FMICS 2014, Florence,
Italy, September 11-12, 2014. Proceedings, ch. Formal Analysis of a Fault-Tolerant
Routing Algorithm for a Network-on-Chip, pp. 48–62. Cham: Springer International
Publishing, 2014.

[36] Z. Zhang, W. Serwe, J. Wu, T. Yoneda, H. Zheng, and C. Myers, “An improved
fault-tolerant routing algorithm for a network-on-chip derived with formal analysis,”
Science of Computer Programming, vol. 118, pp. 24 – 39, 2016. Formal Methods for
Industrial Critical Systems (FMICS’2014).

[37] R. A. Thacker, K. R. Jones, C. J. Myers, and H. Zheng, “Automatic abstraction
for verification of cyber-physical systems,” in Proceedings of the 1st ACM/IEEE
International Conference on Cyber-Physical Systems, ICCPS ’10, (New York, NY,
USA), pp. 12–21, ACM, 2010.

[38] R. A. Thacker, A New Verification Method for Embedded Systems. Ph.D. dissertation,
Sch. Comp., Univ. of Utah, Salt Lake City, UT, Jan. 2010.

[39] G. D. Plotkin, “The origins of structural operational semantics,” The Journal of Logic
and Algebraic Programming, vol. 60–61, no. 0, pp. 3 – 15, 2004. Structural Operational
Semantics.

[40] R. Milner, A Calculus of Communicating Systems, vol. 92 of Lecture Notes in Computer
Science. Springer-Verlag Berlin Heidelberg, 1980.

121

[41] R. Milner, Communication and Concurrency. Upper Saddle River, NJ, USA: Prentice-
Hall, Inc., 1989.

[42] R. Milner, Communicating and Mobile Systems: The π-calculus. New York, NY, USA:
Cambridge University Press, 1999.

[43] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe, “A theory of communicating
sequential processes,” J. ACM, vol. 31, no. 3, pp. 560–599, 1984.

[44] C. A. R. Hoare, Communicating Sequential Processes. Prentice-Hall, 1985.

[45] A. W. Roscoe, C. A. R. Hoare, and R. Bird, The Theory and Practice of Concurrency.
Upper Saddle River, NJ, USA: Prentice Hall PTR, 1997.

[46] A. J. Martin, “Developments in concurrency and communication,” ch. Programming in
VLSI: From Communicating Processes to Delay-insensitive Circuits, pp. 1–64, Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1990.

[47] K. van Berkel, J. Kessels, M. Roncken, R. Saeijs, and F. Schalij, “The VLSI-
programming language Tangram and its translation into handshake circuits,” in
Proceedings of the Conference on European Design Automation, EURO-DAC ’91, (Los
Alamitos, CA, USA), pp. 384–389, IEEE Computer Society Press, 1991.

[48] J. Bergstra and J. Klop, “Process algebra for synchronous communication,” Informa-
tion and Control, vol. 60, no. 1–3, pp. 109 – 137, 1984.

[49] ISO/IEC, “Lotos — a formal description technique based on the temporal ordering of
observational behaviour.” International Standard 8807, International Organization for
Standardization — Information Processing Systems — Open Systems Interconnection,
Genève, September 1989.

[50] K. J. Turner, The Formal Specification Language Lotos: A Course For Users, Aug.
1989.

[51] H. Ehrig and B. Mahr, Fundamentals of Algebraic Specification I. 6, Springer-Verlag
Berlin Heidelberg, 1 ed., 1985.

[52] R. Mateescu and W. Serwe, Formal Methods for Industrial Critical Systems: 15th
International Workshop, FMICS 2010, Antwerp, Belgium, September 20-21, 2010.
Proceedings, ch. A Study of Shared-Memory Mutual Exclusion Protocols Using CADP,
pp. 180–197. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.

[53] F. Ghassemi, W. Fokkink, and A. Movaghar, “Verification of mobile ad hoc networks:
An algebraic approach,” Theoretical Computer Science, vol. 412, no. 28, pp. 3262 –
3282, 2011. Festschrift in Honour of Jan Bergstra.

[54] R. Abid, G. Salaün, F. Bongiovanni, and N. Palma, Automated Technology for Veri-
fication and Analysis: 11th International Symposium, ATVA 2013, Hanoi, Vietnam,
October 15-18, 2013. Proceedings, ch. Verification of a Dynamic Management Protocol
for Cloud Applications, pp. 178–192. Cham: Springer International Publishing, 2013.

[55] N. D. Mendes, F. Lang, Y. L. Cornec, R. Mateescu, G. Batt, and C. Chaouiya, “Com-
position and abstraction of logical regulatory modules: application to multicellular
systems,” Bioinformatics, vol. 29, no. 6, pp. 749–757, 2013.

122

[56] H. Garavel and F. Lang, “SVL: a Scripting Language for Compositional Verification,”
in Proceedings of the 21st IFIP WG 6.1 International Conference on Formal Tech-
niques for Networked and Distributed Systems {FORTE}’2001, pp. 377–392, Kluwer
Academic Publishers, Aug. 2001.

[57] H. Zheng, Z. Zhang, C. Myers, E. Rodriguez, and Y. Zhang, “Compositional model
checking of concurrent systems,” Computers, IEEE Transactions on, vol. 64, pp. 1607–
1621, June 2015.

[58] H. Zheng, E. Mercer, and C. J. Myers, “Modular verification of timed circuits using
automatic abstraction,” IEEE Trans. on CAD of Integrated Circuits and Systems,
vol. 22, no. 9, pp. 1138–1153, 2003.

[59] H. Zheng, C. J. Myers, D. Walter, S. Little, and T. Yoneda, “Verification of timed
circuits with failure-directed abstractions,” IEEE Trans. on CAD of Integrated Circuits
and Systems, vol. 25, no. 3, pp. 403–412, 2006.

[60] T. Yoneda and C. J. Myers, “Synthesis of timed circuits based on decomposition,” IEEE
Trans. on CAD of Integrated Circuits and Systems, vol. 26, no. 7, pp. 1177–1195, 2007.

[61] D. Walter, S. Little, C. J. Myers, N. Seegmiller, and T. Yoneda, “Verification of
analog/mixed-signal circuits using symbolic methods,” IEEE Trans. on CAD of Inte-
grated Circuits and Systems, vol. 27, no. 12, pp. 2223–2235, 2008.

[62] S. Little, D. Walter, C. J. Myers, R. A. Thacker, S. Batchu, and T. Yoneda,
“Verification of analog/mixed-signal circuits using labeled hybrid petri nets,” IEEE
Trans. on CAD of Integrated Circuits and Systems, vol. 30, no. 4, pp. 617–630, 2011.

[63] R. Thacker, C. Myers, K. Jones, and S. Little, “A new verification method for
embedded systems,” in Proc. International Conference on Computer Design (ICCD).,
IEEE Computer Society Press, 2009.

[64] H. Kuwahara, C. J. Myers, M. S. Samoilov, N. A. Barker, and A. P. Arkin, “Automated
abstraction methodology for genetic regulatory networks,” vol. 4220, pp. 150–175,
2006.

[65] C. Madsen, Z. Zhang, N. Roehner, C. Winstead, and C. J. Myers, “Stochastic model
checking of genetic circuits,” JETC, vol. 11, no. 3, pp. 23:1–23:21, 2014.

[66] C. Myers, Asynchronous Circuit Design. John Wiley & Sons, 2001.

[67] A. J. Martin, “The probe: An addition to communication primitives,” Information
Processing Letters, vol. 20, no. 3, pp. 125 – 130, 1985.

[68] H. Zheng, “Specification and compilation of timed systems,” Ph.D. dissertation, Dept.
Elect. & Comp. Eng., Univ. of Utah, Salt Lake City, UT, June 1998.

[69] E. R. Peskin, Protocol Selection, Implementation, and Analysis for Asynchronous
Circuits. Ph.D. dissertation, Dept. Elect. & Comp., Univ. of Utah, Salt Lake City,
UT, Aug. 2002.

[70] H. Garavel, G. Salaün, and W. Serwe, “On the semantics of communicating hardware
processes and their translation into LOTOS for the verification of asynchronous circuits
with CADP,” Sci. Comput. Program., vol. 74, no. 3, pp. 100–127, 2009.

123

[71] P. Guerrier and A. Greiner, “A generic architecture for on-chip packet-switched
interconnections,” in Proceedings of the Conference on Design, Automation and Test
in Europe, DATE ’00, (New York, NY, USA), pp. 250–256, ACM, 2000.

[72] W. Dally and B. Towles, “Route packets, not wires: on-chip interconnection networks,”
in Design Automation Conference, 2001. Proceedings, pp. 684–689, 2001.

[73] B. Coates, A. Davis, and K. Stevens, “The post office experience: designing a large
asynchronous chip.,” Integration, vol. 15, no. 3, pp. 341–366, 1993.

[74] E. Beigné, F. Clermidy, P. Vivet, A. Clouard, and M. Renaudin, “An asynchronous
NOC architecture providing low latency service and its multi-level design framework,”
in 11th International Symposium on Advanced Research in Asynchronous Circuits and
Systems (ASYNC 2005), 14-16 March 2005, New York, NY, USA, pp. 54–63, IEEE
Computer Society, 2005.

[75] P. Vivet, D. Lattard, F. Clermidy, E. Beigne, C. Bernard, Y. Durand, J. Durupt,
and D. Varreau, “FAUST, an Asynchronous Network-on-Chip based Architecture for
Telecom Applications,” Proc. 2007 Design, Automation and Test in Europe (DATE07),
2007.

[76] J. You, Y. Xu, H. Han, and K. S. Stevens, “Performance evaluation of elastic GALS
interfaces and network fabric,” Electronic Notes in Theoretical Computer Science,
vol. 200, no. 1, pp. 17 – 32, 2008. Proceedings of the Third International Workshop on
Formal Methods for Globally Asynchronous Locally Synchronous Design (FMGALS
2007).

[77] R. R. Dobkin, R. Ginosar, and A. Kolodny, “QNoC asynchronous router,” Integration,
the VLSI Journal, vol. 42, no. 2, pp. 103 – 115, 2009.

[78] Y. Thonnart, P. Vivet, and F. Clermidy, “A fully-asynchronous low-power framework
for gals noc integration,” in Design, Automation Test in Europe Conference Exhibition
(DATE), 2010, pp. 33–38, March 2010.

[79] M. Horak, S. Nowick, M. Carlberg, and U. Vishkin, “A low-overhead asynchronous
interconnection network for gals chip multiprocessors,” Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, vol. 30, pp. 494–507, April
2011.

[80] M. Imai and T. Yoneda, “Improving Dependability and Performance of Fully Asyn-
chronous On-chip Networks,” in Proceedings of the 2011 17th IEEE International
Symposium on Asynchronous Circuits and Systems, ASYNC ’11, (Washington, DC,
USA), pp. 65–76, IEEE Computer Society, 2011.

[81] D. Gebhardt, J. You, and K. S. Stevens, “Design of an energy-efficient asynchronous
noc and its optimization tools for heterogeneous socs,” IEEE Trans. on CAD of
Integrated Circuits and Systems, vol. 30, no. 9, pp. 1387–1399, 2011.

[82] D. Gebhardt, J. You, and K. S. Stevens, “Link pipelining strategies for an application-
specific asynchronous noc,” in NOCS 2011, Fifth ACM/IEEE International Sympo-
sium on Networks-on-Chip, Pittsburgh, Pennsylvania, USA, May 1-4, 2011 [157],
pp. 185–192.

124

[83] C. J. Glass and L. M. Ni, “The turn model for adaptive routing,” in Proceedings of
the 19th Annual International Symposium on Computer Architecture, ISCA ’92, (New
York, NY, USA), pp. 278–287, ACM, 1992.

[84] Y. M. Boura and C. R. Das, “Efficient fully adaptive wormhole routing in n-dimensional
meshes,” in Proceedings of the 14th International Conference on Distributed Computing
Systems, Poznan, Poland, June 21-24, 1994, pp. 589–596, IEEE Computer Society,
1994.

[85] A. A. Chien and J. H. Kim, “Planar-adaptive routing: Low-cost adaptive networks for
multiprocessors,” J. ACM, vol. 42, pp. 91–123, Jan. 1995.

[86] R. Casado, A. Bermúdez, F. J. Quiles, J. L. Sánchez, and J. Duato, “A protocol for
deadlock-free dynamic reconfiguration in high-speed local area networks,” IEEE Trans.
Parallel Distrib. Syst., vol. 12, pp. 115–132, Feb. 2001.

[87] D. Fick, A. DeOrio, G. Chen, V. Bertacco, D. Sylvester, and D. Blaauw, “A highly
resilient routing algorithm for fault-tolerant NoCs,” in Proceedings of the Conference on
Design, Automation and Test in Europe, DATE ’09, (3001 Leuven, Belgium), pp. 21–
26, European Design and Automation Association, 2009.

[88] R. Boppana and S. Chalasani, “Fault-tolerant wormhole routing algorithms for mesh
networks,” Computers, IEEE Transactions on, vol. 44, pp. 848–864, Jul 1995.

[89] C. Su and K. G. Shin, “Adaptive fault-tolerant deadlock-free routing in meshes and
hypercubes,” IEEE Trans. Computers, vol. 45, no. 6, pp. 666–683, 1996.

[90] J. Zhou and F. C. M. Lau, “Adaptive fault-tolerant wormhole routing in 2d meshes,”
in Proceedings of the 15th International Parallel & Distributed Processing Symposium
(IPDPS-01), San Francisco, CA, April 23-27, 2001, p. 56, IEEE Computer Society,
2001.

[91] J. Duato, “A theory of fault-tolerant routing in wormhole networks,” IEEE Trans.
Parallel Distrib. Syst., vol. 8, pp. 790–802, Aug. 1997.

[92] N. A. Nordbotten, M. E. Gómez, J. Flich, P. López, A. Robles, T. Skeie, O. Lysne,
and J. Duato, Network and Parallel Computing: IFIP International Conference, NPC
2004, Wuhan, China, October 18-20, 2004. Proceedings, ch. A Fully Adaptive Fault-
Tolerant Routing Methodology Based on Intermediate Nodes, pp. 341–356. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004.

[93] K. Chen and G. Chiu, “Fault-tolerant routing algorithm for meshes without using
virtual channels,” J. Inf. Sci. Eng., vol. 14, no. 4, pp. 765–783, 1998.

[94] T. T. Ye, L. Benini, and G. De Micheli, “Packetization and routing analysis of on-chip
multiprocessor networks,” J. Syst. Archit., vol. 50, pp. 81–104, Feb. 2004.

[95] M. Li, Q.-A. Zeng, and W.-B. Jone, “Dyxy: A proximity congestion-aware deadlock-
free dynamic routing method for network on chip,” in Proceedings of the 43rd Annual
Design Automation Conference, DAC ’06, (New York, NY, USA), pp. 849–852, ACM,
2006.

[96] I.-G. Lee, J. Lee, and S.-C. Park, “Adaptive routing scheme for noc communication
architecture,” in Advanced Communication Technology, 2005, ICACT 2005. The 7th
International Conference on, vol. 2, pp. 1180–1184, 2005.

125

[97] T. Schonwald, J. Zimmermann, O. Bringmann, and W. Rosenstiel, “Fully adaptive
fault-tolerant routing algorithm for network-on-chip architectures,” in Digital System
Design Architectures, Methods and Tools, 2007. DSD 2007. 10th Euromicro Conference
on, pp. 527–534, Aug 2007.

[98] J. Wu, “A Fault-Tolerant and Deadlock-Free Routing Protocol in 2D Meshes Based
on Odd-Even Turn Model,” IEEE Trans. Comput., vol. 52, pp. 1154–1169, Sept. 2003.

[99] G.-M. Chiu, “The odd-even turn model for adaptive routing,” IEEE Trans. Parallel
Distrib. Syst., vol. 11, pp. 729–738, July 2000.

[100] K. Goossens, J. Dielissen, and A. Rădulescu, “ÆThereal network on chip: Concepts,
architectures, and implementations,” IEEE Des. Test, vol. 22, pp. 414–421, Sept. 2005.

[101] F. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost, “Hermes: An infrastructure
for low area overhead packet-switching networks on chip,” Integr. VLSI J., vol. 38,
pp. 69–93, Oct. 2004.

[102] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, “Qnoc: Qos architecture and design
process for network on chip,” J. Syst. Archit., vol. 50, pp. 105–128, Feb. 2004.

[103] H. Garavel, F. Lang, R. Mateescu, and W. Serwe, “Cadp 2011: a toolbox for the
construction and analysis of distributed processes,” International Journal on Software
Tools for Technology Transfer, vol. 15, no. 2, pp. 89–107, 2012.

[104] R. J. van Glabbeek, “The linear time-branching time spectrum i - the semantics of
concrete, sequential processes,” in Handbook of Process Algebra (A. P. J.A. Bergstra
and S. Smolka, eds.), pp. 3–99, Elsevier, 2001.

[105] R. De Nicola and M. Hennessy, “Testing equivalences for processes,” Theor. Comput.
Sci., vol. 34, pp. 83–133, 1984.

[106] R. J. van Glabbeek and W. P. Weijland, “Branching-Time and Abstraction in Bisimu-
lation Semantics (extended abstract),” CS R8911, Centrum Wiskunde & Informatica
(CWI), Amsterdam, 1989. Also in Proceedings of the 11th IFIP World Computer
Congress, San Francisco, 1989.

[107] R. J. van Glabbeek, B. Luttik, and N. Trcka, “Branching bisimilarity with explicit
divergence,” Fundam. Inform., vol. 93, no. 4, pp. 371–392, 2009.

[108] D. Borrione, M. Boubekeur, L. Mounier, M. Renaudin, and A. Sirianni, “Validation of
asynchronous circuit specifications using IF/CADP,” in VLSI-SOC: From Systems to
Chips, Selected papers from the 12th IFIP International Conference on VLSI, vol. 200,
pp. 85–100, International Federation for Information Processing, December 2006.

[109] G. Salaün, W. Serwe, Y. Thonnart, and P. Vivet, “Formal verification of CHP specifica-
tions with CADP illustration on an asynchronous Network-on-Chip,” in Asynchronous
Circuits and Systems, 2007. ASYNC 2007. 13th IEEE International Symposium on,
pp. 73–82, March 2007.

[110] E. Beigné, F. Clermidy, P. Vivet, A. Clouard, and M. Renaudin, “An Asynchronous
NOC Architecture Providing Low Latency Service and Its Multi-Level Design Frame-
work,” in Proceedings of the 11th International Symposium on Advanced Research in
Asynchronous Circuits and Systems ASYNC 2005 (New York, USA), pp. 54–63, IEEE
Computer Society, Mar. 2005.

126

[111] Y.-R. Chen, W.-T. Su, P.-A. Hsiung, Y.-C. Lan, Y.-H. Hu, and S.-J. Chen, “For-
mal modeling and verification for network-on-chip,” in Green Circuits and Systems
(ICGCS), 2010 International Conference on, pp. 299–304, June 2010.

[112] V. A. Palaniveloo and A. Sowmya, “Application of formal methods for system-level
verification of network on chip,” in IEEE Computer Society Annual Symposium on
VLSI, ISVLSI 2011, 4-6 July 2011, Chennai, India, pp. 162–169, IEEE Computer
Society, 2011.

[113] L. G. Iugan, G. Nicolescu, and I. O’Connor, “Modeling and formal verification of a
passive optical network on chip behavior,” ECEASST, vol. 21, 2009.

[114] F. Verbeek and J. Schmaltz, “On Necessary and Sufficient Conditions for Deadlock-
Free Routing in Wormhole Networks,” IEEE Transactions on Parallel and Distributed
Systems, vol. 22, no. 12, pp. 2022–2032, 2011.

[115] F. Verbeek and J. Schmaltz, “A Decision Procedure for Deadlock-Free Routing in
Wormhole Networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 25,
no. 8, pp. 1935–1944, 2014.

[116] F. Verbeek and J. Schmaltz, “Automatic verification for deadlock in networks-on-chips
with adaptive routing and wormhole switching,” in NOCS 2011, Fifth ACM/IEEE
International Symposium on Networks-on-Chip, Pittsburgh, Pennsylvania, USA, May
1-4, 2011 [157], pp. 25–32.

[117] A. Alhussien, F. Verbeek, B. van Gastel, N. Bagherzadeh, and J. Schmaltz, “Fully reli-
able dynamic routing logic for a fault-tolerant noc architecture,” Journal of Integrated
Circuits and Systems, vol. 8, no. 1, pp. 43–53, 2013.

[118] D. Borrione, A. Helmy, L. Pierre, and J. Schmaltz, “A formal approach to the
verification of networks on chip,” EURASIP Journal Embedded Systems, vol. 2009,
pp. 2:1–2:14, Jan. 2009.

[119] A. Helmy, L. Pierre, and A. Jantsch, “Theorem proving techniques for the formal
verification of NoC communications with non-minimal adaptive routing,” in DDECS,
pp. 221–224, IEEE, 2010.

[120] F. Verbeek and J. Schmaltz, “Easy Formal Specification and Validation of Unbounded
Networks-on-Chips Architectures,” ACM Trans. Des. Autom. Electron. Syst., vol. 17,
pp. 1:1—-1:28, Jan. 2012.

[121] P. Crouzen and F. Lang, Fundamental Approaches to Software Engineering: 14th
International Conference, FASE 2011, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2011, Saarbrücken, Germany, March
26–April 3, 2011. Proceedings, ch. Smart Reduction, pp. 111–126. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011.

[122] M. Gazda and W. Fokkink, “Congruence from the Operator’s Point of View: Compo-
sitionality Requirements on Process Semantics,” in SOS, vol. 32 of EPTCS, pp. 15–25,
2010.

[123] H. Garavel, W. Serwe, and G. Smeding, “LNT.OPEN manual page.”

127

[124] R. Mateescu and A. Wijs, Model Checking Software: 18th International SPIN Work-
shop, Snowbird, UT, USA, July 14-15, 2011. Proceedings, ch. Property-Dependent
Reductions for the Modal Mu-Calculus, pp. 2–19. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011.

[125] R. Mateescu and E. Oudot, “Bisimulator 2.0: An On-the-Fly Equivalence Checker
based on Boolean Equation Systems,” in Proceedings of the 6th ACM-IEEE Interna-
tional Conference on Formal Methods and Models for Codesign MEMOCODE’2008
(Anaheim, CA, USA), pp. 73–74, IEEE Computer Society Press, June 2008.

[126] C. Flanagan and P. Godefroid, “Dynamic partial-order reduction for model checking
software,” in Proceedings of the 32Nd ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL ’05, (New York, NY, USA), pp. 110–121,
ACM, 2005.

[127] Y. Yang, X. Chen, G. Gopalakrishnan, and R. M. Kirby, Model Checking Software:
15th International SPIN Workshop, Los Angeles, CA, USA, August 10-12, 2008
Proceedings, ch. Efficient Stateful Dynamic Partial Order Reduction, pp. 288–305.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.

[128] P. Abdulla, S. Aronis, B. Jonsson, and K. Sagonas, “Optimal dynamic partial order
reduction,” in Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL ’14, (New York, NY, USA), pp. 373–384,
ACM, 2014.

[129] A. Valmari, “Error Detection by Reduced Reachability Graph Generation,” in Proc. of
the 9th European Workshop on Application and Theory of Petri Nets, (Venice, Italy),
1988.

[130] A. Valmari, Advances in Petri Nets 1990, ch. Stubborn sets for reduced state space
generation, pp. 491–515. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991.

[131] A. Valmari and H. Hansen, “Can Stubborn Sets Be Optimal?,” Fundam. Inf., vol. 113,
pp. 377–397, Aug. 2011.

[132] P. Godefroid and D. Pirottin, “Refining Dependencies Improves Partial-Order Verifi-
cation Methods (Extended Abstract),” in CAV, pp. 438–449, 1993.

[133] P. Godefroid and P. Wolper, “A Partial Approach to Model Checking,” Inf. Comput.,
vol. 110, no. 2, pp. 305–326, 1994.

[134] P. Godefroid and P. Wolper, Computer Aided Verification: 3rd International Work-
shop, CAV ’91 Aalborg, Denmark, July 1–4, 1991 Proceedings, ch. Using partial orders
for the efficient verification of deadlock freedom and safety properties, pp. 332–342.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1992.

[135] P. Godefroid, G. J. Holzmann, and D. Pirottin, “State-space caching revisited,” Formal
Methods in System Design, vol. 7, no. 3, pp. 227–241.

[136] K. Varpaaniemi, Application and Theory of Petri Nets 1994: 15th International
Conference Zaragoza, Spain, June 20–24, 1994 Proceedings, ch. On combining the
stubborn set method with the sleep set method, pp. 548–567. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1994.

128

[137] D. Peled, Computer Aided Verification: 6th International Conference, CAV ’94 Stan-
ford, California, USA, June 21–23, 1994 Proceedings, ch. Combining partial order
reductions with on-the-fly model-checking, pp. 377–390. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1994.

[138] G. J. Holzmann, P. Godefroid, and D. Pirottin, “Coverage Preserving Reduction
Strategies for Reachability Analysis,” in Proceedings of the IFIP TC6/WG6.1 Twelth
International Symposium on Protocol Specification, Testing and Verification XII, (Am-
sterdam, The Netherlands), pp. 349–363, North-Holland Publishing Co., 1992.

[139] C. Rodríguez, M. Sousa, S. Sharma, and D. Kroening, “Unfolding-based partial order
reduction,” in 26th International Conference on Concurrency Theory, CONCUR 2015,
Madrid, Spain, September 1.4, 2015 (L. Aceto and D. de Frutos-Escrig, eds.), vol. 42
of LIPIcs, pp. 456–469, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

[140] A. Mazurkiewicz, Petri Nets: Applications and Relationships to Other Models of
Concurrency: Advances in Petri Nets 1986, Part II Proceedings of an Advanced Course
Bad Honnef, 8.–19. September 1986, ch. Trace theory, pp. 278–324. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1987.

[141] T. Kitai, Y. Oguro, T. Yoneda, E. Mercer, and C. Myer, “Partial order reduction for
timed circuit verification based on a level oriented model,” in IEICE Transactions,
vol. E86-D, pp. 2601–2611, 2003.

[142] E. Mercer, Correctness and Reduction in Timed Circuit Analysis. Ph.D. dissertation,
Dept. Elect. & Comp. Eng., Univ. of Utah, Salt Lake City, UT, 2002.

[143] C. Baier and J.-P. Katoen, Principles of Model Checking. MIT Press, 2008.

[144] Y. Zhang, E. Rodriguez, H. Zheng, and C. Myers, “An Improvement in Partial Order
Reduction Using Behavioral Analysis,” in IEEE Computer Society Annual Symposium,
2012.

[145] D. L. Dill, Trace Theory for Automatic Hierarchical Verification of Speed Independent
Circuits. Ph.D. dissertation, Sch. Comp. Sci., Carnegie Mellon Univ., Pittsburgh, PA,
USA, 1988.

[146] A. J. Martin, “Self-timed fifo: An excercise in compiling programs into vlsi circuits,”
tech. rep., California Institute of Technology, 1986.

[147] P. Wolper and D. Leroy, Computer Aided Verification: 5th International Conference,
CAV ’93 Elounda, Greece, June 28–July 1, 1993 Proceedings, ch. Reliable hashing
without collision detection, pp. 59–70. Berlin, Heidelberg: Springer Berlin Heidelberg,
1993.

[148] G. J. Holzmann, “Tracing Protocols,” AT&T Technical Journal, vol. 64, pp. 2413–2434,
1987.

[149] H. R. Andersen, “Partial model checking,” in In Proceedings, Tenth Annual IEEE
Symposium on Logic in Computer Science, pp. 398–407, IEEE Computer Society Press,
1995.

[150] F. Lang and R. Mateescu, “Partial model checking using networks of labelled transition
systems and boolean equation systems,” Logical Methods in Computer Science, vol. 9,
no. 4, pp. 1–32, 2013.

129

[151] H. Zheng, “Compositional reachability analysis for efficient modular verification of
asynchronous designs,” Trans. Comp.-Aided Des. Integ. Cir. Sys., vol. 29, pp. 329–340,
Mar. 2010.

[152] H. Zheng, E. Rodriguez, Y. Zhang, and C. J. Myers, “A Compositional Minimization
Approach for Large Asynchronous Design Verification,” in SPIN, pp. 62–79, 2012.

[153] B. Bartley, J. Beal, C. Kevin, M. Goksel, N. Roehner, E. Oberortner, M. Pocock,
M. Bissell, C. Madsen, T. Nguyen, Z. Zhang, J. H. Gennari, C. Myers, A. Wipat, and
H. Sauro, “Synthetic biology open language (sbol) version 2.0.0,” Journal of Integrative
Bioinformatics, vol. 12, no. 2, p. 272, 2015.

[154] N. Roehner, Z. Zhang, T. Nguyen, and C. J. Myers, “Generating systems biology
markup language models from the synthetic biology open language,” ACS Synthetic
Biology, vol. 4, no. 8, pp. 873–879, 2015. PMID: 25822671.

[155] Z. Zhang, T. Nguyen, N. Roehner, G. Misirli, M. Pocock, E. Oberortner, J. Beal,
K. Clancy, A. Wipat, and C. Myers, “libSBOLj 2.0: A Java library to support sbol
2.0.” IEEE Life Sciences, in press.

[156] N. Roehner, J. Beal, K. Clancy, B. Bartley, R. Grunberg, G. Misirli, E. Oberortner,
M. Pocock, M. Bissell, C. Madsen, T. Nguyen, Z. Zhang, J. H. Gennari, A. Wipat,
H. Sauro, and C. J. Myers, “Synthetic biology open language 2.0: Sharing structure
and function in biological design.” submitted to ACS Synthetic Biology.

[157] NOCS 2011, Fifth ACM/IEEE International Symposium on Networks-on-Chip, Pitts-
burgh, Pennsylvania, USA, May 1-4, 2011, IEEE Computer Society, 2011.

