
A Model Checking Based Approach to Automatic Test Suite Generation
for Testing Web Services and BPEL

Abstract — With the rapid increase of Web Service
applications, the reliability of web service and service
composition has drawn particular attention from researchers
and industries. Many methods for testing and verifying the
reliability have been discussed, however, the existing methods
are weak in test automation and therefore difficult in tackling
the dynamic features of modern SOA based application. The
traditional method of model checking and the technique of test
suite generation have a large potential for the reliability
verification of web services and service composition. In this
paper, an approach to integrating the test suite generation
technique with model checking is presented. The approach
takes advantage of model checking to verify BPEL script at the
logical level, and to generate test suite automatically based on
the model description, and finally to select test cases with
respect to the counterexamples of model checking output. The
approach contributes a set of algorithms and its
implementation to support a translation from BPEL to
LOTOS, and LTS(Labeled Transition Systems, LTS in short)
to TTCN(Test and Testing Control Notation, TTCN in short)
behavior Tree. Finally, a case study is presented to
demonstrate and verify the proposed approach.

Keywords – BPEL Model Checking, Web Service Testing,
Automatic Test, Test Case Generation, LOTOS, and TTCN-3.

I. INTRODUCTION

Web services as a software system are designed to
support interoperable machine-to-machine interaction over a
network [1]. Usually the user specified composite Web
Services are located at different places to implement a
business process. In order to facilitate the users, IBM
published a Business Process Execution Language [2]
(BPEL in short) for compositing Web Services. BPEL as a
de-facto standard for web service orchestration has drawn
particularly attention from researchers and industries.
However, BPEL as a semi-formal flow language has
complex features such as distributed architecture,
asynchronous behavior and lack of user interface. All these
features also lead to concerns regarding their trustworthiness
because verification and testing activities are dramatically
affected. Many researchers from the software testing
domain have made great efforts to solve these problems.

A recent survey by Mustafa Bozkurt, Mark Harman and
Youssef Hassoun [3] summarizes the techniques of testing
web services and classifies the research undertaken into 7
categories: partition testing of web services, unit testing,

model-based testing and formal verification of web services,
contract-based testing, regression testing, interoperability
testing and integration testing. With an intensive
investigation, we conclude that the following issues need to
be studied urgently:
� The frequency of testing required;
� Testing without disrupting the operation of the service;
� Determining when testing is required and which

operations need to be tested.
As a verification technique, Model Checking may play

an important role for guaranteeing web service reliability.
Model checking allows a model checker to visits all
reachable states of the model and verifies whether the
expected system properties, specified in temporal logic
formulae, are satisfied over each possible path. If a property
is not satisfied, the model checker attempts to generate a
counterexample in the form of a trace as a sequence of states
[4].

 Franck van Breugel and Maria Koshkina [5]
summarized the recent work on modeling and Web Service
verification techniques, and classified it into the following
five types: 1) approaches based on Petri Net; 2) approaches
based on SPIN; 3) approaches based on process algebra; 4)
approaches based on abstract state machine; and 5)
approaches based on automata. However, in many practical
cases there is a so-called state space explosion that causes
the number and/or the length of the traces to be larger than
which can be dealt with. In such a case, one has to choose
which traces are and which are not to be checked. This
selection of interesting traces requires much insight into the
problem at hand, and so cannot be automated. Still, support
in this process will be useful. Other drawbacks include that
the model checking only works at the logical level of BPEL.
It can not be a substitute of test technique.

An approach to combining the testing techniques with
model checking will be a promising solution. Such an
approach as we proposed takes advantages of model
checking to implement the reliability verification at logical
level of BPEL, and plenty of counterexamples created by
adjusting the property model of BPEL are collected to
automate the test case generation, and to test the web
services involved in BPEL after model checking and before
the BPEL is published. This approach can clear the barriers
off either in testing web services or the model checking of
the BPEL made.

Huiqun Zhao
Department of Computer Science

North China University of Technology
Beijing, China

Zhaohq6625@sina.com

Xiaodong Liu
School of Computing

Edinburgh Napier University
Edinburgh, United Kingdom

x.liu@napier.ac.uk

Jing Sun
Department of Computer Science

North China University of Technology
Beijing, China

Sunjing8248@163.com

2012 IEEE Asia-Pacific Services Computing Conference

978-0-7695-4897-5/12 $26.00 © 2012 IEEE

DOI 10.1109/APSCC.2012.29

61

The structure of this paper is as follows. In Section 2
background knowledge is introduced including LTS, TTCN
Behavior Tree and μ-calculus. The equivalence between
LTS and Behavior Tree is discussed in Section 3. By
proving the equivalence an algorithm for translating LTS
into Behavior Tree is proposed. In Section 4, we expose our
novel approach in applications. An algorithm for generating
TTCN test suite from counterexample of model checking is
presented. To evaluate its effectiveness, a case study of
verifying and testing BPEL reliability is introduced. Finally,
we summarize related work and conclude our investigation.

II. INTRODUCTION OF LTS, TTCN AND
Μ-CALCULUS

To make our discussion easy to understand, the
background knowledge is introduced in this section.

A. Labeled Transition Systems (LTS)
A labeled transition system [6][7] consists of a

collection of states and a collection of transitions between
them. The transitions are labeled by actions from a given set
A that happen when the transition is taken, and the states
may be labeled by predicates from a given set P that hold in
that state.

Definition 2.1 Let A and P be sets of actions and
predicates respectively. A labeled transition system over A
and P is a tuple (S, I,→, |=).

Where:
1) S is a collection of states
2) I�S is a distinguishable member of S called the “Initial

state”
3) → is a collection of binary relations SSa �����

called transition, we denote with ts a��� s,t�S and a�A
is an operation.

4) |= is also a collection of binary relations |=⊆ S × P. s |=
p says that predicate p�P holds in state s�S.

LTSs with a singleton (i.e. with → a single binary
relation on S) are known as Kripke structures, the models of
modal logic. General LTSs (with A arbitrary) are the Kripke
models for polymodal logic. The name “labeled transition
system” is employed in concurrency theory. Therefore, the
elements of S represent the systems one is interested in, and

ts a��� means that system s can evolve into system t
while performing the action a. This approach identifies
states and systems: the states of a system s are the systems
reachable from s by following the transitions. In this realm
|= is often encoded by μ-calculus [8].

Definition 2.2 (Label of LTS)[7]: Let LTS=(S, I, →, |=)
be a LTS, call L(LTS)⊆A× S×P={<a,s,p>| st a��� } a
Label Class, L(LTS) or even L for short. Specially, When
L(LTS) are coded by STATE FORMULAS of μ-calculus,
call L(LTS) a Label Instance of LTS, note as LI(LTS) or LI.

For example suppose that a S={0,1,2}, I={0},
→={<0,1>, <1,1>*, <1,2>} P={True, False}, A is input
action set such as input digital, for convenience here note
A={0,1,2…,9}. A Label Instance LI(LTS)={<1,0, True>,
<0,1,True>*, <0, 2, False>} is digital numbers 1,0 and 0 is
received.

B. μ-calculus[8]
The μ-calculus is a type of propositional modal logic. It

is used to describe properties of labeled transition systems
and for verifying these properties. Many temporal logics can
be encoded in the μ-calculus including CTL* and its widely
used fragments—linear temporal logic and computational
tree logic. In this section the main properties of the
μ-calculus will be introduced for the strategy of selecting
test case associated with Model Checking counterexample.

In the μ-calculus uses STATE FORMULAS to describe
a predicated condition in which a state must be achieved. A
state formula is a logical formula built from Boolean, modal,
and fixed point operators, according to the grammar below:

F ::= "true"| "false"| "not" F| F1 "or" F2| F1 "and"
F2| F1 "implies" F2| F1 "equ" F2| "<"R ">" F| "[" R "]"
F| "@" "(" R ")"| X| "mu" X "." F| "nu" X "." F

The F is a regular formula is a logical formula built
from action formulas and the traditional regular expression
operators, according to the grammar below:

R ::= A| "nil"| R1 "." R2| R1 "|" R2| R "*"| R "+".
The A is an action formula is a logical formula built

from basic action predicates and boolean connectives,
according to the grammar below: A ::= string| regexp|
"true"| "false"| "not" A| A1 "or" A2| A1 "and" A2|
A1"implies" A2| A1 "equ" A2

For example, informally, a safety property expresses that
"something bad never happens." Typical safety properties
are those forbidding "bad" execution sequences in the LTS.
These properties can be naturally expressed using box
modalities containing regular formulas. For instance, mutual
exclusion can be characterized by the following formula:

[true* . "OPEN !1" . (not "CLOSE !1")* . "OPEN !2"]
false

which states that every time process 1 enters its critical
section (action "OPEN !1"), it is impossible that process 2
also enters its critical section (action "OPEN !2") before
process 1 has left its critical section (action "CLOSE !1").
Other typical safety properties are the invariants, expressing
that every state of the LTS satisfies some "good" property.

C. TTCN Behavior Tree
Behavior Trees are a formal, graphical modeling

language used primarily in systems and software
engineering [9]. As a primary technique for software testing
the TTCN[10] employs Behavior Trees as behavioral
description of Software system Under Test (SUT in short).

A

H I

C

F

J

G

ED

B

Tress

y y

y

y y

y

y

y y

y

Timer

A
C

F

G
J

D

E
H

I

B

y

y

Ti
m

er

Fig1. TTCN Behavior Trees

62

The left of above fig. shows a tree structure, it captures a
process of interactions between TTCN test suite and SUT
through Point of Control and Observation (PCO in short).
All sibling nodes belong to same subtree and present
alternative behavior. For the above example it has five
alternative sets: {A,B},{C,D,E},{F,G},{H,I},{J}. Note that
the nodes which do not belong to the same father node are
not in the same alternative set. All the alternative behaviors
usually are software input or output actions such as send or
receive date to or from software system. A complete
behavior process of a SUT is a depth first search. For
example, if A is to be achieved then the C will be treated
else the D, if C is be achieved then F and so on. In the
TTCN behavior tree a logical loop is allowed but the father
node must be the next step of the loop.

The right of the picture shows accordingly the
statements of TTCN test suit called behavior line. A node
maps to a behavior line. The tree structure is represented by
using increasing levels of indentation to indicate
progression into the tree with respect to time.

Definition 2.3(TTCN Behavior Tree, BT in short): A
“TTCN Behavior Tree” is a triple T = (N, Φ, r).

where:
1) N is a finite set of behavior nodes n1, n2, … nm; that is,

nodes are not necessarily unique, because the same behavior
can happen in more than one context.

2) r is a distinguishable member of N called the “root”
3) Φ: N→N is a function, for any arbitrary node n0 in N

there is a sequence of k nodes n1, n2 , … nk (0≤k≤m), n1,
n2 , … nk called sons of node n0 and called them are brothers
or members of the same alternative set.

4) Every node ni is a triple (ID, Beha, Qual) that consists
of a node’s ID, an operation on node ni and qualifies for
constraining the operations.

Definition 2.4(Behavior of BT): Let T = (N, Φ, r) be a
BT, call B(BT) ⊆ Beha × Qual a Behavior Class. Where the
Beha={Beha1,Beha2,…,Beham-1,Beham},
Qual={Qual1,Qual2,…,Qualm-1, Qualm}. Specially, if Beha ×
Qual are coded by core Langue of TTCN then note that
B(BT) is a Behavior Instance of BT, note as to BI(BT).

For example, suppose that a Beha={L!N-DATArequest,
{L?N-DATAindication, L?OTHERwise}}, Qual={pass, fail,
none}. A Behavior Instance of BT is
{<L!N-DATArequest,pass>, L?N-DATAindication, pass> }
or { <L!N-DATArequest,pass>; <L?OTHERwise,none>}

III. CONVERTING LTS TO BT
In this section we give a formal discussion for general

approach to converting a LTS to BT, and contribute
concrete algorithm.

A. Equivalence between LTS and BT
Theorem 1. Let LTS=(S, I,→, |=) be a Labeled

Transition System, the binary relations |= are coded by
μ-calculus, then there must exits a one-to-one mapping such
that Map(LI) is a Behavior Instance of Behavior Tree BT=
(N, Φ, r).

Proof: Construct a One-to-One map in accordance with
given LTS.

Create a “r” node with respective to Initial Node “i” of
LTS such that r�BT; For �l� LI(LTS) deduce all the
regular formula R.
� If l=a (a�A) then map L(LTS)⊆ A×S×P =

{<a,s,p>| st a��� } to {<a, p>s} where map predicates
{True, False} to behavior verdict {pass, fail} individually,
True corresponding to pass and False to fail.
� If l= R1 "." R2, then map L(LTS)⊆A×S×P=

{<l,s,p>| st 21 R.R �� �� } to {<R1, p1>s1, {<R2, p2>s2 }} that is
s2 is subtree of s1
� If l= R1 "|" R2, then map L(LTS) A×S×P

={<l,s,p>| st 21 R|R�� �� } to {{<R1, p1>s1}, {<R2, p2>s2 }}
which the s1 and the s1 belong to same alternative set.
� If l= R1 "*"R2, then map L(LTS) A×S×P

={<l,s,p>| st 21 R*R �� �� } to {<R1, p1>s1*} which the s1
performs once or non.
� If l= R1 "+" R2, then map L(LTS) A×S×P=

{<l,s,p>| st 21 RR �� �� 	 } to {{<R1, p1>s1}*} which the s1
performs at least once.

All above steps generate a BT obviously therefore the
Map(LI) is a Behavior Instance of BT.

Theorem 2. Let BT= (N, Φ, r) be a Behavior Tree and
BI is it’s a Behavior Instance, then must exit a one-to-one
map such that Map(BI) is a LI(LTS). Where the binary
relations |= are coded by μ-calculus.

Proof: Thinking of the one-to-one map constructed in
proof of theorem 1 it is obviously the fact of theorem 2.

Tree

L!N-DATA

L!N-
DATArequest

L?OTHERwiseL?N-
DATAindication

Fig. 2 LTS and Behavior for communication dialog

L!N-DATA

1

2 3

4

Initial

L!N-DATArequest

L!N-DATA

L?N-DATAindication L?OTHERwise

L!N-Disconnect

5

L!N-DATArequest

For example, the left part of the fig. 2 shows a LI(LTS)
that specifies a communication process.

LI(LTS)={<Start,Initial,True>,<L!DATArequest,1,
True>*,<L?N-DATAindication,2,True>,<L?OTHERwise, 3,
False>,<L!DATA,4,True>*,<L!Disconnect,5,False>},
rewrite LI(LTS) with respect to STATE FORMULAS of
μ-calculus as {< L!DATArequest*.L?N-DATAindication.
L!DATA>True,<L!DATArequest*.L?OTHERwise> False}.

A corresponding Behavior Tree is showed in the right
part of the fig. 2. the Map(LI)=BI={r,
{L!DATArequest,psaa}1},{{L?N-DATAindication,pass}2,{
L?OTHERwise,Fail}3},{L!DATA,pass}4}.

B. A algorithm of converting LI to BI
Algorithm 1 converting LI to BI

63

Input: LI
Output: BI
Process:
Generate a root node, let r�BI
Read a element of LI to record R=<l,s,p>
For each R Do

If l=a then rewrite <a,s,p> to <a, p>s replace True with
pass and False with fail.

If l=R1 "." R2, then rewrite <R1 .R2,s,p> to {<R1, p1>s1,
{<R2, p2>s2 }}

If l= R1 "|" R2, then rewrite <R1 |R2,s,p> to {{<R1,
p1>s1}, {<R2, p2>s2 }}

If l= R1 "*"R2, then rewrite <R1*R2,s,p> to {<R1,
p1>s1*}

If l= R1 "+" R2, then rewrite <R1+R2,s,p> to {<R1,
p1>s1+}

End for
End process

IV. APPLICATION STUDY

In this section we discuss an approach to integrating the
testing with the model checking in verifying the reliability
of composite web services. The approach takes advantage of
model checking to verify BPEL at the logical level, and to
generate test suite automatically based on the model
description, and finally to select test cases with respect to
the counterexamples of the model checking output.

A. Introduction of CADP
CADP is a toolbox developed by the VASY team at

INRIA Rhone-Alpes. Its objective is to specify and verify
asynchronous finite-state systems. The EVALUATOR 3.0
of CADP toolbox [11] performs on-the-fly model checking
of μ-calculus formulas on LTS. It uses a so-called exhibitor
to perform an on-the-fly search in the Labelled Transition
System (LTS), looking for execution sequences (also called
"diagnostic sequences") that start from the initial state and
match the specified pattern. Exhibitor displays on the
standard output the diagnostic sequence(s) found, if any,
using the simple SEQUENCE format. The case in which no
diagnostic sequence has been found is also covered by the
simple SEQUENCE format.

In the CADP toolbox, the SEQUENCE format is the
standard format for specifying diagnostic sequences. The
following BNF-like grammar defines the syntax of the full
SEQUENCE format. The axiom of the grammar is a
sequence_list.

� sequence_list ::= ''| sequence|sequence '[]' '\n'
sequence_list

� sequence::= label_group '\n'label_group '\n' sequence|
'<deadlock>' '\n'

� label_group::= label| label '*'| label '+'|'<while>' label|
'<until>' label| '<while>' label '<until>' label

� label::= simple_label| label '&' simple_label|label '|'
simple_label|label '^' simple_label

� simple_label::= '<any>'|string| regular_expression|'~'
simple_label|'(' label ')'

CADP also defines a simple format for diagnostic
senquence. The axiom of the grammar is sequence_list.

� sequence_list::=''|sequence|sequence'[]''\n' sequence_
list

� sequence::=string '\n'|string '\n' sequence|'<deadlock>'
'\n'

B. Improvement of the converting algorithm
Algorithm 2 Improvement for converting LI to BI
Input: diagnostic sequence
Output: TTCN Test Suite
Process:
For each Sequence-listi of diagnostic sequence do

Read a sequence to records
For each label-groupi Do

If label-groupi =label then add label to {i, label}
where I present a root of subtree

If label-groupi = label '*' then add any more label
to {i, label}

If label-groupi = label '+' then add at least a label
to {i, label}

If label-groupi = '<while>' label then add a while
label to {i, label}

If label-groupi = '<until>' label then add any but
unlike label to {i, label}

If label-groupi = '<while>' label '<until>' then
add label from while to until to {i, label}
For each label of label-groupi do

If label =simple_label1 '&' simple_label2 then add
both to {I,label,{{simple_label1}, {simple_label2}}}.
Where label is root note of subtree simple_label1 and
simple_label2 is a son note of simple_label1

If label =simple_label1 |'' simple_label2 then add
both to {I,label,{simple_label1}, {simple_label2}}.
Where both simple_label1 and simple_label2 are
brothers.

If label =simple_label1 '^' simple_label2 then add
both to {I,label,{{simple_label1}, {simple_label2}}}.
Same as '&'.
End for

End for
End for
End process

C. Case Study
Fig.3 is an example of Web service composite. There are

five web service components which provide credit policy
and loaning service by Bank0 to Bank3. In order to provide
the customer flexible and fast service, the HouseLoanBroker
has developed a web service composite with BPEL, which
receives queries from the customer and then calls the credit
policy service and the loan service to compute lending rate
with respect to the different credit policies.

The following sample code is part of BPEL for receiving
request from Customers. The sentences 1 to 6 are the
definition of message which will be sent or received within
the HouseLoanBroker and the Customer. The sentences 10
to 12 are groups of operations that achieve service binding
through port Type defined in sentence 9.

64

….
1. message name="getLoanQuoteRequest"

part name="Customer ID" type= "typens: getLoanQuote
Request" /

2. /message
3. message name="getLoanQuoteResponse"

part name="PayRate" type="typens:getLoanQuoteResponse
" /

4. /message
5. /message

portType name="HouseLoanBroker"
6. operation name="getLoanQuote"

input message="tns:getLoanQuoteRequest" /
output message="tns:getLoanQuoteResponse" /

fault name="UnknownNAME" message=
"tns:unknownNAMEFault" /

7. /operation
8. /portType

plnk:partnerLinkType name="HouseLoanBrokerPL"
plnk:role name="HouseLoanBrokerService" portType=

"tns:HouseLoanBroker" /
/plnk:partnerLinkType

9. binding name="HouseLoanBroker" type=
"tns:HouseLoanBroker"

operation name="request" /operation
10. /binding
11. service name="HouseLoanBrokerService"

port name="houseloanbroker" binding=
"tns:HouseLoanBroker" /

12. /service
……

$

Bank1
$

Bank2

$

Bank3

$

Bank0

BPLE-
HouseLoanBroker

Customer

Asking

Call Credit Policy

Call Bank

Call Bank

Call BankCall Bank

Fig. 3 HouseLoanBroker Service

Similar to the above sample code, the BPEL
HouseLoanBroker also has composition with
HouseLoanAgency, bank0, bank1, bank2 and bank3
respectively. We only demonstrate sample code of BPEL for
calling HouseLoanAgency and bank0 for short.

……
1. message name="getHouseNumberRequest"

part name="Customer ID" type=
"typens:getHouseNumberRequest"/

2. /message
3. message name="getHouseNumberResponse"

part name="HouseNumber" type=
"typens:getHouseNumberResponse" /

4. /message
5. portType name="HouseLoanAgency"

operation name="getHouseNumber"
input message="tns:getHouseNumberRequest" /
output message="tns:getHouseNumberResponse" /

fault name="UnknownNAME"
message="tns:unknownNAMEFault"/

/operation
6. /portType
7. plnk:partnerLinkType name="HouseLoanAgencyPL"

plnk:role name="HouseLoanAgencyService"
portType="tns:HouseLoanAgency" /

8. /plnk:partnerLinkType
……
1. message name="getLoanQuoteRequest"

part name="HouseNumber"
type="typens:getLoanQuoteRequest" /

2. /message
3. message name="getLoanQuoteResponse"

part name="PayRate" type="typens:getLoanQuoteResponse"
/

4. /message
5. portType name="Bank"

operation name="getLoanQuote"
input message="tns:getLoanQuoteRequest" /
output message="tns:getLoanQuoteResponse" /
/operation

6. /portType
7. plnk:partnerLinkType name="BankPL"

plnk:role name="BankService" portType="tns:Bank" /
8. /plnk:partnerLinkType
……
For verifying the logical correctness of BPEL we

developed a tool to model BPEL with LOTOS [21]. It
translates BPEL into LOTOS for model checking with
EVALUATOR 3.0 in which a LTS is as output. A part of
translated LOTOS model and its LTS are shown as
following.
Client [HouseLoanBroker]

|[HouseLoanBroker]|
HouseLoanBroker [HouseLoanBroker, HouseLoanAgency, Bank0,
Bank1, Bank2, Bank3]

|[HouseLoanAgency, Bank0, Bank1, Bank2, Bank3]|
(HouseLoanAgency [HouseLoanAgency] ||| Bank0 [Bank0] |||
Bank1 [Bank1] ||| Bank2 [Bank2] ||| Bank3 [Bank3]
where

process Client [HouseLoanBroker] : noexit :=
 HouseLoanBroker !0; Client [HouseLoanBroker]

[] HouseLoanBroker !1; Client [HouseLoanBroker]
[] HouseLoanBroker !2; Client [HouseLoanBroker]
[] HouseLoanBroker !3; Client [HouseLoanBroker]
[] HouseLoanBroker !4; Client [HouseLoanBroker]
[] HouseLoanBroker !5; Client [HouseLoanBroker]
[] HouseLoanBroker !6; Client [HouseLoanBroker]
[] HouseLoanBroker !7; Client [HouseLoanBroker]
[] HouseLoanBroker !8; Client [HouseLoanBroker]

Endproc
Table 1 and Fig.4 and presents a normal state space of

LTS where all Web services provide their service through
their interface. However, all Web services are independent

65

on the BPEL HouseLoanBroker. There is no reason for web
services to tell its caller when its interface change for some
reasons. In order to validate the reliability of Web services
the BPEL designer has to make a model checking at its
logical level firstly. Meanwhile some counterexamples will
be output because the change of interface. It is
time-consuming to perform a rechecking after fixing all
defaults. An economic strategy is that the designer of BPEL
carries out a test at the point of defaults. It is more effective
to generate testing suite based on the LTS of model
checking and to select test cases from the counterexamples.

Table 1 LTS of HouseLoanBroker
States transitions labels deadlock states

65 103 39 10 12…(26 in total)

In order to test the reliability of web service involved in
BPEL we developed a TTCN test tool based on algorithm 1
and 2. It can help the designer of BPEL to translate a LTS
into TTCN behavior tress automatically, and facilitate test
case selection. We focus on three kind of property of BPEL
such as the RELIABILITY, LIVENESS and FAIRNESS
[11].
SAFETY PROPERTIES

Informally, a safety property expresses that "something
bad never happens." Typical safety properties are those
forbidding "bad" execution sequences in the LTS. These
properties can be naturally expressed as:

[true*] < true > true
LIVENESS PROPERTIES

Informally, a liveness property expresses that
"something good eventually happens." Typical liveness
properties are potentiality assertions (i.e., expressing the
reachability on a sequence) For instance:

<true* . 'BANK0 !.* !.*'> true
<true* . 'BANK1 !.* !.*'> true

<true* . 'BANK2 !.* !.*'> true
<true* . 'BANK3 !.* !.*'> true

FAIRNESS PROPERTIES
These are similar to Liveness properties, except that they

express reachability of actions by considering only fair
execution sequences. A sequence is fair if it does not
infinitely often enable the reachability of a certain state
without infinitely often reaching it. For instance:

['HOUSELOANBROKER !0'] <true . true .
'BANK0 !.* !.*'> true

['HOUSELOANBROKER !1'] <true . true .
'BANK1 !.* !.*'> true

['HOUSELOANBROKER !2'] <true . true .
'BANK2 !.* !.*'> true

['HOUSELOANBROKER !3'] <true . true .
'BANK3 !.* !.*'> true

We execute model checking with the above three
property and get three counterexamples.

Counterexamples 1 for SAFETY PROPERTIES:
In according with the business rule, if

HouseLoanAgency receives ID 1 it responses to
HOUSELOANBROKER the house number 3. However,
because the service HouseLoanAgency does not work well,
it returns a number 0.Tthe output sequence of
counterexample 1 is follow:

"HOUSELOANBROKER !1"."HOUSEAGENCYSE
RVICE !1 !0"."BANK0 !0 !2" "HOUSELOAN
BROKER!2"

Counterexample 2 for LIVENESS PROPERTIES:
The bank1 have an evolution on its interface, it adds

HouseNumber into new one, so a counterexample sequence
will be output as follow:

HOUSELOANBROKER!2"."HOUSEAGENCYSERVIC
E !2 !1" "BANK1 !1 !3" "Deadlock"

Counterexample 3 for FAIRNESS PROPERTIES:
We inject a default into LTS model with μ-calculus

formula (HOUSELOANBROKER !2)* and get a
counterexample3 as follow:

"HOUSELOANBROKER!1"."HOUSELOANAGENC
YSERVICE!*"."BANK0!*!*""HOUSELOANBROKER !*"

Meanwhile, the character ‘*’ represents an integer,
when it is an ID of customer the ‘*’ represents a duration
from 0 to 3. Actually the counterexample is normal process
because we let an abnormal μ-calculus formula as
property of LTS.

Based on the above counterexamples a group of test
cases are selected in according with its output sequence.

For SAFETY PROPERTIES:
{HouseLoanBroker!CustomerID,pass}HouseLoanBroker,{HouseLo

anAgency!CustomerID,pass}HouseAgencyrService,{Bank0!
HouseNumber,pass}Bank0

For LIVENESS PROPERTIES:
{HouseLoanBroker!CustomerID,pass}HouseLoanBroker,{HouseLo

anAgency!CustomerID,pass}HouseAgencyrService,{Bank*!
HouseNumber,pass}Bank*// ‘*’ represent a integer duration from 0 to
3

For FAIRNESS PROPERTIES:
{HouseLoanBroker!CustomerID,pass}HouseLoanBroker,{HouseLo

anAgency!CustomerID,pass}HouseAgencyrService,{Bank*!

Fig. 4 LTS of HouseLoanBroker

66

HouseNumber,pass}Bank*// ‘*’ represent a integer duration from 1 to
3.

Fig. 5 is a form of performing TTCN-3 test for BPLE:
HouseLoanBroker. In the middle of fig. is a select area
where have tree groups of test case.

Table 1 is a performance result. he checking consumes
much more time than the testing does.

Fig. 5 Test for BPLE: HouseLoanBroker
Table 1 A time analysis of model checking and testing

Steps Actions Timer
Checking LOTOS Model 2s
 Simulating 48s
 Checking 59s
Testing TTCN-3 Test suit 5s
 Testing 10s

V. RELATED WORK

Web service testing and verification already draw much
attention in the recent years. A lot of papers have been
published. Here we focus on summarizing some papers that
are closely related with our work.

Thierry J’ and Pierre Morel [12] argue that
model-checking and testing are different activities, at least
conceptually. Nevertheless, there are also similarities in
models and algorithms. They proposed a new on-the-fly test
generation algorithm with respect to the classical graph
algorithm for example LTS.

Paul E. Black and William Majurski [13] apply a model
checker to help test generation in a new application of
mutation analysis. They use the concept of syntactic

operators to describe slight variation on a given model. The
operators define a form of mutation analysis at the level of
the model checker specification. A model checker generates
counterexamples which distinguish the variations from the
original specification. The counterexamples can easily be
turned into complete test cases. Authors appraise the
substantial advantages to combine a model checker with test
generation.

Angelo Gargantini and Constance Heitmeyer[14]
defined a concept of trap properties. The idea is neither to
use model checking neither for verification nor to detect
specification errors but to construct test sequences.
Nevertheless, the authors base the method on two ideas.
Firstly, the model checker is used as an oracle to compute
the expected outputs. Secondly, the model checker's ability
to generate counterexamples is used to construct the test
sequences to force the model checker to construct the
desired test sequences.

All the work above demonstrates how to generate test
sequence from model checking. There is no effort to
generate and carry test cases. Both the logical verification
and the practical test still need to be connected.

Yongyan Z., Jiong Z. and Paul K.[15] head on the
challenge of time-consuming and error prone in test case
generation manually where testing BPEL orchestration
provides a model checking based test case generation
framework for BPEL. This framework employs a Web
Service Automata (WSA in short) to describe the
operational semantics for BPEL. Using LTL and CTL
temporal logic models test coverage criteria that associate to
SPIN and NuSMV test case generator. State coverage and
transition coverage are created for BPEL control flow
testing, and all-du-path coverage is used for BPEL data flow
testing. Two levels of test cases can be generated to test
whether the implementation of web services conforms to the
BPEL behavior and WSDL interface models. The generated
test cases are executed on the JUnit test execution engine.

Quite similar with our work, A, Ferrara’s [16] defines a
two-way mapping between BPEL and LOTOS and then
uses LOTOS to reconstruct the business process. He carries
on model checking with the toolbox CADP, where employ
LOTOS as model language, to verify the business
reachability of BPEL. The main difference from our work is
that the authors only tell reader how to generate test cases
from model checking in an engineering way. There is no
proof for its rightness, and no automatic connection to test
environment.

Based on the SPIN, a model checking toolbox, [17]
established an automatic test framework for web services
composition of BPEL. To facilitate BPEL verification a
translation method from BPEL into Promela, a language for
describing the properties under checking in SPIN, is given.
Applying this framework discusses how to describe
properties for test case generation for BPEL. This is a really
static test method. It only pays attention to checking the
service reachability at logical level without any discussion
for on line test. Not only this, the authors misunderstand the
conception between software verification and software
testing.

Three groups of
test case

67

Mounir Lallali, Fatiha Zaidi and Ana Cavalli[18]
intensively observe the drawbacks in web services testing
and state that the majority problem is requirement for a
intermediate format between BPEL and a formal language,
in which the test case can be generated automatically. A
transformation procedure of the BPEL specification into an
Intermediate Format (IF) model that is based on timed
automata is proposed in this paper. This IF format is well
adapted to model BPEL (timed) constructs and to handle
faults, events, termination, message correlation and
activities synchronization. The proposed transformation was
implemented in the BPEL2IF tool.

[19] shows some negative influence on testing activities
where web services perform asynchronous behavior,
distribute availability and the lack of user interface. Bearing
in their mind of those challenges, a model based testing
method is proposed. It still employs SPIN as a model
checking tool, therefore a transformation of the composition
specified in BPEL into a Promela has been discussed.

Ana R. at el. [20] present a methodology and a set of
tools for the modeling, validation and testing of Web service
composition. This methodology includes several modeling
techniques, based mainly on some variations of Timed
Extended Finite State Machines (TEFSM) formalism, which
provides a formal model of the BPEL description of Web
services composition. These models are used as a reference
for the application of different test generation and passive
testing techniques for conformance and robustness checking.
This paper mainly focuses on the application of various
testing methods on web services, rather than the method of
test case generation.

Mustafa Bozkurt, Mark Harman and Youssef Hassoun
[3] argue that testing web services is more challenging than
testing traditional software due to the complexity of web
service technologies and the limitations that are caused by
the SOA environment. The complexity of web services due
to their standards not only affects the testing but also slows
down the transition to web services. Limited control and
ability to observe render most of the existing software
testing approaches inapplicable. There are other issues in
web service testing, such as:

� The frequency of testing required,
� Testing without disrupting the operation of the

service,
� Determining when testing is required and which

operations need to be tested.
Franck van Breugel1 and Maria Koshkina [5]

summarize the recent work on modeling and Web Service
verification techniques, and classify it into five different
types: 1) approaches based on Petri Net; 2) approaches
based on SPIN; 3) approaches based on process algebra; 4)
approaches based on abstract state machine, and 5) approach
based on automata. All the methods take on some technical
strategies which map each BPEL process to a formal model,
such as Petri Nets, SPIN, process algebra, abstract state
machine and automata. Not only this approach provides a
model, but also allows the verification techniques and tools
developed to be exploited in the context of BPEL processes.

Web service testing and verification is a new research
area with the new concept of web service. It claims a new
approach or method to guarantee the quality of web services.
However, from our point of view, existing work has not
solved the new verification challenges incurred by the new
features of SOA applications such as dynamicity, basically
due to the lack of automation in testing and test suit
generation. New methods and tools are still in need
urgently.

VI. CONCLUSIONS AND FUTURE WORK

The proposed approach is promising. The model of
BPEL for interesting properties can be constructed with the
proposed algorithm. The interesting properties can be
verified by existing model checking tools, for example
CADP. The traces of counterexamples from model checking
can be used as a TTCN-3 test suite which can be
automatically generated by the proposed translating
algorithm.

The state spaces explosion of model checking is
restrained because we only selecting the traces of
counterexamples as clued to generate test case. The hard
work of the creation of test traces for web service can be
automated. We not only demonstrate how to generate test
sequence from model checking but also show how to execute
test case automatically. Both the logical verification and the
practical tests are connected smoothly.

Our approach is not a blue-sky idea; we accomplished
our work step by step from theoretical research to practice.
We proved the equivalence between LTS and BT for
generating test case from model checking counterexamples.
There is no existing work let us follow.

In the future, we will investigate and develop an
approach to improving the reliability during web service
evolution, find the possible methods of how to generate
traces based on the clue where cooperation protocols are
changed.

ACKNOWLEDGEMENT

The work in this paper has been supported by Natural
Science Foundation of China (Grant No: 61070030,
61111130121) and the British Royal Society of Edinburgh
(RSE-Napier E4161). It is also partly supported by Beijing
Government and Education Committee (Grant No.
PHR201107107).

REFERENCES

[1] E. Christensen, F. Curbera, G. Meredith, and
S.Weerawarana. Web services description language (WSDL)
1.1. http://www.w3.org/TR/wsdl, 2001.
[2] IBM Corporation. Business Process Execution Language
for Web Services BPEL-4WS (Version 1.1), 2002.
http://www.ibm.com/developerworks/library/ws-bpel.
[3] Mustafa Bozkurt, Mark Harman and Youssef Hassoun.
Testing Web Services: A Survey, Technical report TR-10-01.
www.dcs.kcl.ac.uk/technical-reports/papers/TR-10-01.pdf.
2010.1.

68

[4] Edmund M. Clarke, Jr., Orna Grumberg and Doron A.
Peled, Model Checking: MIT Press, 1999, ISBN
0-262-03270-8
[5] Franck van Breugel1 and Maria Koshkina. Models and
Verification of BPEL. http://www.cse.yorku.ca/~franck
/research/drafts/tutorial.pdf
[6]Joost-Pieter Katoen. Labelled Transition Systems
Model-Based Testing of Reactive Systems Lecture Notes in
Computer Science, 2005, Volume 3472/2005, 615-616.
[7]R.J. van Glabbeek. Bisimulation, http://www.cse.
unsw.edu.au/~rvg/pub/Bisimulation.pdf.
[8] Radu Mateescu. Local Model-Checking of Modal
Mu-Calculus on Acyclic Labeled Transition Systems,
Proceedings of the 8th International Conference on Tools
and Algorithms for the Construction and Analysis of
Systems TACAS'2002 (Grenoble, France), April 2002
[9] Colvin, R., Grunske L. and Winter, K., Probabilistic
Timed Behaviour Trees", in Integrated Formal Methods, 6th
Intl. Conference, IFM 2007, Springer, LNCS 4591, July
2007, pp157-175.
[10] ETSI ES 201 873-1 V2.2.1 - TTCN-3 Home page.
www.ttcn-3.org/doc/es_ 20187301v020201p_chinese.pdf
[11] Hubert Garavel, Frédéric Lang, Radu Mateescu, and
Wendelin Serwe, CADP 2010: A Toolbox for the
Construction and Analysis of Distributed Processes.
TACAS'2011 (Saarbrücken, Germany), March 2011.
[12] Thierry J’ eron and Pierre Morel. Test Generation
Derived from Model-Checking. Lecture Notes in Computer
Science 1633, Springer 1999, CAV 1999, pp 108-121,
Trento, Italy, July 1999.
[13]Paul Ammann, Paul E. Black, William Majurski. Using
Model Checking to Generate Tests from Specifications.

ICFEM’98, December,1998, Brisbane, Queensland,
Australia, pp 46-56.
[14] Angelo Gargantini, Constance L. Heitmeyer: Using
Model Checking to Generate Tests from Requirements
Specifications. ESEC / SIGSOFT FSE 1999: 146-162. 7th
European Software Engineering Conference, Toulouse,
France, September 1999, Lecture Notes in Computer
Science 1687 Springer 1999.
[15] Yongyan Zheng, Jiong Zhou, Paul Krause: An
Automatic Test Case Generation Framework for Web
Services. JSW 2007 Vol.2(3): 64-77.
[16] A. Ferrara, Web services: a process algebra approach,
In Proc. of ICSOC. ACM Press, 2004, p. 242-343.
[17] Rongsheng Dong, Zhao Wei, Xiangyu Luo, Fang Liu.
Testing Conformance of BPEL Business Process Based on
Model Checking, JOURNAL OF SOFTWARE, 5(9),
SEPTEMBER 2010, 1030-1037.
[18] Mounir Lallali, Fatiha Zaidi, Ana Cavalli.
Transforming BPEL into Intermediate Format Language for
Web Services Composition Testing. NWESP '08. Oct. 2008
Seoul. pp 191-197.
[19] José García-Fanjul, Claudio de la Riva, Javier Tuya:
Generation of Conformance Test Suites for Compositions of
Web Services Using Model Checking. TAIC PART 2006:
127-130.
[20] Ana R. Cavalli, Tien-Dung Cao, Wissam Mallouli,
Eliane Martins, Andrey Sadovykh, Sébastien Salva, Fatiha
Zaïdi: WebMov: A Dedicated Framework for the Modeling
and Testing of Web Services Composition. ICWS 2010:
377-384.
[21] T. Bolognesi, J. v.d. Lagemaat, C. A. Vissers (editors)
LOTO Sphere: Software development with LOTOS, Kluwer
Academic Publishers, 1994.

69

