
Research on Formal Modeling and Verification of BPEL-based Web Service
Composition

Huiqun Zhao, Wenwen Wang, Jing Sun, Ying Wei
Department of Computer Science

North China University of Technology
Beijing, China

zhaohq6625@sina.com, www321y@126.com, sunjing8248@163.com, weiying_0913@126.com

Abstract—With the development of Web Service composition,
more and more diversified and complex business demands are
satisfied. But the logical validity cannot be guaranteed. After a
short view of recent research efforts of formal modeling and
verification about Web Service, this paper proposes a new formal
model for WS-BPEL described Web Service composition. The
specification language of the model is LOTOS. Model checking is
adopted to ensure the validity of this model. Finally, an example
is presented to illustrate the practicality of the model.

Keywords- Web Service; BPEL; formal description model;
LOTOS; model checking

I. INTRODUCTION
WS-BPEL[1](Web Service-Business Process Execution

Language, BPEL in short) solves the problem of limited
function using single Web Service. It composes several
simple Web Services in order to provide advanced function
for users. But because the Web Services are dynamic and the
WS-Policy is changing, there may be problems in the
business process of BPEL described composition. If an
inaccurate business process is deployed without verification,
problems will arise when running it. Repairing the system
will be costly, too. It is necessary to verify the business
process before coming into use.

The academia has paid attention to modeling and
verification of Web Service composition, and some research
results of this problem can be seen now. Most of the formal
research results are about Petri net, process algebraic and
automata theory. Some representative work is introduced
below. 1) About Petri net: Reference [2] holds that the
existing description models of Web Services composition
depend on concrete composition process description
language. Moreover, they cannot give a comprehensive
picture on Web Service composition in order to resolve
problems; a colored Petri net model was put forward to
describe the Web Service. The model descriptions of five
basic web composition structures were presented to
construct the process of Web composition which fulfils
actual requirement. At last they gave a demonstration for the
actual application of the mode by an example modeling.
Reference [3] prefers to use Petri net to model and verify
Web Service composition. It also proposes an algorithm to
translate WF-Net to BPEL. The validity of BPEL process
can be guaranteed according to verifying the WF-Net
process [4]. Colored Petri net is adopted to model ontology
based Web Service composition in Reference [5].

Corresponding semantics and operators are constructed. It
defines measure to judge the validity of composition. 2)
About process algebra: Process algebra is studying
concurrent systems in algebraic method. It includes CCS,
CSP, Pi-calculus and so on. Reference [6] presents a Pi-
calculus based formal description model for Web Service,
and gives the mapping of BPEL4WS specification and WS-
CDL specification. It also instructs that the mapping above
is consistent in the model. The dynamic architecture of Web
Service composition can be described by the method when it
is used to design Web Service composition directly.
Reference [7] proposes a Pi-calculus based formal
description. It defines the mapping of concept between Pi-
calculus and OWL-S. It also gives the method of verifying
the validity of the model. 3) About automata theory:
Reference [8] starts from the message interaction between
services and formally describes the services into non-
determinate Büchi automata with a FIFO message queue. It
regards Web Service composition as a global session
protocol which models the asynchronous message passing
between services. It provides the feasible condition of the
session protocol and the synchronization condition of
messages. It describes these conditions and goal property of
system in LTL assertion. SPIN is adopted to verify the
correctness. Reference [9] uses finite state machine to model
the BPEL-described Web Service composition. It verifies
the safety and liveness of the process in order to assure the
correctness of the service. Moreover, there is another model
method called ontology. Reference [10] proposes a modeling
and composition method which describes logic rules. This
method is based on OWL-S and DL-ruled framework. The
problem that DL cannot describe the dynamic feature of
Web Service is solved. Reference [11] adopts a three-layer
architecture ideology namely OWL-S to compose Web
Service. It uses GA as middle model and Promela model as
verification model. It fulfills the transition between Web
Service composition model and GA model. It also transfers
GA model to Promela model. The verification work takes
advantage of SPIN tool.

Process algebra takes expression as describing method.
The express ability of it is very strong and the form is
concise. But Pi-calculus is short of intuitional graphic
representation and supported tools. It is not very convenient
to use it. Although the method of Petri net and automata in
describing Web Service composition is more intuitional than

2012 IEEE/ACIS 11th International Conference on Computer and Information Science

978-0-7695-4694-0/12 $26.00 © 2012 IEEE

DOI 10.1109/ICIS.2012.92

641

2012 IEEE/ACIS 11th International Conference on Computer and Information Science

978-0-7695-4694-0/12 $26.00 © 2012 IEEE

DOI 10.1109/ICIS.2012.92

649

2012 IEEE/ACIS 11th International Conference on Computer and Information Science

978-0-7695-4694-0/12 $26.00 © 2012 IEEE

DOI 10.1109/ICIS.2012.92

649

2012 IEEE/ACIS 11th International Conference on Computer and Information Science

978-0-7695-4694-0/12 $26.00 © 2012 IEEE

DOI 10.1109/ICIS.2012.92

649

2012 IEEE/ACIS 11th International Conference on Computer and Information Science

978-0-7695-4694-0/12 $26.00 © 2012 IEEE

DOI 10.1109/ICIS.2012.92

645

2012 IEEE/ACIS 11th International Conference on Computer and Information Science

978-0-7695-4694-0/12 $26.00 © 2012 IEEE

DOI 10.1109/ICIS.2012.92

631

Pi-calculus. When the business process is complicated, it
will lead to state space explosion.

In this paper, we adopt formal description language
LOTOS to model BPEL described Web Service
composition. Model checker Evaluator in CADP toolset is
used to verify the built model. Then the correctness of the
Web Service composition process can be guaranteed in order
to discover the problem before the system comes into use.
More loss can be avoided.

II. BASIC KNOWLEDGE
Formal methods are developed so as to solve “software

crisis” at the end of the 1960’s. Formal methods provide a
appropriate framework to dispose the description,
composition and verification problems. It has many formal
specification language and advanced analysis tools. The
meaning is that it can help discover indetectable
inconsistency, ambiguity and imperfection of system
specification. It is an effective way to reduce mistake in
design and enhance the reliability of system.

A Model checking
Model checking is a kind of verification technique in

formal method. It verifies a certain property according to
exhaustion the state space of the system. Automatic and
complete safety analysis can be put into effect in Web
Service composition. Counter-example will be given when
the Web Service composition violates safety principle. It is
very helpful to locate the safety problems in the system. The
flow of model checking is system modeling, property
modeling and verification.

System description language, property modeling method
and model checking tool selecting are illustrated as follows:

B LOTOS
Language of Temporal Ordering Specification (LOTOS

for short) is a kind of formal description language. LOTOS
is a Formal Description Technique (FDT) standardized by
ISO for the design of distributed systems. It helps us
describe concurrency, nondeterminism, synchronous and
asynchronous communication within the system.

Complete LOTOS can be divided into four parts:
1) Specification declare part, this part declares the

name, gate, exit type and so on.
2) Import abstract data type part, this part may include

predefined type such as Natural type and user defined
type.

3) Main behavior part, this part describes the general
behavior of the system and the interaction between
processes.

4) Process definition part, this part describes the specific
behavior of the processes.

C Property modeling
It is necessary to model the property while verifying a

system using model checking technical. That is to express

the system property in specific formula. There are several
means of expression such as propositional logic, temporal
logic, Pi-calculus, mu-calculus and so on. In this paper, mu-
calculus is chosen to describe the property of system. The
full name of mu-calculus is regular alternation-free mu-
calculus. It can express temporal logic with data which is
effective for model checking algorithm. Mu-calculus can
express safety property, liveness property and fairness
property.

Safety property. Informally, safety property
expresses that “something bad never happens.” Typical
safety property is those forbidding “bad” execution
sequences in the LTS. For example, mutual exclusion can be
characterized by the following formula:

[true*.“OPEN!1”.(not CLOSE !1”)*.“OPEN !2”]false
states that every time process 1 enters its critical section
(action "OPEN !1"), it is impossible that process 2 also
enters its critical section (action "OPEN !2") before process
1 has left its critical section (action "CLOSE !1").

Other typical safety properties are the invariants,
expressing that every state of the LTS satisfies some "good"
property. For example, deadlock freedom can be expressed
by the formula below:

[true*] < true > true
Liveness property. Informally, a liveness property

expresses that "something good eventually happens."
Typical liveness properties are potentiality assertions (i.e.,
expressing the reachability on a sequence) and inevitability
assertions (i.e., expressing the reachability on all sequences).

Potentiality assertions can be directly expressed using
diamond modalities containing regular formulas. For
instance:

< true* . "GET !0" > true
states that there exists a sequence leading to a "GET !0"
action after performing zero or more transitions.

Inevitability assertions can be expressed using fixed
point operators. For instance, the following formula:

mu X . (< true > true and [not "START"] X)
states that all transition sequences starting at the current state
lead to "START" actions after a finite number of steps.

 Fairness property. Fairness property is similar to
liveness properties, except that they express reachability of
actions by considering only fair execution sequences. One
notion of fairness that can be easily encoded in the logic is
the "fair reachability of predicates". A sequence is fair iff it
does not infinitely often enable the reachability of a certain
state without infinitely often reaching it. For instance:

[true* . "SEND" . (not "RECV")*]
< (not "RECV")* . "RECV" > true

states that from every state of such a circuit, there is still a
finite sequence leading to a "RECV" action.
Using the above properties, most properties of Web Service
composition can be well expressed such as deadlock and
reachable.

642650650650646632

D Mode checker – evaluator
While verifying Web Service composition using model

checking method, the state space often increases
exponentially. If the state space is large, searching the space
directly is actually impossible. This is state explosion
problem. The model checker we choose in this paper which
called evaluator can solve the state explosion problem.

Evaluator is the model checker of CADP toolset. CADP
[14][15] (Construction and Analysis of Distributed Processes)
is a popular toolbox for the design of communication
protocols and distributed systems. CADP offers a wide set of
functionalities, ranging from step-by-step simulation to
massively parallel model-checking.
Evaluator can analyze designate property of the system
model and judge whether the system model satisfy the
designate property. A positive example or counter example
will generate finally.

III. FORMAL MODELING FOR BPEL
BPEL is a kind of XML-based programming language. It

can automatically fulfill the business process of Web Service
composition. The syntax of business process is defined
based on the interaction between the participants. BPEL
adapts the advantages of Petri net and Pi-calculus. It is an
abstract executable modeling language of high-level.

In order to verify the BPEL described business process
in formal methods, we should translate BPEL process to
formal language. Due to the excellent descriptive capacity of
LOTOS, this paper adopts LOTOS to model the BPEL
process. Now the methods how to translate BPEL into
LOTOS will be presented.

A Modeling for LOTOS main behavior
BPEL is a kind of orchestration language. BPEL, as the

core process, describes the executive logic of Web Service
application according to defining control flow. It rules the
interaction of called services in order to fulfill function.
BPEL process can be divided into three parts that are client
process, BPEL process and invoked services. BPEL process
starts from receiving request from client and ends with the
replying to the client.

LOTOS main behavior, combined with its own
character, can be built into a three-level model which
include client process, BPEL process and invoked service
processes. The interaction between client and BPEL process,
BPEL process and invoked service processes are preceded
on different gates. There is no interaction between invoked
service processes. So the whole business process can
complete. The example code of LOTOS main behavior is
shown as follow:

behavior
Client [request, response]

|[request, response]|
BpelProcess [request,response,WS1,WS2,WS3]

|[WS1,WS2,WS3]|
(

WebService1 [WS1]
|||

WebService2 [WS2]
|||

WebService3 [WS3]
)
Now the LOTOS main behavior framework has been set

up. But the orchestration of BPEL has not been built.
According to LOTOS syntax, we should import the
definition of all the processes quoted in the main behavior.
The most important is the definition of BpelProcess() which
stand for the whole executive procedure of business process.
The modeling of specific activities of BPEL is shown as
follows.

B Translation of BPEL basic activities
BPEL orchestrates business process by means of

activities. An activity is a statement of BPEL or an executive
procedure. BPEL activities consist of basic activities and
structured activities.

BPEL basic activities include 9 activities. The translation
from basic activities to LOTOS is modeled in TABLE I.

TABLE I Translation rules of BPEL basic activities

BPEL activity LOTOS comment
<receive
portType=”qname”
variable=”m”…>
</receive>

qname ? m : Nat ; Receive the
request from the
client

<reply
portType=”qname”
variable=”m”…>
</reply>

qname ! m; Reply to the client

<invoke…
portType=”qname”
inputVariable=”mI”
outputVariable=”mO”>
</invoke>

qnane !mI
?mO : Nat ;

Call other
deployed service

<… act1 …/>
<assign><copy>
<from expression=”5”/>
<to var=”x”/>
 </copy></assign>
<… act2 …/>

act1; exit(5)>>
accept x:Nat in act2

Assign a value to
another variable

<empty>
standard-elements
</empty>

process empty [] :=
endproc

Non-action

<wait
(for=”duration”|
until=”deadline>
</wait>

i; Wait for a certain
time

<exit…>
</exit>

exit Exit

<throw
faultName=”name”
faultVariable=”f”>
</throw>

qname ! fM; Throw a exception

<rethrow
faultName=”name”
faultVariable=”f”>
</rethrow>

qname ! fM; Rethrow a
exception

643651651651647633

C Translation of BPEL structured activities
Structured activities can describe complex business

process with integrating basic activities. Handling of control
pattern, data flow, breakdown, external events and message
exchange between process instances can be represent by
these structures. As container of basic activities, a structured
activity can contain another structured activity. That is
called nested container. The translation of structured
activities is shown in TABLE II.

TABLE II Translation rules of structured activities

BPEL activity LOTOS comment
<sequence>
<…act1…/>
<…act2…/>
</sequence>

act1 ; act2 Sequence
activities

<if condition=”x>=0”>
<…act1…/>
<else><…act2…/>
</else></if>

[x>=0] -> act1;
[]
[x<0] -> act2;

Condition
structure

<while condition=”x>=0”>
<…act1…/>
<while>

process while[] :=
[x<0] -> i;[]
[x>=0] -> act1;
while1[]
endproc

Loop structure

<repeatUntil>
<…act1…/>
<condition=”x>=0”/>
</repeatUntil>

Process
repeatUntil[]:=
act1;
([x<0] -> i; []
[x>=0]->act1;while1[]
)
endproc

Similar with loop
structure, but the
activity executes
at least once

<pick><onMessage
portType=”q1”>
<…act1…/>
</onMessage><onMessage
portType=”q2”> <…act2…/>
</onMessage></pick>

(q1 ? m1:Nat; act1)
[]
(q2 ? m2: Nat; act2)

A set of mutual
exclusion.

<flow ><..act1…>
<source linkname=”link1”
condition=”cond1”/>
</act1>
< ...act2... >
<target linkname="link1"/>
</act2></flow>

act1;
([cond1]->link1 !1; []
[not(cond1)]-> link1
!0;)
||
(link1 ?x:Bool;
([x=1] -> act2 []
[x=0] -> i;))

A set of
paralleled
activities

D An example of transition
A simple example will be present to explain the LOTOS

formal model raised above.
The bank should provide different down payment and

loan rate to house buyers according to the quantity of house
they possess. The more houses they possess the higher down
payment and loan rate they should undertake.

The BPEL process of example. In order to enforce
the function mentioned above, the BPEL process receives
the request of client at first. Then it invokes the
houseloanagency Web Service to get the quantity of house.

At last, it invokes different Web Services according the
quantity.

The BPEL process after simplification is shown as
follows:

<process>
 <receive portType=”Client”/>
 <invoke portType=”HouseLoanAgency”/>
 <switch>
 <case condition=”houseNum=0”>
 <invoke portType=”Bank0”/>
 </case>
 <case condition=”houseNum=1”>
 <invoke portType=”Bank1”/>
 </case>
 <case condition=”houseNum=2”>
 <invoke portType=”Bank2”/>
 </case>

<case condition=”houseNum>2”>
 <invoke portType=”Bank3”/>
 </case>
 </switch>
 <reply portType=”client”/>
</process>

Modeling of example. The LOTOS model is shown
as follows:
specification houseLoanBroker [client, houseLoanAgency,
Bank0, Bank1, Bank2, Bank3] : noexit
behaviour

Client [client]
|[client]|
houseLoanBroker[client, houseLoanAgency, Bank0,

Bank1, Bank2, Bank3]
|[houseLoanAgency, Bank0, Bank1, Bank2, Bank3]|
(
houseLoanAgency [houseLoanAgency]
|||

Bank0 [Bank0]
|||

Bank1 [Bank1]
|||

Bank2 [Bank2]
|||

Bank3 [Bank3]
)

where
process houseLoanBroker[client, houseLoanAgency, Bank0,
Bank1, Bank2, Bank3] : noexit :=

client ?a : Nat;
houseLoanAgency !a; houseLoanAgency ?b: Nat;
(([b=0] -> Bank0 !a ?c : Nat; exit(c))[]

([b=1] -> Bank1 !a ?c : Nat; exit(c))[]
([b=2] -> Bank2 !a ?c : Nat; exit(c))[]
([b>2] -> Bank3 !a ?c : Nat; exit(c))

)>>accept c : Nat in client !c;stop
endproc
endspec

Not all the process definitions are listed above because
of the length of article. The main behavior is modeled
referring to the model presented in chapter 3.1. The BPEL
process is modeled according to chapter 3.2 and chapter 3.3.

644652652652648634

IV DESIGN AND IMPLEMENTATION OF
TRANSITION TOOL FROM BPEL TO LOTOS

The transition syntax rules have been introduced above.
But for developers of Web Service composition, describing
the system in LOTOS is relatively difficult. So an automatic
transition tool from BPEL to LOTOS is designed and
implemented in this article. This tool is based on the rules
present above.

In order to translate from BPEL to LOTOS, the
information contained in BPEL should be extract at first.
This article adopts DOM (Document Object Module) to
parse BPEL file. DOM can parse BPEL into tree structure
with element, property and text. While parsing BPEL, the
root element of the document is parsed at the beginning.
Then every branch of root element will be parsed.
Eventually the whole BPEL can be parsed.

The parse algorithm is shown as follows.
1) Start to model when read beginning tag <process>.
2) Judge the activity type when read activity name.

a) If the activity is assign, receive, invoke, reply,
throw, rethrow, exit, empty or wait, model it as
convention. Then jump to step 3).

b) If the activity is pick, if, flow, while or
repeatUntil, model it as convention and every
subactivity should be modeled as in step 2), then
jump to step 3).

c) If the activity is sequence, suppose there are n
subactivities.

If n=1, model the subactivities as in step2.
If n>1, model the subactivities according to the

sequence.
3) If the activity is </process>, modeling ends. If not,

jump to step 2.
The transition tool can automatically generate LOTOS

files after reading BPEL files. Evaluator can model check
corresponding properties on the LOTOS file. If the system
satisfies the property, the result will be true. If not, a counter
example will be given. The principle figure of translate and
evaluate is shown below:

Figure1. Principle figure of translate and evaluate

V. APPLIED CASE
The case is based on the internet of things which is hot at

present. Another team of our laboratory develops a Web
Service. The enterprise can subscribe information of certain
products according to sending message to our Web Service.
The Web Service invokes different ALE (short for
Application Level Event) terminals to get corresponding
information. Then the Web Service can reply to the
enterprise. The Web Service is a kind of BPEL process.

The tool raised above can translate the BPEL file to
LOTOS file automatically. Evaluator of CADP can model
check the LOTOS file on-the-fly. The temporal logic
formula is written in mu-calculus mentioned in chapter 2.3.

Property 1:
[true*] < true > true
The result is true. It represents that the system has no

deadlock. The result chart is shown in figure2.
Property 2:
[true*.’ALE !*’] <true* . ‘ALE1 !* !* !*’> true
The result is true. It represents that the enterprise will

receive a response no matter what it requests. The result is
shown in figure 3.

Figure 2. result of property 1 Figure 3. result of property 2

VI. CONCLUSION
With the development of Web Service composition, the

academia has given several formal description of BPEL
process. They use different formal languages in modeling.
But research on LOTOS language is seldom or they did not
give detailed mapping method. Most of the methods are
aimed at the early BPEL4WS specification but not WS-
BPEL2.0. The property is written in LTL which is short for
Linear Temporal Logic. The description ability of LTS is a
little weak.

A LOTOS model of Web Service composition is raised
in this article. The model which is based on model checking
can describe all kinds of BPEL activities. The new activities
have also been translated. At the same time, the properties of
system are described with mu-calculus which can model the
property in detail. At last, the algorithm of transition from
BPEL to LOTOS is given for convenience.

ACKNOWLEDGMENT

645653653653649635

This paper is jointly sponsored by the Natural Science
Foundation of China (Ref: 61070030 61111130121) and
Beijing Government and Education Committee (Ref:
PHR20 1107107). Thank those 2 institutions for their
support.

REFERENCES

[1] T.Andrews, F.Cubera, H.Dholakkia. Business Process Execution
Language for Web Services2.0.http://www.128.ibm.com/
developerworks/library/specification/ws-bpel/,2003

[2] Li Jingxia, Zhao Huijuan. Description and validation of Web Service
composition based on coloured petri net[J].Computer Application and
Software. 20112011,28(3):80-82.

[3] VAN DER ALAST W M P,DUMASM,TER HOFSTED A H M.Web
serivce composition language:old wine in new bottles[C]//Proceedings
of the 29th EU ROMICRO Conference on New Waves in System
Archiecture. Washington, D.C.,USA:IEEE,2003:298-305.

[4] VAN DER AALST W M P,LASSEN K B. Translating workflow nets
to BPEL4WS[R]. Eindhoven, The Netherlands:Eindhoven University
of Technology,2005.

[5] Luo Nan, Yan Junwei, Liu Min.Verification mechanism for semantic
Web Service composition based on colored Petri-nets[J]. Computer
Integrated Manufacturing Systems. 2007, 13(11) : 2203-2210.

[6] Hu Jing, Feng Zhiyong. Pi-calculus based formal description model for
Web Services[J]. Application Research of Computers.
2011,28(6):2168-2173.

[7] Li Yanhong, Yue Houguang.Research on Automatic composition of
Web Service based on Pi-calculus and OWL-S[J].China Computer and
Communication.2011,4:42-43.

[8] BULTAN T,FU X,HULL R,et al.Conversation specification:a new
approach to design and analysis of Web Service
composition[C]//Proceedings of World Wide Web Conference. New
York, N.Y., USA:ACM,2003:403-410.

[9] FOSTER H, UCHITEL S, MAGEE J, et al. Compatibility verification
for Web Service choreography[C]//Proceedings of IEEE International
Conference on Web Services. Washington, D.C., USA:IEEE,
2004:738-741.

[10] Liu Sipei, Liu Dayou, Qi Hong. Composition Semantic Web Service
with Description Logic Rules[J].Journal of Computer Research and
Development. 2011,48(5):831-840.

[11] Teng Xingquan, Li Zengzhi. Study of verification of Web Services
Composition Based on OWL-S[J]. Microellectronics and
Computer.2004, 24(12):62-65.

[12] Wing J. M. A Specifier’s Introduction to Formal Methods[J]. IEEE
computer, 1990, 23(9):8-24

[13] ISO/IEC 8807-1989, Information process systems, open systems
interconnection, LOTOS—— A formal description technique based
on the temporal ordering of observational behavior[S].

[14] Serge P Hoogendoom, Piet H L Bovy. Dynamic user-optional
assignment in continuous time and space, Transportation Research
Part, 2007: 571-592

[15] Andreas Schadschneider, Wolfgang Knospe, Ludger Santen. Michael
schreckenberg, optimization of highway networks and traffic
forecasting. Physica, 2005:165-173.

[16] D. Kozen. "Results on the Propositional Mu-Calculus." Theoretical
Computer Science, v. 27, p. 333-354, 1983.

[17] E. A. Emerson and C-L. Lei. "Efficient Model Checking in Fragments
of the Propositional Mu-Calculus." Proceedings of the 1st LICS, p.
267-278, 1986.

646654654654650636

