
Toward a Graphical Tool for Image and Video

Processing Embedded Systems Design

Noureddine ZHAR, Mohamed AIT ALI, Mohsine ELEULDJ

Laboratoire Système d’Information et Répartition

Ecole Mohammadia d'Ingénieurs
Rabat, Morocco

{Zhar, aitali, eleuldj}@emi.ac.ma,

Abstract—In this paper we identify the requirements of a design

tool for the implementation of image and video processing

algorithms in hardware platforms such as FPGA or ASIC. We

discussthe advantages and weaknesses of some existing design

languages. Finally, we propose our solution, in compliancewith

specified requirements, which intends to bypass the shortcomings

of existing languages by providing a high-level of abstraction

through two kinds of diagrams; structural diagram and filter

edition diagram. It also allows a formal verification and

automatic code generation for an ASIC or a FPGA
implementation.

Index Terms—image processing; real-time; embedded system;

design;

I. INTRODUCTION

The growth of image resolution, the nature and diversity of
associated applications require the implementation of complex
image processing algorithms. Artificial vision is widely
involved in many industrial, medicinal, telecommunication and
defense applications. A sequential implementation of these
algorithms has quickly shown its shortcomings, particularly for
real-time applications. This is due to the importantquantity of
data to be processed and the severe temporal constraints that
characterize such systems.

A hardware implementation thatallowsparallelizingsome
parts of the processing and reducingthe execution time and the
consumption of resources seems to be the best solution to meet
time and budget requirements[1]. Thanks to its ability to permit
parallelism and to support different modes of operation on a
single hardware substrate FPGA is considered as the most
suitable platform for digital signal processing, including image
processing [1].

In this case, the main difficulty is to convert the sequential
algorithmstoparallel implementations. This task isa real
challenge for software designerwho have no hardware
knowledge. Moreover, video processing applications are often
subject totime constraints. Input devices provide different types
of data, compressed with various compression techniques, in a
specific frame rate. In such a case, the processing has to be
done in accordance with the data type and rate. These
constraints are associated with memory bandwidth limitation
and resources access conflicts.To manage this situation, the
designer should be able to define clearly the system behavior

by describing its functional structure and showing how data
will be accessed by different functional blocks.

A high-level design tool for real-time image and video
processing in hardware platforms should be a practical solution
to overcome these difficulties and reduce development time.
This solution should meet requirements associated with
embedded and real-time systems constraints.

This paper intends to pinpoint requirements for a real-time
image and video processing in embedded systems design tool.
For this purpose, we present advantages and shortcomings of
some existing design languages. We describe here a panel of
desirable characteristics of such a tool. Lastly, we propose VIP
DESIGN, a graphical language for image and video processing
embedded systems design, which aims at providing solution to
identified weaknesses.

II. CRITICISM OF AVAILABLE LANGUAGES

Many languages and tools are currently available to fulfill
hardware systems designer needs. Some of them try to describe
hardware architecture in a low-level of abstraction. Some
others were created to raise the abstraction level by adding
more extensions to C-like languages. However, this kind of
languages remains difficult to be mastered by a large
community of software developers because of integration
ofsome hardware-specific paradigms. Others prior works
suggest visual environments to design hardware systems. These
environments increase significantly comprehensibleness of the
system architecture but remain linked to hardware specificities.

A. Hardware Description Languages

Hardware Description Languages (HDL) were developed to
remedy to the problematic related to the growth of electronic
circuits complexity that can no longer be described by
schematics. HDLs are software-like languages which intend to
describe organization of components on a digital circuit. The
most known languages in this family are Verilog[2] and
VHDL[3].VHDL was designed to be similar to ADA[4]
programming language[4] and is strongly-typed. Verilog has a
style close to C programming language [5] using a
preprocessor. Both of them offer possibility to simulate
architectures before their fabrication.

In the VHDL case, “entity” is the representation of an
electronic component. The declaration of the “entity” allows

978-1-4673-2679-7/12/$31.00 ©2012 IEEE 158

defining input and output ports. The component behavior is
specified by an architecture bodyto design a basic operation,
the designer needs as a matter of fact to define the entity
comprising ports and then its behavior.

HDLs contributedconsiderably to raise the abstraction level
in comparison with schematics.However, they remain
maladjusted to implement complex algorithms such as those of
image and video processing. In spite of their flexibility and
their powerfulness in hardware describing, they are difficult to
program and they provide no image processing specific
operations.

B. C-like languages

In order to cope with the increasing complexity of
designing digital circuits with HDLs, some solutions attempt to
raise the abstraction level. In this context, some languages,
based on standard C or C++, try to reduce the development
cycle for hardware systems. SystemVerilog[6], SystemC[7]
and Handel-C[8] are C-like languages providing additional
libraries and extensions to include ability to describe hardware
aspects and to allow parallel programming. The main aim of all
of these languages is to increase productivity and to make
hardware design more accessible to software designer.They
allow the designer to break away from the physical structure of
the system and focus on its behavior. Closed to the C language,
widely used, these languages are easily mastered. These
proprieties reduce greatly the conception and development time
of hardware systems. However, this gain in terms of time and
simplicity is combined with losses in performance due to the
automatic translation of Handel-C code in VHDL or EDIF that
requires a manual refinement to optimize the algorithm
implementation on hardware. Also, these languages don’t
provide specific features for image and video processing
systems design and they don’t allow representing concurrence
aspects.When working in a team project, using textual
languages to design complex architecture don’t facilitate
communication between the team members.

C. Visual tools for hardware design

In order to bypass limitations of textual languages, there are
moves to create visual tools (languages and environments) to
raise the abstraction level, increase solutions visibility and
reduce time to market. Some available languages are based on
UML[9] notation. Others are completely designed to fit
hardware design requirements,like Catapult-C[10], and
specially image processing needs.

1) UML profile for hardware design
UML profiledefines a "Domain Specific Modeling

Language" without contradicting the semantics of UML by
adding concepts relating to a particular field, by changing the
representation of these concepts, defining constraints applied to
the associations between these concepts and by adding
constraints on the use of certain concepts or not depending on
the context and the identification of semantic variation
points[9].

SysML [11] is an UML profile for modeling systems. It
incorporates additional concepts adapted to the design of
embedded and real-time systems. These concepts, which are
sometimes inadequate to the spirit of UML and suitable to the

representation of hardware systems, remain inapplicable in the
case of a complete automated development flow [12].

Other works have attempted to use the standard notation of
UML, particularly those of the activity, composition and
deployment diagrams, to model the behavior, composition and
functional block for hardware systems [12]. The model thus
produced can be subject to transformation and generation rules
to obtain a descriptive code. This language does not provide
sufficient flexibility to define other specific concepts such as
data types.

2) VERTIPH
VERTIPH [13] (Visual Environment for Real-Time Image

Processing in Hardware) is a design environment for image
processing applications for real-time systems. It offers three
views covering different aspects of an image processing
system: An architectural view, a computational view and a
scheduling and resource sharing view. This language attempts
to meet the specificity of image processing applications to be
implemented on FPGAs in terms of data types, reuse of
primitive functions specific to this area and the graphical
representation of competitive and sequential execution of
different functional blocks of the designed system. However,
although it is consideredas a high-level design environment
which doesn’trequire hardware knowledge, this tool requires a
perfect mastery of resource sharing concepts and a good ability
to handle and define data types at very low level. This specific
knowledge makes the use of this tool inaccessible to
developers’ community unaccustomed to such concepts.
VERTIPH doesn’tintegrate verification and validation of the
designed model before the implementation phase, considered
expensive in terms of time and cost.

III. REQUIREMENTS OF A GRAPHICAL LANGUAGE FOR IMAGE

AND VIDEO PROCESSING IN EMBEDDED SYSTEMS

The study of a large set of available languages andtools
used in hardware system design and image/video processing
techniques leads to define requirements to be observed when
developing a graphical language adapted to this field.

A. To focus on functional structure

In most cases, an image processing specialist has no
knowledge about hardware systems. They develop algorithms
without consideration to how it will be implemented in circuits.
A high-level language should allow to the designer to focus
exclusively on functional structure of the solution.

B. To integrate specificities for image and video processing

field

Most available languages and tools for hardware systems
designseek a general purpose and provide no specific
operations for image/video processing needs.An image/video
processing applications manipulate several specific data-types
(image, pixel, row, stream…). The whole of data-flow in such
application is submitted to a succession of operations called
filter.A specific high-level language for image/video
processing in hardware systems ought to permit manipulation
of operations and data type relevant to this area in order to
reduce the gap between design and implementation levels.

159

C. To describesystem behavior

A specific high-level language should provide tools to
represent all of the states and transition events of the system. It
could also permit to control the execution flow by a set of
assignment and conditional statements. Also, the designer
should be able to graphically express logic and arithmetic
operations.

D. To allow reuse

A large community of developers is working every day to
create new algorithms and to develop new techniques for
image processing systems. A designer is always looking to
reuse what has already been developed by himself or by
another designer in order to reduce development time. A design
tool of image processing systems must offer to its user the
ability to reuse the already developed algorithms and
techniques.

Also, image and video processing applications use often
some common routines. Windows filters, data buffering and
lookup table appear in almost image and video processing
algorithms[14]. A graphical language for image and video
processing purpose should include such routines as primitives.

E. To manage resource access

Themaingoalofa hardware implementationofimage
processingalgorithmsis toparallelizesome orallof the
processing. In this case, the designer has to manageconflicts
over accessto shared resources. Thisneed arises especially for
areal-time processingof a video streamwhere
severalcomponentsof the systemwill try toread or writein the
samememory space.

A graphical languagefor designing thesesystemsmustenable
the managementofthis kind of conflictsby providing toolsfora
clear representationof shared resources usage.

F. To express time constraints

The increasing complexity of algorithms and the large
volume of data handled in the image processing present a
serious challenge which requires a considerable computation
time to accelerate this complex process. Parallelizing tasks
cannot be designed without an associated model of time. In a
real-time context, the adherence to these constraints is as
important as the accuracy of the obtained result. So, it is
essential to associate each operation to one or more time
constraints.

G. To represent clearly pipelined operation

Parallelization of tasks involves increased knowledge of
their schedule to determine what will be executed in a
competitive manner and whatwill be executed sequentially. A
hardware systems designer looks for a tool to represent clearly
this aspect. Textual programming languages, even when
providing statements to support parallelization of tasks, cannot
allow a clear representation of tasks scheduling. A graphical
tool for designing hardware systems should offer to the
designer the ability to define unambiguously the scheduling of
various operations that the system has to perform. This will
also help to avoid conflicts related to resources access.

H. To allow formal verification

Obtaining a productive model goes through rigorous
verification of the validity of this model compared to its
defined specifications. A graphical language for designing
hardware systems should allow the verification and the
validation of the producedmodels. This assumes that the
semantics of this language is well defined and does not cause
confusion. Models produced can be injected into a formal
verification process to ensure compliance with constraints.

I. To be easy to learn and to use

Learning and handling time is an important criterion for
choosing a design tool. Reducing this time may be obtained by
the simplicity, intuitiveness and the availability of
documentation.

The ability to document produced models contributes to
make them Useful, to serve as an effective means of
communication and to ease maintenance and improvement of
the designed solution.

IV. VIP DESIGN

In order to dispel difficulties associated with the use of
textual languages and provide answers to the limits of visual
languages described in the previous section, we suggesta
graphical language for image and video processing in
embedded systems design called VIP DESIGN.

A. Appraoch

VIP DESIGN proposes an approach based on a graphical
representation of structural and behavioral aspects of designed
system while abstracting details about the physical architecture.
This is possible through two types of diagrams. Embedded and
real-time image processing system has input interfaces for data
acquisition and an output interface to deliverits returned result.
The processing can be described as an arrangement of several
sequential or competitive filters which communicate through
channels or shared memory.

The first diagram is called Structural Diagram. Itspurpose
is to model the system structure through a hierarchical
composition of all necessary functions. A second diagram can
describe each basic element of this hierarchical structure. This
diagram calledFilter Editing Diagram details the processing
functions through a description of elementary operations and
their scheduling.

B. Structural Diagram

Structural diagrammetamodel is based on this set of rules:

· An image processing system consists of a set of input
interfaces, a set of output interfaces, a serie of filters
applied to a data stream, clocks and communication
channels;

· One or several filters run at a specified clock rate;

· Each filter consists of an input stream of data, an
output, one or more parameters and a computing
entity;

· A computing entity contains instruction blocks
executed in parallel or sequentially,

160

Figure 1. Partial view of VIP DESIGN metamodel

C. Filter Editing Diagram

Figure 2. Package “ACTION”

The behavior of an embedded and real-time image
processing system can be described by defining three basic
aspects:

· An accurate expression of structural (conditional
branches, loops), arithmetic and/or logic operations
executed by the system;

· Scheduling of these operations;

· Defining rules to manage competitive access to shared
resources;

1) Expression of filter operation :A clear expression of the

system operations requires an action language using a concrete

syntax with a sufficient level of accuracy to enable an

unambiguous code generation. For this need, we used the

package "Action" of the intermediate modeling language

COCODEL [15].

2) Scheduling : The increasing complexity of algorithms

and the large volume of data handled in the image processing

present a serious challenge which requires a considerable

computation time. Parallelizing tasks represents an effective

solution to obtain more efficient in execution speed.

Figure 3. Partial view from VIP DESIGN time model

This parallelism can not be designed without an associated

model of time.Therefore, VIP DESIGN language manages

different real-time constraints related to image processing via a

TIME package facilitating the addition of temporal information

to model elements.This package allows to manipulate the

values of temporal parameters and markup language elements

with temporal information used later by tools for simulation,

performance analysis, verification, validation and analysis of

schedulability. In fact the components of our language are

related to one or more clocks which gives the possibility to use

multiple temporal repositories in the same VIP DESIGN model

and divides time into a succession of discrete instants for

modeling parallel processing, concurrency, and support the

design of distributed and multi-clocks electronic systems.

161

D. Formal analysis framework

We integrated real-time constraints modeling related to
image processing in the TIME package. To address these
constraints, formal techniques have gained much attention
since they provide fundamental techniques to analyze,to
validate and to transformsystems in a provably sound way. For
that reason, we provide a verification framework to ensure the
respect of time constraints at model level.

Our verification framework is based on an existing model
checking, named CADP-toolbox[16]. We opted for model
checking rather than theorem proving because of possibility to
automatically check behavioral and timed properties. The
question that we are answering is: “once we model our image
processing algorithm for FPGA implementation, how can we
check the respect of behavioral and timed requirements before
going any further and generating the implementation code?”

Figure 4. Formal analysis process overview

To answer this question, we integrated a formal verification
framework into our design tool. This framework takes as input
both of the structural and the filter editing diagrams, and
produces as a result a formal model expressed in the form of a
set of timed automata. We defined an ad-hoc domain-specified
transformation language in terms of Ecore metamodel and
define a Model-to-Model transformation chain. From the
structural diagram, our verification framework generates a
timed automaton that represents the flow of data through
computing entities to check the absence of deadlocks and
process starvations. From Filter Editing Diagram, we generate
a timed automaton to check the respect of behavioral properties
according to structural and arithmetic and/or logic operations.
Model transformations used to generate formal artifacts from
Structural and Filter Editing diagrams generate a trace model
for each transformation. The trace model is used later to trace
back verification result to give a diagnosis support for the
designer. Figure 4 shows an overview of the analysis process
of our verification framework.

V. APPLICATION : BLOBS DETECTION IN A VIDEO

STREAM

In this section, we present briefly a blob detection
algorithm to illustrate how we can easily implement a hardware
implementation of an image processing algorithm.

 This application gets in input a grayscale video stream at a
constant rate (23 images /seconde). It furnishes in output an
array containing blobs sizes and coordinates.The first image is
stored in a RAM block as reference image. Each new image is
subtracted from a stored reference image. A pretreatment
routine eliminate residual noise by applying successively a blur
5×5and a threshold filters. After this pretreatment we obtain a
mono-bit image on which we apply our blob detection
algorithm. Figure 5 shows the processing sequence
implemented entirely on FPGA.

Figure 5. Synoptic solution scheme

To implement the solution described above, we define a
system (SYSTEM). This system has an input stream Image and
a Boolean one called first injected into a conditional block to
redirect stream flow to the initialization phase or to the
processing one. The system provides a list of spots (Blobs list)
in output. This processing will run while the video stream is
available in input. Each stage of processing can be parallelized
internally while the computational tasks are independent.
Diagrams are produced using a graphical tools created with
eclipse GMF [17]. We use ACCELEO [18] to define
transformation and generation rules to produce Handel-C code.

Figure 6. Solution designed with VIP DESIGN

162

Figure 7. Main source file pattern

TABLE I. FPGA RESOURCE CONSUMPTION BY FILTERS

FPGA resource

consumption

Filters

SUBTRA. THRESH. SMOOTH. BLOBS.

CLBs blocks 326 294 652 1830

Block RAM’s 1 1 2 4

Generated code can be easily handled by software
developers thanks to its similarity with high level programming
languages. However, the final solution implemented on FPGA
doesn’t reach a satisfactory level of optimization, as shown in
table I, particularly in terms of occupation rate.

VI. CONCLUSION

Several programming languages are used to describe
hardware systems. However, the increasing complexity of
algorithms and the need to reduce development time motivate
the rise of graphical tools to raise the abstraction level and
overcome hardware concepts difficulties. The study of some
available tools allows us to pinpoint their weaknesses and
advantages in order to identify a range of suitable
characteristics to develop a specific-domain design tool.

We suggested VIP DESIGN, a new graphical design tool
for embedded and real-time image and video processing
systems. VIP DESIGN approach is based on the description of
the system through the scheduling of several parallel or
competitive filters communicating through channels and
running at a speed set by one or different clocks. This is
possible by using two kinds of diagram which allow the
designer to define the functional structure and the internal
behavior of the system. The structural diagram describes the
functional hierarchy of the system. Filter editing diagram is
used to describe the internal behavior of each filter using an
action language. Time constraints are expressed by integrating
clauses adapted to real-time system design.However, VIP
DESIGN doesn’t cover the entire development flow. To this
end, the code generated automatically from the produced
model must be submitted to a verification and simulation
process before its implementation. Actually, we use a tool
provided by Celoxica[19].

REFERENCES

[1] W. J. MacLean, «An Evaluation of the Suitability of FPGAs for
Embedded Vision Systems,» chez Computer vision and pattern
recognition, San Diego, CA, 2005.

[2] IEEE, Verilog HDL quick reference manual - standard
IEEE1364-2005, IEEE, 2005.

[3] I. o. E. a. E. Engineers, IEEE Standard VHDL Language
Reference Manual, IEEE, 2008.

[4] Ada-Europe, ADA reference manual, Language and Standard
Libraries, 2006.

[5] Brian W. Kernighan, Dennis M. Ritchie., The C programming

language, NJ, USA: Prentice Hall Press, 1998.

[6] Accellera, IEEE Standard for System Verilog: Unified Hardware
Design, Specification and Verification Language, 2005: IEEE.

[7] Open Accellera Initiatives, OPEN SYSTEMC LANGUAGE
REFERENCE MANUAL, IEEE, 2012.

[8] RG, Handel-C Language Reference Manual, Celoxica Limited,
2005.

[9] OMG, OMG Unified Modeling LanguageTM (OMG UML),

Superstructure, Version 2.3, 2010.

[10] MentorGraphics, "Catapult C Synthesis datasheet," Mentor
Graphics Corporation, 2010.

[11] S. Partners, "SysML Specification v. 1.0a," 2005. [Online].
Available: http://www.sysml.org.

[12] Tim Schattkowsky, Jan Hendrik Hausmann, Gregor Engels,
«Using UML Activities for System-On-Chip design and
synthesis,» Springer, 2006.

[13] C.T.Johnston, D.G.Bailey, P.Lyons, «A Visual Environment for
Real-Time Image Processing in Hardware (VERTIPH),»
EURASIP Journal on Embedded Systems, p. 1–8, 2006.

[14] JOHNSTON C.A, GRIBBON K.T, BAILY D.G, «Implementing

Image Processing Algorithms on FPGAs,» chez 11th Electronic
New Zealand Conference, Palmerston North, 15 november 2004.

[15] M.AIT ALI, M.ELEULDJ, «An intermediate modelisation
Language for embedded system developemnt chain COCODEL

: Un Langage intermédiaire de modélisation pour une chaine de
développement des systèmes embarqués COCODEL,» chez
JODIC'2012, Rabat, 2012.

[16] J.-C. Fernandez, G. Hubert , A. Kerbrat, L. Mounier , R.
Mateescu et M. Sighireanu, «CADP : A Protocol Validation and

Verification Toolbox,» chez CAV ’96 : Proceedings of the 8th
International Confe- rence on Computer Aided Verification,
London, UK, 2006.

[17] E. Foundation, «Graphical Modeling Framework,» The Eclipse

Foundation, [En ligne]. Available:
http://www.eclipse.org/modeling/gmp/.

[18] E. Foundation, «Acceleo,» Eclipse Foundation, [En ligne].
Available: http://www.eclipse.org/acceleo/.

[19] Pixel Streams manual, Celoxica, 2001.

[20] Charest, L., Aboulhamid, E.M., «A VHDL/SystemC
Comparison in Handling Design Reuse,» 2008.

[21] OMG, UML Action Semantics, November 2001.

[22] OMG, «Mof qvt Technical report,» Object Management Group,
2005.

[23] OMG, Action Semantics for the UML, Request For Proposal,
OMG Document, 2003.

[24] Venkateshwar,R., Patil,P., Naveen, A., Muthukumar,V.,
«Implementation and Evaluation of Image Processing
Algorithms on Reconfigurable Architecture using C-based
Hardware Descriptive Language,» International Journal of
Theoretical and Applied Computer Sciences, 2006.

163

